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Abstract

The exact computation of a system of interacting electrons is an extremely complicated
issue because the motion of one electron depends on the positions of all the others (i.e.
electrons are correlated). The accurate treatment of the electron-electron correlations
in electron devices is even a more difficult issue because we deal with non-equilibrium
open systems. For classical electron transport approaches, the electrostatic interaction
among electrons is commonly obtained from an explicit solution of the mean-field Poisson
(Coulomb) equation. However, this does not provide an exact treatment of the classi-
cal Coulomb electron-electron correlations, but only an average estimation. The explicit
consideration of the wave nature of electrons implies an additional computational bur-
den, and the difficulties in treating the Coulomb interaction among electrons increase.
The mean-field approximation appears again as an improvement of electron-electron cor-
relations. In this dissertation, a classical and quantum time-dependent many-particle
approach to electron transport is developed in terms of a Hamiltonian that describes a
set of particles with Coulomb interaction inside an open system without any perturba-
tive or mean-field approximation. The boundary conditions of the Hamiltonian on the
borders of the open system are discussed in detail to include the Coulomb interaction
between particles inside and outside of the open system. Classically, the solution of this
time-dependent many-particle Hamiltonian is obtained via a coupled system of Newton-
like equations with a different electric field for each particle. The quantum mechanical
solution of this many-particle Hamiltonian is achieved using a time-dependent quantum
(Bohm) trajectory algorithm. The validity of the classical and quantum electron trans-
port approaches to compute observable results is also discussed in detail. A rigorous
formulation of the expectation values of a measurement in terms of classical and quan-
tum trajectories is provided. The computation of the current density is presented as a
particularly relevant example of the ability of the presented theoretical approaches to
predict the functionality of nanoscale electron devices. Furthermore, a reformulation of
the electric power for many-particle open systems is presented. It is shown that the power
consumption differs in general from the standard textbook expressions. Finally, the com-
putational viability of the algorithms to build a powerful nanoscale device simulator is
demonstrated by simulating some interesting aspects of advanced nanoscale structures
provides new valuable information on the role played by electron Coulomb correlations
in the establishment of macroscopic characteristics such as the electrical current, power
consumption, current and voltage fluctuations, etc.
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que hem passat junts.

La famı́lia és mereix un reconeixement especial. Sobretot perquè la confiança fa fàstic i
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una paciència i amor incondicionals, pels quals li estaré agräıt tota la vida. Amb ella és
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Preface

Recent advances in technology have made it possible to fabricate structures at the

nanoscale (1nm = 10−9m), this meaning that, at least, one of its dimensions is any-

where in between a few tens of nanometers and the size of an atom. Such structures have

already a large range of applications in very disparate fields of science and technology

(physics, chemistry, medicine, biology, electronics, ...), and day by day new proposals

are being suggested. Nanostructures appear today as suitable platforms where merging

theoretical and applied physics. Nanoelectronics constitutes a clear example of such a

necessary mixture. In order to maintain the rapid evolution of the electronic industry, a

very close and reciprocal relation between the theoretical description of electron transport

and its practical application to study and design electron devices becomes mandatory.

This dissertation, in particular, constitutes an example of such a mixture. As I will show,

based on a fundamental study of electron transport at the nanoscale beyond the mean-

field approximation, the ultimate pursuit of this work is the development of a powerful

and versatile nanoelectronic device simulation tool to provide more accurate predictions

of experimental results.

Due to the huge complexity involved on the electron transport problem at the nano-

scale, the assumption of some kind of approximation is a mandatory prerequisite in order

to study it. Similarly to other areas of research, although the underlying theory describing

a particular problem is well stated, its complexity give rise to a wide range of different

approaches dealing with a single problem. In particular, the exact computation of a

system of Coulomb interacting electrons constitutes an extremely complicated problem

because the motion of one electron depends on the positions of all others (i.e. electrons

are correlated). Thus, the prediction of the collective behavior of many electrons is a

very active field of research in nano-electronics, and several theoretical approximations

have been proposed to improve the treatment of electron-electron Coulomb correlations.

Such a complexity belongs to the core of the so called many-body problem.

For classical approaches to electron transport, the electrostatic interaction among

electrons is commonly simplified by invoking the so called mean field approximations,

which assume that Coulomb correlations does not play a crucial role in the description of

electron dynamics. Under such an assumption the solution of the electrostatic problem is

obtained from a single Poisson equation. Unfortunately, this approach does not provide

an accurate treatment of the classical Coulomb correlations, but only an average esti-

mation [1, 2]. It is well known that the solution of a classical many-particle system can

always be written as a coupled system of single-particle Newton-like equations. However,

a unique electrostatic potential (classical mean field approximation) is explicitly assumed

in semi-classical transport simulators in order to deal with a unique average electrostatic

potential for all electrons [1]. A successful application of the classical mean field approx-
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imation appears, for example, in the semi-classical Boltzmann equation that describes

the time-evolution of the electron distribution function in a one-electron phase-space

[1]. The use of a unique electric field (i.e. a unique average electrostatic potential) in

the Boltzmann equation neglects the correct electron-electron correlations, in particular

because each electron “feels” its own charge [1, 3–6].

For quantum approaches, the difficulties are even greater due to the computational

burden associated to deal with the wave nature of electrons. In fact, the Coulomb inter-

action among electrons is directly not considered in many quantum transport formalisms

under the assumption that the system behaves as a Fermi-liquid [7]. The well-known

Landauer-Buttiker approach is a very successful example of the applicability of this as-

sumption [8, 9]. Nevertheless, the Fermi liquid paradigm has difficulties to deal with high-

frequency, low-dimensionality or Coulomb blockade regimes [7–16] . On the other hand,

the non-equilibrium Green’s functions formalism (also referred to as the Keldysh formal-

ism) provides an interesting path to solve the Schrödinger equation with the Coulomb

interaction introduced perturbatively [17]. Alternatively, under the assumption that the

system behaves like a capacitor, one can use a simple linear relationship between the num-

ber of electrons and the electrostatic potential in a particular region to introduce partially

Coulomb effects [7–10, 12, 13, 16] . The mean-field approximation appears again as a

solution for electron transport. For example, an average single-particle time-independent

potential profile can be computed, self-consistently, from the wave-function solutions of a

set of single-particle time-independent Schrödinger equation [10, 11, 15, 18–24]. This rep-

resents a zero-order approximation (some times called the Hartree approximation [18])

to the complex problem of electron-electron correlations. Additionally, remarkable ef-

forts have been done by Büttiker and co-workers to include Coulomb interaction in their

scattering matrix approach by applying different many-body approximations to provide

self-consistent electron transport theories with overall charge neutrality and total current

conservation [25–27]. Finally, extensions of the equilibrium Density Functional Theory

to deal with electron transport, by means of a time-independent formalism [28], or with

a powerful time-dependent version can also be found in the literature [29–31]. The exact

exchange-correlation functionals needed in both formalisms are unknown and they have

to be approximated. Therefore, in all the descriptions of non-equilibrium quantum sys-

tems mentioned here, the electron-electron correlations are approximated to some extent.

In addition to the previous difficulties, due to the computational burden associated

to the microscopic description of electron transport either in classical or quantum sys-

tems, it is mandatory to spatially reduce the simulated regions, i.e. we cannot deal with

the whole circuit, but only with a part of it. In this regard, the simulation of the lead-

sample-lead region is not always possible in modern nanoscale simulators. However, in
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order to correctly model the DC and/or AC conductance of nanoscale systems, one has to

assure the accomplishment of the “overall charge neutrality” and “current conservation”

[11, 13]. The implementation of such requirements into modern nanoscale electron sim-

ulators demands some kind of reasonable description of the Coulomb interaction among

the electrons inside and outside the simulation boxes. The boundary conditions on the

borders of simulation boxes in electron transport approaches constitute, then, also a

complicate and active field of research.

Educated guesses for the boundary conditions are present in the literature when de-

scribing nanoscale electron devices with simulation boxes large enough to include the

leads. However, such boundary conditions are not applicable for small simulation boxes

that exclude the leads. Elaborated semi-classical electron transport simulators solving

the time-dependent Boltzmann equation within the Monte Carlo technique commonly

fix the potential at the borders of the simulation box equal to the external bias (i.e.

Dirichlet boundary conditions) and assume ad-hoc modifications of the injection rate

to achieve “local” charge neutrality [32–40]. Some works do also include analytically

the series resistances of a large reservoir which can be considered and improvement over

the previous boundary conditions [41]. Others Monte Carlo simulators do also consider

Neumann boundary conditions (i.e. a fixed zero electric-field) [42]. Such boundary con-

ditions fix also the scalar potential (up to an arbitrary constant) so that the injected

charge can also be indirectly fixed when a known electrochemical potential is assumed.

Such boundary conditions are successful for large simulation boxes, but they are quite

inaccurate for small simulation boxes that exclude the leads [42]. In principle, there are

no much computational difficulties in applying semi-classical Monte Carlo technique in

large simulation boxes when dealing with mean-field approaches. However, the possi-

bility of using smaller boxes will be very welcomed for some intensive time-consuming

simulations beyond the mean-field (also for statistical ensemble simulations [43], to com-

pute current or voltage fluctutations that need very large simulation times to obtain

reasonable estimators [37–39], etc.).

Electron transport simulators accounting for the wave nature of electrons leads to

an additional increase of the computational complexity. The use of the external bias as

the Dirichlet boundary conditions was quite usual in the simulation of ballistic electron

devices such as the resonant tunneling diode, although it neglects the lead resistances

[44, 45]. The boundary conditions where directly specified from the energetic difference

between the fixed scalar potential and the fixed electrochemical potential. Recently, more

elaborated quantum-mechanical simulators are being used based on the self-consistent

solution of the non-equilibrium Green’s functions and Poisson equation [46–51]. They

use either Dirichlet-type boundary conditions [46, 48] or Neumann’s ones [47, 49–51].

All these boundary algorithms are very successful because they are implemented into
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simulation boxes large enough to explicitly include the leads. However, such algorithms

are basically developed for static scenarios within a mean-field treatment of the Coulomb

interaction. Its extension to time-dependent scenarios or the inclusion of correlations

beyond the mean-field approximation has many computational difficulties that will cer-

tainly benefit from the possibility of smaller simulation boxes. Büttiker and co-workers

were the first to study quantum AC conductances with both “overall charge neutrality”

and “current conservation” requirements. They applied different many-body approxima-

tions to provide self-consistent theories for the AC conductance of mesoscopic systems.

However, the practical implementation of Büttiker theory for AC conductance in real

resonant tunneling diodes (with 2D or 3D treatments) has many computational diffi-

culties because of the use of large simulation boxes including the leads [25–27, 52–57].

There are even more computational difficulties in using large simulation boxes to in-

clude the leads in the so-called “first-principle” electron transport simulators, because of

its huge demand of computational resources for their atomistic description [28, 30, 58–64].

In this dissertation, I am interested in revisiting the computation of an ensemble of

Coulomb interacting particles in an open system without any of the approximations men-

tioned in the previous paragraphs. In the first section of chapter 1, I briefly describe the

evolution of electronics from its birth, 100 years ago, till present days, where theoretical

predictions have became, somehow, a valuable guiding tool preparing the ground for new

generations of electronic devices. In the second section, I will extendedly discuss the main

problems that a theoretical approach must face up when dealing with electron transport

at the nanoscale. In one hand, I will emphasize the necessity of dealing with statistical

mechanics due to the unmanageable complexity of the problem. On the other hand, I

will discuss the essentially correlated (and far from equilibrium) nature of the transport

problem. Finally, in section 1.3, I will introduce some of the most relevant contemporary

approaches to electron transport, emphasizing their abilities and limitations to deal with

Coulomb correlations.

Chapter 2 constitutes the fundamental contribution of the present work to build a

many-particle classical and quantum approach to electron transport [65, 66]. After a brief

resume of the common strategies followed by several approaches to deal with electron-

electron correlations at the nanoscale and their differences with the one that I will follow

here, in section 2.2, I develop an exact many-particle Hamiltonian for Coulomb interact-

ing electrons in open systems in terms of the solutions of multiple Poisson equations [66].

This constitutes the keystone of our approaches to electron transport. To our knowledge,

the type of development of the many-particle Hamiltonian proposed here has not been

previously considered in the literature because, up to now, it was impossible to handle the

computational burden associated with a direct solution of a many-particle Hamiltonian.
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In section 2.3, I present an original (time-dependent) boundary condition algorithm for

open systems capable of accurately capturing the Coulomb correlations among the elec-

trons inside and outside the simulation box [65]. Such boundary conditions constitute a

notable improvement of standard boundary conditions used in both classical and quan-

tum approaches. Requiring a minimum computational effort, our boundary conditions

can be implemented into time-dependent simulators with large or small simulation boxes,

for DC, AC conditions and even for the study of current (or voltage) fluctuations. In

section 2.4, I present classical and quantum solutions of the many-particle open system

Hamiltonian introduced in section 2.2 supplied with the many-particle boundary condi-

tions discussed in section 2.3 [66]. Classically, the solution of this time-dependent many-

particle Hamiltonian is obtained via a coupled system of Newton-like equations with a

different electric field for each particle. This solution constitutes a generalization of the

semi-classical single-particle Boltzmann distribution for many-particle systems [65, 66].

The quantum mechanical solution of the Hamiltonian is achieved using a time-dependent

quantum (Bohm) trajectory algorithm [65–67]. In this quantum (Bohm) trajectory al-

gorithm, the use of single-particle Schrödinger equations is exact to treat many-particle

systems. However, similarly to Density functional theories, the formidable simplification

allowing an exact treatment of the many-particle Coulomb interaction comes at price that

some terms appearing in the single-particle Schrödinger equation are in general unknown.

In the firsts sections of chapter 3, I will focus on discussing the kind of information

we can extract from our classical and quantum approaches to electron transport. Due

to the stochastic nature of our simulations, it is not evident to what extent we are able

to predict measurable results. Furthermore, when dealing with quantum systems, since

it is still unclear how a real measurement must be theoretically reproduced in orthodox

quantum mechanics, I introduce the description of the measurement process in terms of

Bohmian mechanics. Such a formulation allows the extension of the classical expectation

value of an observable to the quantum one in a very natural way. In section 3.3, I

will demonstrate the validity of our classical and quantum approaches to compute the

expectation values of the average electrical current and current noise. Finally, in section

3.4 I will reformulate the expression for the electric power consumption in many-particle

open systems emphasizing their divergences from the standard definition of power as

I · V . I will recover the standard expression of the electrical power for a very particular

limit, i.e. the classical single-particle one.

Finally, in chapter 4, our many-particle approaches to electron transport are ap-

plied to predict the behavior of certain relevant aspects of a double-gate quantum-wire

transistor, a nanoresistor, and a resonant tunneling diode. The importance of accurately

accounting for strongly-correlate phenomena is demonstrated when predicting several

macroscopic and microscopic characteristics such as the mean current, electric power
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consumption, electron transit times, current and voltage fluctuations, etc. [65, 66, 68–

70].



Chapter 1

The Electron Transport Problem at

the Nanoscale

1.1 Introduction

The rapid evolution of electronics, from its birth at the very beginning of the past century

until present days, has changed our live style so much that our present society strongly

dependent on electron devices. In the beginning of the present section I want to briefly

describe the crucial events that has make it possible such an evolution. After that, I

will comment on the role that theoretical approaches to model electron transport play in

making the electronic industry to continuously growing.

1.1.1 Historical development of electronics

During the first days of the 20th, the invention of the diode vacuum valve tube by John

Ambrose Fleming constituted the first palpable exemplification of the ability to control

electron flow through different media1. The diode valve tube constituted the ancestor of

all electronic tubes, and its evolution gave birth not only to radio communications (its

first application) but to the entire electronics industry.

In 1947, 50 years after Fleming’s discovery, William Schockley, John Bardeen and

Walter Brattain fabricated the first solid-state transistor, which made them deserving

the Nobel price nine years later. The solid-state transistor constituted the fundamental

element of the whole electronic technology in the second half of the 20th century, and gave

rise to consumer electronics. The dimensions of the transistor were rapidly shrunk down,

and in 1958 Jack S. Kilby, at Texas Instruments, fitted a whole circuit in a single silicon

1We assume a difference between electricity and electronics: while electric circuits are connections of
conductive wires and other devices whereby the uniform flow of electrons occurs, electronic circuits add
a new dimension to electric circuits in that some means of control is exerted over the flow of electrons
by another electrical signal, either a voltage or a current.

1
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substrate. This was not only the birth of the integrated circuits (i.e. the microchip), but

also the birth of microelectronics. Jack S. Kilby received the Nobel Prize in Physics in

2000 for his contribution on the invention of the integrated circuit.

Since the commercialization of the first integrated circuit in 1961, the number of

integrated components on a chip was doubled every year, and based on such an empirical

evidence, Gordon Moore stated that the number of components per integrated circuit

would double in performance every two years2 [71].

Today, the electronics industry has already entered the nanoscale. Intel’s latest silicon

process, 32nm technology, is now in full volume production, and the world’s first 2-billion3

transistor microprocessor has been realized. The minimum feature size of integrated

circuits has been continuously reduced in the past decades and, as predicted by the

ITRS4 and supported by the demonstration of a MOSFET5 with a gate length as short

as 6 nm, this trend is expected to continue in the next decade [73]. Technological progress

continues to deliver the promise of Moore’s Law while transforming the way we live, work,

and communicate. It is not strange, hence, that one of the commonly used adjectives to

refer to present society is “the information society” of the “third industrial revolution”.

A society that rises and expands with everyday new advances on electronic technology,

but whose present way of live would just vanish on its absence.

1.1.2 The simulation of electronic devices

The success of micro and nanoelectronics technology has been supported by sophisti-

cated physical theories on electron transport, usually implemented on computer-aided

simulation tools. Specially, during the last decades, due to the increase of the complexity

and cost of the technological processes necessary to fabricate electron device prototypes,

precise predictions of their functionality allowing to rule out certain designs, are consti-

tuting at this moment a research and development cost reduction amount to 35 %, which

is expected to increase up to 40% in the next future [74]. But more importantly, be-

yond the supporting role in the progress of electronics, theoretical approaches to electron

transport constitute today a necessary tool to guide the continuous breakthroughs of the

electronic industry.

Although analytical approaches to electron transport has been developed since the

invention of the first vacuum valve [75–78] (see Ref. [79] for an extensive discussion of the

first stage investigations on this area), the improvement of electronics itself has make it

2In fact, it was not Gordon Moore but David House, an Intel colleague of Gordon, who concluded a
few years later that integrated circuits would double in performance every 18 months, which represents
de Moore’s law written exactly as we now it today.

3American billion = 2 thousand million.
4Acronym for International Technology Roadmap for Semiconductors [72].
5Acronym for Metal-oxide-semiconductor field-effect transistor.
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possible to intensify the research on electron transport through computational numerical

simulators. With the aid of large and fast computers, it became possible to obtain exact

numerical solutions of microscopic physical models of considerable complexity6. The

first fully numerical transport description was already suggested in 1964 by Gummel

[80] for the one-dimensional bipolar transistor. The approach was further developed

and applied to pn junctions [81] and to avalanche transit-time diodes by Scharfetter

and Gummel [82]. The first application of a solution of the two-dimensional Poisson

equation to metal–oxide–semiconductor (MOS) structures was performed by Loeb [83],

and Schroeder and Muller [84]. The first application of the Monte Carlo method to the

solution of the Boltzmann transport equation was proposed by T. Kurosawa in 1966

[85], and the first simultaneous solutions of the coupled continuity and Poisson equations

applied to junction field effect transistors [86] and to bipolar transistors [87] date back to

1969. Since these pioneering works on device modeling many different approaches have

been applied to practically all important devices, and the number of papers in the field

has grown exponentially [74, 88, 89].

Electron transport theory and its application to electron device modeling has ma-

tured into a well-established field with active research, intensive software development,

and vast commercial applications. Many textbooks, monographs, and reviews devoted

to theoretical and computational aspects of electron transport and device modeling have

been published. However, since the costs of development and maintenance of today’s

theoretical simulation tools software have significantly increased, only few large semi-

conductor companies can support their own development team. Nonetheless, there is a

fairly large number of commercial software products available on the market which serve

most of the industrial demands. Numerous electron transport approaches developed at

universities have the advantage that they are freely distributed. Semiconductor manu-

facturing companies which need more refined simulations of complex phenomena often

consult researchers from universities.

1.2 The electron transport problem at the nanoscale

In the present section I want to discuss what are the main difficulties that one must

face up when dealing with the tremendous complexity of the electron transport problem.

After that I will also argue about two distinctive properties of electron transport at the

nanoscale, i.e. its strongly-correlated and its far from equilibrium character.

6Numerical simulators are usually referred as computer-aided tools.
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1.2.1 On the many-body statistical problem

The main difficulties that one encounters when describe electron transport at the nanoscale

arise from the necessity of making reasonable approximations to an essentially untractable

problem, i.e. the many-body description of electron transport.

A many-body problem

Consider, for instance, the Hamiltonian describing a whole closed circuit, i.e. including

the battery, the contacts, the leads, the active region and all the constituting elements

therein (see figure 1.2.1). If we assume that it contains MT electrons and W −MT atomic

cores, the Hamiltonian of the system can be written as

Hcircuit (~r1, ..., ~rG, ~p1, ..., ~pG) =

MT∑

k=1

{
K (~pk) +

1

2

MT∑
j=1
j 6=k

eV0(~rk, ~rj)
}

+
W∑

k=MT +1

{
K (~pk) +

1

2

W∑
j=MT +1

j 6=k

eZkZjV0(~rk, ~rj)
}

+

MT∑

k=1

W∑
j=MT +1

eZjV0(~rk, ~rj) (1.1)

In (1.1), K (~pk) is the kinetic energy of the k − th particle with a momentum ~pk, e is

the electron charge, ~rk is the vector position of the k-th particle, and Zk is the atomic

number of the k-th atom. The term V0(~rk, ~rj) = e
4 π ε0 |~rk−~rj | is the Coulomb potential

(with ε0 the vacuum permittivity).

Along the whole dissertation I will assume that all involved electrons are traveling

at velocities much lower than light’s, c (nonrelativistic approximation). Moreover, I

will consider that we can neglect the electron spin-orbit coupling and a quasi-static

electromagnetic regime7 (see ref. [65]).

Notice that both the classical and the quantum solution of the Hamiltonian (1.1)

constitute an insurmountable challenge. The reason, however, does not only reside on

the huge number of variables conforming the system (W → ∞), but mainly on their

correlations. Consider, for a moment, the same system without the interaction terms

in (1.1), this is making V0(~rk, ~rj) → 0. Now the dynamics of every electron and nuclei

become independent on the rest of particles, i.e. their dynamics get uncorrelated and

their solution becomes much easier. The interaction terms in (1.1) are the responsible

7Such a simplification assumption, however, does not means that we are considering spinless electrons.
Indeed, when computing some relevant magnitudes we will account for the electron spin just by an
additional factor 2.
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Figure 1.2.1: Schematic view of a whole closed circuit.

of coupling each particle dynamics to the rest of particle dynamics in the system, and

then, are also the responsible of making their solution so difficult [90]. Such a very hard

problem, known as the many-body problem, is the core of a long series of unsolvable

problems in nature:

It would indeed be remarkable if Nature fortified herself against further ad-

vances in knowledge behind the analytical difficulties of the many-body prob-

lem. — Max Born, 1960.

The Hamiltonian (1.1) is thus not solvable, and we need to simplify it with some

kind of approximation. A common strategy is to reduce the involved degrees of freedom

as much as possible. Instead of trying to describe a whole closed circuit, both classical

and quantum transport approaches must reduce the number of variables to be explicitly

described to deal with open systems.

Internal and external opening of the system

A first step can be done by restricting our study to a spatially reduced region. Rather

than taking into account the whole circuit, we focus on that particular region that we

want to describe in detail. If we choose, for example, the active region of an electron

device, then, we externally open it by “decoupling” its degrees of freedom from those

remaining in the external environment, i.e. the rest of the circuit (see figure 1.2.2). After

such a first spatial reduction of variables, the complexity of the problem usually remains
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unaffordable, and some additional effort must be done in order to get a manageable

system. We can, then, internally open the reduced region of space by “decoupling”

those degrees of freedom that we want to explicitly account for, and those we do not

(see figure 1.2.2). A very common example of such an internal opening of the system

is that of the Born-Openhaimer approximation, in which the explicit description of the

atomic cores dynamics can be avoided. It is assumed that the electron-ion interaction

does not constitute a many body problem because the ions are essentially stationary

on the time-scale of the motion of the electrons (i.e. the electronic and ionic degrees of

freedom are not coupled). Another common approach is to eliminate the valence and core

electrons from the solution of the transport problem (see figure 1.2.2). In this case, it is

assumed that non-conductive electrons are also essentially stationary on the time-scale

of the motion of the conduction ones.

Statistical nature of electron transport

The previous external and internal separation of the degrees of freedom is, however, al-

ways traumatic since it causes a degradation of the description of the system correlations.

This is usually referred as a degradation of the whole system’s available information,

which becomes at best, known statistically8.

Those degrees of freedom that are not explicitly accounted for in the remaining open

system Hamiltonian, are usually reintroduced on the solution of the electron dynamics

in a rather statistical way. Let me explain it through a few examples. Consider, first, the

example depicted in figure 1.2.2. There, valence and core electrons are not consider any

more as actual degrees of freedom. However, they can be reincorporate in the open system

Hamiltonian through the well-known relative permittivity, this is through an essentially

statistical quantity. I have in mind also the electron injection models. Although the

conduction electrons outside the active region are no longer considered as actual variables,

we need an educated guess about how (with which position and momentum) they enter

the open system. In this regard, they are commonly assumed to follow an equilibrium

Fermi-Dirac statistical distribution. Another clear example is again that one of the

Born-Oppenhaimer approximation. There, the suppression of the nucleus dynamics in

front of the electrons ones can be later statistically reintroduced through an effective

interaction between electrons and phonons, an essentially statistical entity. Finally, let

me recall the so called mean-field approaches. There, the Coulomb interaction terms

are first neglected and then reintroduced through an statistical or mean value effective

electrostatic potential.

8Notice that while the reduction of degrees of freedom is a common source of information degradation
in both classical and quantum systems, there exists an additional source of information uncertainty
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Figure 1.2.2: Schematic view of our open system. A common strategy to study electron trans-
port is to reduce the involved degrees of freedom. Instead of trying to describe a whole closed
circuit, classical and quantum transport approaches reduce the number of variables to be ex-
plicitly described to deal with simplified open systems.

Unfortunately, opening a system does entail some difficulties that must be bear in

mind. From the physical point of view, a system is closed if neither energy nor particles

enters or leaves it, and it is open if there is at least an export or import of energy or

particles. Then, the total energy of a truly closed electron system is conserved, and

its dynamics becomes deterministic9. In particular, the Poincare recurrence theorem10

holds, and the system is then wholly time-reversal11. Contrarily, since open systems

are exchanging energy and/or particles with its “environment”, they do not necessarily

conserve its energy, and moreover, since a finite amount of degrees of freedom has been

neglected, a finite amount of information is lost irreversibly in the degrees of freedom of

the “environment”. For example, on the already referred case of the Born-Openhaimer

approximation, once we have abandoned the explicit description of the atomic cores

dynamics, we can perturbatively introduce an effective potential accounting for an sta-

tistical description of the vibrations of the crystal mesh and their interaction with the

belonging exclusively to the nature of quantum mechanics, i.e. quantum mechanics assigns probabilities
to events not merely because we do not know what their outcome will be, but because we cannot know
what their outcome will be [91].

9Even the Schrödinger equation deterministically defines the time-evolution of the wavefunction
10There exists a time - called the recurrence time - after which the system will return to the neighbor-

hood of its initial conditions. Here “neighborhood” means as close as possible to the initial conditions.
11This is a result that applies to statistical mechanics, i.e. for microstates, but its extrapolation to

macrostates, which will ultimately obey the second law of thermodynamics, is not obvious at all. See
Refs. [92–94]
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unbounded electrons. Such a perturbative technique, however, besides from being an

approximate one, introduces a clear source of time irreversibility on the system dynamics

due to its stochastic nature. In this regard, it seems that the elimination of degrees

of freedom from an originally closed system is not innocuous at all, and even more, a

simplified or statistical reintroduction of them in the description of the system dynamics

has very relevant consequences.

This matter constitutes a boundary conditions problem on its broader sense, i.e. not

only a spatial boundary conditions problem, but also an internal one. The external

boundary conditions are imposed on the spatial borders of the open system and are the

responsible of properly coupling it to the “external environment” (an example of them

are the already mentioned electron injection models). The internal boundary conditions,

on the other hand, are imposed through the values of certain “coupling constants” (such

as the effective mass, the relative permittivity, etc...) in the equations describing electron

dynamics, and are the responsible of properly coupling the open system to the “internal

environment”.

1.2.2 On the non-equilibrium strongly-correlated nature

Once we accept the necessity of reducing the complexity of the electron transport prob-

lem, the question about what is the best way to do it arises.

Electron transport theory persecutes not only reproducing the exact underlying mi-

crostate of the system but specially predicting a series of macroscopic properties charac-

terizing it. Unfortunately, constructing a standard procedure to correctly predict measur-

able quantities is rather a nontrivial pursuit. Probably, the most difficult part is that of

recognizing those microscopical processes that strongly conditionate a subsequent macro-

scopical behavior. Of course all microscopical processes influence on determining how

the whole system evolves from a macroscopical point of view. Every individual variable,

whether it is a particular core electron, an specific nuclei or a conduction electron, has

an ultimate effect on the whole system dynamics (here resides the huge complexity of

the problem). However, it is also true that we can define a hierarchy in relation with the

importance that such effects have on the measurable magnitudes12. Therefore, a natural

question is which are those microscopic processes that can not be underestimate in order

to predict measurable quantities such as electrical current.

12Consider, for instance, that, under certain non-equilibrium conditions, we want to estimate the
electrical current across a nanostructure, and we must neglect either the dynamics of the conduction
band electrons or the dynamics of the nucleus. Since ignoring conduction electron dynamics directly
sets current to zero, it is not difficult to conclude that the best choice is to omit nucleus dynamics.
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A non-equilibrium problem

Once the active region of the system has been separate from its external environment, it

can be regarded as an open system coupled to, at least, two particle and energy reser-

voirs13, the responsibles of impinging electrical current across the channel of an electron

device. Such an electron flow is a process that could never occur under equilibrium con-

ditions. Since equilibrium corresponds to that state of the system where there is no net

flow of particles or energy in any direction that can be identified at a macroscopic level,

electrical current can be defined as a fundamentally non-equilibrium process.

A non-equilibrium state can be set near or far from equilibrium. Given an applied

bias across the active region of an electron device, depending on its length, the system

will attain either a near-equilibrium state or a far from equilibrium state14. In partic-

ular, electron devices at the nanoscale, are subject to large electric fields placing the

nanostructures and the conducting electrons therein in far from equilibrium states.

The combination of such a far from equilibrium regime and the openness of the

system comes out into a very complicate problem. Concepts, theorems and results that

make equilibrium statistical mechanics a well-stated theoretical framework, cannot be

straightforwardly carried over to the non-equilibrium case [95].

A strongly-correlated problem

There is no doubt that there exist systems in nature where correlations are not crucial in

the description of their dynamics. As I have already advanced in the preface, a common

way of reducing the complexity of these systems are the so called mean-field approaches.

The main idea of mean-field theories is to replace all interactions by an average or effective

interaction, thence reducing a many-body problem into an effective one-body or single-

particle problem. The ease of solving mean-field problems means that some insight into

the behavior of the system can be obtained at a relatively low cost.

Contrarily, there exist systems where mean-field approaches are not appropriate.

Nanoscale electronic systems are an example of such kind of systems. Due to its aggres-

sively scaled dimensions, nanostructures are in general characterized by simultaneously

holding a small number of electrons (∼ a few tens) in a very reduced spatial region (∼
a few nanometers). The interaction among electrons becomes particularly important in

this regime because the motion of one electron strongly depends on the motion of all the

others and viceversa, i.e. their dynamics get strongly correlated.

Consider, for a moment, a very narrow (a few nanometers) junction between two

electrodes. Assuming that we can roughly write the Poisson equation as ∆V = Q
C

, where

13i.e. an “ideal” system that can supply and receive an arbitrary amount of carriers and energy without
changing its internal state.

14Such an statement can be identically argued if we assume a fixed active region length and we increase
the applied bias.
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V is the electrostatic potential, Q is the total charge in the junction and C = ε·S
L

is the

capacity of the nanojunction (with ε the permittivity of the material, S the delimiting

surface of the junction and L its length). Then, since the capacity of the junction is very

small, a little variation of the charge density within the junction will produce a large

amount of change in the potential energy, and consequently also a large variation of the

force field distribution within the junction. In other words, a particular electron dynamics

is there strongly influenced by little variations of the charge distribution around him. An

extreme but really illustrative example of what such a particular regime constitutes is that

of the single-electron devices15. It seems, then, that any mean-field approach to study

such kind of systems will not lead to reasonable results. In particular, these particular

systems can not be treated in terms of a single-particle transport problem and must

account accurately for electron-electron Coulomb correlations.

Unfortunately, as I have already announced, accounting for electron-electron Coulomb

correlations in a detailed way constitutes, for systems of more than three or four particles

in quantum mechanics, and of more than a few tens in classical mechanics, an enormous

source of complexity. In this regard, in the next section I will introduce a few examples

of how different electron transport approaches tackle this problem.

1.3 Different approaches to treat electron-electron

Coulomb correlations

As I have already noticed, a standard procedure to predict measurable quantities is

rather a nontrivial pursuit. Indeed, higher the complexity of a problem is, larger the

number of approximations that must be accounted for in order to make the system

manageable, and then, larger is the number of existing approaches to address the same

problem. In particular, the notable complexity of electron transport phenomena has lead

to a large range of disparate approaches, every one contributing in a different way to its

understanding.

In this section I would like to briefly introduce some of the approaches to electron

transport that can be found in the literature. The degree of complexity of these theories

is broad, and it is not my intention to describe them in a detailed and rigorous way.

However, on behalf of the importance of accurately treating Coulomb correlations, I will

try to pay attention on stating how and to what extent these approaches account for the

15These device are based on the controllable transfer of single electrons between small conducting “is-
lands”. Once an electron tunnels into the island, the first allowed quantum level (the only one attainable
due to the small dimensions of the island) becomes occupied and moved upward. The displacement of
the quantum level has a pure electrostatic origin that reads reads ∆E = e2

C , where C is the capacity of
the “island” structure. Such a phenomenon is not casually called Coulomb blockade.
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strongly-correlate and non-equilibrium nature of electron transport at the nanoscale.

Boltzmann formalism

To completely specify electron transport, we should know the state of each carrier within

the device. In particular, if the carriers behave as classical particles, we should know

each carrier position and momentum as a function of time. Alternatively, we can ask

also what is the probability of finding a carrier distribution with momentums centered

at (~p1, ..., ~pN , t), locations centered at (~r1, ..., ~rN , t), and time t. The answer is the many-

particle distribution function:

f (~r1, ..., ~rN , ~p1, ..., ~pN , t) dΩ, (1.2)

where dΩ is an infinitesimal element of the phase space spanned by the coordinates and

momenta of all carriers. For most of the systems of interest, however, the many-particle

distribution function, f(~r1, ..., ~rN , ~p1, ..., ~pN , t), is too difficult to be determined since it

contains all possible correlations among particles, i.e. how each particle motion depends

on the other particles. A simplified distribution function is the one-particle distribution

function:

f (~r, ~p, t) ∝
∫ N∏

i=2

d~rid~pif (~r, ~p;~r2, ..., ~rN , ~p2, ..., ~pN , t). (1.3)

Given the phase-space volume d~rd~p, the quantity f (~r, ~p, t) d~rd~p is the average number of

particles that at time t is found in a phase-space volume d~rd~p, around the phase-space

point ~r, ~p [88].

The Boltzmann transport equation is precisely a semiclassical equation of motion

for the single-particle distribution function, also known as the Boltzmann distribution

function [96]. More precisely

∂f (~r, ~p, t)

∂t
+

~p

m
· ~∇rf (~r, ~p, t) + ~F · ~∇pf (~r, ~p, t) =

(
∂f (~r, ~p, t)

∂t

)

coll

, (1.4)

where ~F is an external force and
(

∂f(~r,~p,t)
∂t

)
coll

is the so called collision integral, which

contains the description of interaction processes. In most of practical cases, the collision

integral is approached through the standard perturbation theory using scattering rates

calculated at a two-particle level.

The Monte Carlo technique applied to the solution of the Boltzmann equation has

been one of the most successful tools chosen by the international scientific community to

simulate electronic devices. It consists on simulating charge dynamics within a semicon-

ductor crystal under the action of electric (and magnetic) fields computed self-consistently

through a mean-field Poisson equation. Charges are represented as classical punctual
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particles, and the influence of the atomic mesh over them is considered through the effec-

tive mass approximation and a set of scattering mechanisms obeying the Fermi’s golden

rule. The great popularity of the Monte Carlo method lies on its microscopic description

of electron transport by means of intuitive trajectories obeying Newton’s laws, which

make it possible to obtain relevant information about the microscopical processes related

with the charge transport. Furthermore, its random nature allows to study stochastic

phenomena such as current noise.

Although the Boltzmann transport equation (and the Monte Carlo method) accounts

for far from equilibrium conditions, its fundamental limitation comes from its single par-

ticle formulation, that is, it describes a many particle system of carriers in terms of a

single particle distribution function. More precisely, electrostatic electron-electron in-

teractions are described again by means of a mean-field Poisson equation. This does

not provide an exact treatment of the classical electron-electron correlations but only an

average estimation [1, 2]. Attempts to improve correlations among carriers are usually

considered through the statistical collision integral, which, due to the tremendous analyt-

ical complexity associated with the many-body problem becomes in practice a two-body

formula.

Other obvious limitations of the Boltzmann transport equation are its classical nature

and the instantaneous localized in space binary collisions. On the other hand, however,

its formulation takes into account in a rather easier way far from equilibrium situations

and transient regimes.

Drift-diffusion and hydrodynamic approaches

Although the Boltzmann tranport equation constitutes a single-particle treatment of

the electron transport problem, it is still time consuming. Simpler and less demanding

approaches are often required depending on the purposes of each study. The use of bal-

ance equations [97] derived from the BTE is a common procedure to obtain simplified

kinetic equations. There are infinite balance equations or moments of the Boltzmann

equation, however the first three are probably the most known16, i.e. the carrier density

continuity equation, the momentum conservation equation and the energy density con-

servation equation. These equations constitute the basis of the so called hydrodynamic

transport equations [99]. Assuming the relaxation time approximation for the collision

terms and neglecting generation-recombination processes, the hydrodynamic carrier den-

sity continuity equation, the hydrodynamic momentum conservation equation, and the

hydrodynamic energy conservation equations, respectively read as follows:

∂n

∂t
+ ~∇ (n~v) = 0, (1.5)

16Higher order moments are discussed for example in Ref. [98]
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∂~v

∂t
+

(
~v~∇

)
~v +

~F

m
+

1

mn
~∇ (nKBTe) = − ~v

τn (ε)
, (1.6)

∂ε

∂t
+ ~v~∇ε + ~v ~F +

1

n
~∇ (n~vKBTe) = −ε− ε0

τe (ε)
, (1.7)

where n, ~v and ε are the average carrier density, velocity and energy of the electrons

respectively, m is the effective mass, KB and Te are the Boltzmann constant and the

temperature of the carriers, and τn and τe are the momentum and energy relaxation

times respectively. Equations (1.5) till (1.7), together with the solution of the mean-field

Poisson equation constitute the mathematical formulation of the hydrodynamic model.

Needless to say that such a simplification of the BTE, besides other additional limita-

tions, still suffers from the same limitations as the BTE, this is from being a single-particle

approach.

The hydrodynamic model has been used extensively to analyze and design electron

devices, however, probably, more widely used is the “first order” drift-diffusion model,

which, accounting only for the first two moments of the BTE, has been the basis of the

classical electron device analysis during several years and still constitutes a very useful

technique [43, 100, 101].

Departing again from the first three moments of the Boltzmann transport equation,

but now assuming that the gradient of the carrier’s temperature is negligible, that the

carriers are always in equilibrium with the crystal, that the term
(
~v~∇

)
~v is small enough

in comparison with the other terms, and finally assuming a quasi-stationary regime,

the equations to be solved are reduced to the drift-diffusion carrier density continuity

equation and the drift-diffusion momentum conservation equation, i.e.

∂n

∂t
=

1

e
~∇ ~J +

(
∂n

∂t

)

coll

, (1.8)

~J = nµ~F + eD~∇n, (1.9)

and the mean-field Poisson equation. In (1.9) D is the diffusion coefficient defined through

the Einstein relation D = KBTµ
e

, µ = eτn

m
is the electron mobility, and ~J = e · ~v.

Besides from still suffering from a single-particle treatment of electron dynamics,

the drift-diffusion equations assume thermal equilibrium between the crystal and the

conducting electrons, which constitutes a strong approximation that forces the system

to remain under near-equilibrium conditions.

Landauer approach

The Landauer approach probably constitutes the simplest quantum description of elec-

tron transport. Nonetheless, its ingenious and intuitive formulation has make it possi-

ble to understand several quantum transport phenomena. It supposes that the current
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through a conductor is only expressed in terms of the transmission probability of carri-

ers injected from the external contacts. Assuming an ideal steady state, the role of the

reservoirs is simply to continually prepare electrons in the distant past (and far from the

nanoscale junction) in one-dimensional scattering states entering a particular n channel

with a particular wave vector k, i.e. ϕn (x) = eikx. The scattering states move towards

the junction from the leads, scatter on the junction (time-independent) mean-field poten-

tial, and subsequently move far away from it without further scattering (see figure 1.3.1).

These are known as scattering states. The current density of the state is computed ap-

Figure 1.3.1: Once the transport has been transformed into an ideally stationary one, the
dynamical coupling with the reservoirs can be replaced with scattering boundary conditions at
infinity.

plying the standard current operator. On the other hand, the total steady-state current

is computed as a sum over the current of each scattering state weighted by distribu-

tion functions, T (k) or R(k), statistically describing the transmission and the reflection

probabilities respectively.

Probably, the main result of the Landauer approach is the conductance formula (i.e.

the conductance quantization), which constitutes one of the most important achieve-

ments in quantum electron transport theory. In particular, the initial “four terminals”

conductance proposed by Landauer [9, 102] was

G4t = I/V 4t = 2 · q2/h · (T/R). (1.10)

Equation (1.10) relates the conductance to the total transmission and reflection coef-

ficients of the electron device, and provides a conceptual framework of thinking about

conductance. But another conclusion can be extracted from (1.10). Electrostatic poten-

tial is dropped locally around the scattering center (see ref. [65] for a deeper discussion

on this point). In section 2.3 I will return to this point in order to discuss the boundary

conditions of our approach to electron transport.

The original formulation of the Landauer approach neglects electron-electron inter-

action, i.e. it assumes that the systems behaves as a Fermi liquid [7]. In particular, the

two-terminal version of (1.10) is

G4t = I/V 4t = 2 · q2/h · (T ). (1.11)
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The popularity and the main virtues of the Landauer approach are due to its sim-

plicity, the relatively low computational requirements and its rather intuitive picture of

quantum electron transport. However, since continuous particles (scattering states) are

assumed throughout the system, transient simulations are difficult or impossible to im-

plement using the Landauer approach, i.e. it is a steady-state formalism. But moreover,

Landauer approach, although accounting for far from equilibrium regimes, constitutes a

single-particle scattering approach to steady-state transport, that is, the Landauer ap-

proach can, by definition, only capture mean-field properties of the electron dynamics

even if it is accompanied by the use of ground-state DFT17.

Wigner function formalism

The quantum analogous of the classical many-particle distribution function (1.2), is the

generalized Wigner pseudo-distribution, also called Wigner function. It was introduced

by Eugene Wigner in 1932 to study quantum corrections to classical statistical mechanics

[103]. The goal was to link the wave function that appears in the Schödinger equation

to a probability distribution in phase space.

It was firstly introduced by Wigner as:

fw

(
~r1, ..., ~rN , ~k1, ..., ~kN , t

)
∝

∑
j

∫ +∞

−∞
Ψj (~r1 + ~y1, ..., ~rN + ~yN , t) ·

·Ψ∗
j (~r1 − ~y1, ..., ~rN − ~yN , t) ·

N∏

k=2

d~yke
2i~ki~yi . (1.12)

Nonetheless, the Wigner function is today understood as the one-reduced Wigner pseudo-

distribution. Analogously to the deduction of the one-particle distribution function

f (~r, ~p, t) from the classical many-particle distribution function f (~r1, ..., ~rN(t), ~p1, ..., ~pN(t), t),

from the density matrix

ρ (~r1, ..., ~rN , t) =
∑

j

pj |Ψj (~r1, ..., ~rN , t)〉 〈Ψj (~r1, ..., ~rN , t)|, (1.13)

we can obtain a reduced density matrix as follows

ρ (~r, ~r′, t) ∝
∑

j

∫
Ψj (~r, ~r2, ..., ~rN , t) Ψ∗

j (~r′, ~r2, ..., ~rN , t)
N∏

i=2

d~ri. (1.14)

17The exact exchange-correlation functionals needed in density functional formalisms are unknown
and they have to be approximated. Therefore, the electron-electron correlations are approximated to
some extent.
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The Wigner function, can be then calculated from the reduced density matrix as

fw

(
~r,~k, t

)
∝

∫ +∞

−∞
ρ (~r + ~y, ~r − ~y, t) d~ye2i~k~y. (1.15)

The kinetic equation for the Wigner function, reads very similar to the Boltzmann one,

i.e. [74]

∂fw

(
~r,~k, t

)

∂t
+
~~k
m

~∇rfw

(
~r,~k, t

)
+

1

2π~

∫
d~kVw

(
~r,~k − ~k′

)
fw

(
~r,~k′, t

)
=

=

(
∂fw

(
~r,~k, t

)

∂t

)

coll

, (1.16)

where the Wigner potential Vw is defined as

Vw

(
~r,~k

)
=

1

i~ (2π)3

∫
(V (~r − ~y)− V (~r + ~y)) exp

(
−i~k~y

)
d~y. (1.17)

In this regard, the Wigner formalism is based on solving the Wigner function transport

equation in the same way as the Boltzmann transport equation does for classical systems.

The Wigner formalism has several virtues. It constitutes a time-dependent approach

to electrical transport accounting for far from equilibrium conditions in a rather natural

way. However, the limitations of the Wigner function method are very similar to those

of the BTE. In the same way as the collision integral in the BTE, the Wigner’s one

can account, in principle, for all the many-body interactions. Unfortunately, obtaining

analytical expressions for the collision integral is a very complicate job, and in practice,

interactions are included just at a two-particle level. In this sense, the Wigner function

constitutes in practice a mean-field approach to quantum electron transport.

Non-equilibrium Green’s functions formalism

Non-equilibrium Green’s functions (NEGF), also referred as Keldysh formalism [104, 105],

constitutes perse a many-body technique which allows us, at least in principle, to solve

the time-dependent Schrödinger equation for an interacting many-body system exactly.

This is done by solving equations of motion for specific time-dependent single-particle

Green’s functions. However, NEGF are deduced from perturbation theory18, so they can

be strictly applied only to those systems where many-body perturbation theory holds19

18NEGF formalism follows steps similar to those of the kubo approach to determine the response of
a closed system to an external time-dependent perturbation. However, the major difference with the
Kubo approach is that it do not limits to weak perturbations.

19Examples of problems beyond standard many—body perturbation techniques are the Kondo effect
[106] or the Luttinger liquid [107].
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[88].

A rigorous introduction of the basis of NEGF requires a basic knowledge on the

second quantization formalism [10, 88], so it becomes difficult to introduce them in a

self-contained way without introducing some concepts that would extend unnecessarily

this rather informal resume. However, another way of introducing NEGF is through

the quantum kinetic equation (1.16) for the Wigner function. There, the collision term(
∂fw(~r,~k,t)

∂t

)
coll

can be defined in terms of the lesser
∑<

and greater
∑<

self-energies

as

(
∂fw

(
~r,~k, t

)

∂t

)

coll

= − i

~

[
fw

(
~r,~k, t

) ∑>
+

(
1− fw

(
~r,~k, t

)) ∑<]
. (1.18)

In (1.18), the self energies, which can be understood as in and out scattering rates,

contain all many-body correlations. However, its exact solution is in general unknown

and mean-field assumptions must be taken into account.

Despite the powerful and rigorous character of non-equilibrium Green’s functions,

they are in general accompanied by a rather nonintuitive and hard mathematical for-

mulation. Even more, although electron-electron interactions beyond the mean-field

approximation can be introduced throughout the self-energies, using them, except for

simple model systems, it is a huge computationally demanding task, and most of the

time outright impossible.

Density functional theories

The ground-state density functional theory (DFT) was originally formulated by Hohem-

berg and Kohn in 1964 [19]. Starting from an N -electron Hamiltonian

Ĥ (~r1, ..., ~rN , ~p1, ..., ~pN) = T̂ + Ŵ + V̂ , (1.19)

where T̂ is the kinetic energy operator and Ŵ is the electron-electron interaction operator.

Defining the density operator n as the reduced density operator (1.14) evaluated at ~r′ = ~r:

n (~r) = N

∫
|Ψ (~r, ~r2, ..., ~rN , t)|2

N∏
i=2

d~ri, (1.20)

and satisfying ∫
n (~r) d~r = N, (1.21)

then, the operator V̂ , describing a local static potential (like the electron-ion potential),

can be written as

V̂ =

∫
d~rV (~r)n (~r) . (1.22)
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If it is assumed now that for a given V (~r) we have found a density n(~r), satisfying (1.21),

which corresponds to the ground state of the Hamiltonian (1.19), then the Hohemberg-

Kohn theorem states that two external potentials, which differ by more than a constant,

cannot give the same ground-state density. This establishes a one-to-one correspondence

between the external potential and the ground-state density [19].

Inspired on the above theorem, Kohn and Sham deduced in 1965 their famous equa-

tions [22]: [
− ~

2

2m
~∇2 + VH (~r) + Vxc (~r) + V (~r)

]
φKS

k (~r) = εkφ
KS
k (~r) , (1.23)

corresponding to the solution of the time-independent Schrödinger equation of auxiliary

non-interacting electrons in the presence of the potential VKS (~r) = VH (~r)+Vxc (~r)+V (~r),

where

VH (~r) = e2

∫
d~r′

n (~r′)
|~r − ~r′| , (1.24)

is the Hartree potential, and Vxc (~r) is the unknown exchange-correlation potential in-

cluding all the many-body correlation effects.

Solving the above equations yields the wavefunctions φKS
k (~r), from which the ground-

state density is

n (~r) =
N∑

k=1

∣∣φKS
k (~r)

∣∣. (1.25)

All properties of the ground-state system can be then extracted from (1.25). Unfortu-

nately, since the exchange-correlation potential is unknown, some kind of educated guess

must be formulated.

The main limitation of the ground-state density functional theory in order to describe

electron transport, is precisely its ground-state nature. In other words, such a theory

assumes that the system under study occupies a time-independent equilibrium state. This

seems to be not a good starting point in order to describe electron transport. However,

there exists some generalizations of the above theory. For instance, Runge and Gross

generalized DFT to its time-dependent version in 1984 [31]. Time-dependent density

functional theory (TDDFT) includes time in the previous results in a very natural way,

and more importantly, it is capable of describing non-equilibrium scenarios.

Including a time-dependence into the Kohn-Sham potential, i.e. VKS (~r, t) = VH (~r, t)+

Vxc (~r, t) + V (~r, t), the time-dependent version of the Kohn-Sham equations becomes

[
i~

∂

∂t
+
~2

2m
~∇2 − VH (~r, t)− Vxc (~r, t)− V (~r, t)

]
φKS

k (~r, t) = 0. (1.26)



1.3. Different approaches to treat electron-electron Coulomb correlations 19

And the charge density is then

n (~r, t) =
N∑

k=1

∣∣φKS
k (~r, t)

∣∣. (1.27)

TDDFT is in principle capable of accounting for both, far from equilibrium conditions

and many-body phenomena. There exist, too, a series of theorems based on some refor-

mulations of the TDDFT20 guaranteeing that, if we know the exact dynamical functional

Vxc (~r, t), all many-body dynamical effects can be evaluated using effective single-particle

equations. In other words, they guarantee that if we knew the exact functionals of the dy-

namical density-functional theories, we would obtain the exact current of the many-body

system with all electron-electron interactions included [88].

Unfortunately, although such theorems constitute a formal demonstration of the va-

lidity of dynamical density-functional theories on predicting the macroscopic electrical

current, the true is that we do not know the exact functionals, and some mean-field

approximations must be used.

20There exist two modifications of the TDDFT called time-dependent current density functional theory,
TDCDFT [14], and stochastic time-dependent current density functional theory, STDCDFT [108].
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Chapter 2

Electron Transport Beyond the

Mean-field Approximation

2.1 Introduction

Along this chapter I will introduce the main contributions of this dissertation in the

construction of a many-particle approach to classical and quantum electron transport.

Before introducing the fundamental pieces of our approaches, however, I want to briefly

argue why they constitute a significant change on the way of describing electron-electron

Coulomb correlations.

2.1.1 Preliminary Discussion

As I have already pointed out, electron dynamics becomes strongly-correlated at the

nanoscale. However, although interacting many-electron systems are well assessed through

the exact expression of the system’s Hamiltonian, its exact solution is a very hard problem

when the number of interacting electrons increase farther than a few tens in semi-classical

approaches and farther than 3 or 4 for quantum approaches. Let me put some numbers

on the table in order to see that. Consider a three-dimensional system with a spatial

mesh discretization containing 100 nodes on each three-dimensional spatial direction. In

the quantum case, this means that a single-particle wavefunction would be defined by a

matrix containing 106 elements. Moreover, if we have 10 electrons, then the complexity

of the problem grows up exponentially, and the number of elements contained in the

matrix defining the wavefunction becomes 1060. Assuming now that we can store the in-

formation of each matrix element using numbers contained in 10 bits, we then need 1061

bits to describe the system’s wavefunction. Current hard drives have storage capacities

of the order of 1Tbyte= 8 · 109bits, so, in order to manipulate a simple wavefunction

with the above characteristics, we need at least 1050 computers!. Although the classical

counterpart of this example is much less demanding, dealing with a few tens of electrons

21



22 Chapter2. Electron Transport Beyond the Mean-field Approximation

start to be a very hard problem to solve. In this regard, the treatment of the many-body

problem in electron devices constitutes a huge challenge, and mean-field approaches to

electron transport appears as a really helpful simplification of the problem [2].

In the previous chapter (see section 1.3), for example, we have seen that in classical

approaches based on the Boltzmann equation or its moments, the electrostatic interac-

tion among electrons is obtained from the solution of a single-particle Poisson (Coulomb)

equation [1, 3–6]. In order to read a deeper discussion on the use of mean-field approx-

imation in semi-classical electron transport approaches the reader is referred to Refs.

[65, 66, 68] and [1, 3–6].

Due to its additional complexity, quantum approaches can deal with even more simpli-

fied descriptions of electrostatic correlations. The Coulomb interaction among electrons is

directly not considered in many quantum transport formalisms [10, 11]. As I have already

pointed out in Section 1.3, the well-known Landauer approach is a very successful example

of the applicability of this assumption. The Fermi-liquid paradigm has, however, impor-

tant difficulties when dealing with high-frequency [11, 13] low-dimensionality [14, 15] or

Coulomb blockade regimes [11, 16]. Improvements of the description of electron correla-

tion are encountered in the Wigner and nonequilibrium Greens function formalisms intro-

duced in the previous chapter. They provides an interesting path to solve the Schrödinger

equation with the many-body Coulomb interaction introduced perturbatively [17, 103].

However, although both treatments can deal, in principle, with many-body electron dy-

namics, the mean-field approximation appears again as a solution for realistic electron

transport situations. Finally, in extensions of the equilibrium density-functional theory

to deal with electron transport by means of a time-independent formalism [28] or with

a powerful time-dependent version [29–31], the exact exchange-correlation functionals

needed in both formalisms are unknown and they have to be approximated to some

extent.

All the above approaches to electron transport share a common strategy to describe

electron-electron interactions. Instead of directly dealing with electron-electron Coulomb

interactions, they first reduce them to a single-particle scenario for later recovering a

many-body problem by means of an “effective” potential. Notice for example the case

of the approaches based on the semi-classical Boltzmann distribution function. There,

the many-body phase density (see expression (1.2)), is firstly reduced to the one-particle

reduced density (see expression (1.3)), and then, many-body phenomena are reincorpo-

rated, in principle, through the collision integral of the kinetic transport equation. A very

similar situation is that of the Wigner function, whose derivation depends on firstly re-

ducing the many-body density matrix to the reduced density matrix (see equation (1.14)).

Non-equilibrium Green’s functions are not so different. The many-body time-dependent

Schrödinger equation is there solved in terms of time-dependent single-particle Green’s
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functions containing the self-energies which include, in principle, all many-body correla-

tions. Density functional theories proceeds in a very similar way. Many-body phenomena

are reintroduced in this case through the exchange-correlation potentials.

In what follows I will follow a different strategy. Instead of trying to reduce the

problem to a single-particle one, I will directly work with a many-particle description of

the Coulomb electron-electron correlations. Throughout this chapter, I am interested in

revisiting the computation of an ensemble of Coulomb-interacting particles in an open

system without any mean-field or perturbative approximation. With this goal, I will de-

velope a many-particle Hamiltonian for open systems in terms of the solutions of multiple

Poisson equations. This Hamiltonian will be supported with a sort of boundary condi-

tions, one for each electron inside the open system, accounting for Coulomb correlations

among them and the non simulated electrons in the leads. After this, I will present a

classical and also a quantum solution of the many-particle Hamiltonian, both applicable

to realistic three-dimensional simulations of electron devices. I will present the classical

and quantum algorithms together because they solve the same many-particle Hamilto-

nian and moreover both share many technical details. The use of a common classical

and quantum language based on Hamiltonians, is however not casual. It is my intention

to emphasize the similarities between classical and quantum mechanics. I will give some

arguments about this point in the next subsection.

2.1.2 Coulomb correlations: A classical or quantum phenom-

ena?

A common way of classifying electron transport approaches is that one in terms of their

capability of accounting for quantum phenomena. Of course it is important whether

a particular approach can deal or not with quantum phenomena, but depending on

the particular structure we want to deal with, it can be equally important if such an

approach can deal with single-particle or many-particle correlations, or furthermore, if

such an approach can deal with equilibrium or non-equilibrium conditions. In order to

appreciate this, let me compare classical and quantum mechanics in a rather uncommon

way.

It would be indeed very illustrative if we could write quantum mechanics in terms of

quantum trajectories comparable to classical ones. This is what Louis de Broglie and

later David Bohm suggested some time ago (in Appendix A I present an introduction to

the formulation of Bohmian mechanics) [109, 110]. For instance, the quantum Newton’s

like equation corresponding to the closed Hamiltonian (1.1) can be written in terms of



24 Chapter2. Electron Transport Beyond the Mean-field Approximation

bohmian trajectories as:

m
d~vk (~rk [t] , t)

dt
=

[
−e~∇k

{MT∑
j=1
j 6=k

V0 (~rk, ~rj) +
W∑

j=MT +1

ZjV0 (~rk, ~rj) +

MT∑
j=1
j 6=k

Qj (~r1, ..., ~rW , t)
}]

~r1=~r1[t]
:

~rW =~rW [t]

, (2.1)

where

Qj (~r1, ..., ~rW , t) = − ~
2

2m

~∇2
jR (~r1, ..., ~rW , t)

R (~r1, ..., ~rW , t)
, (2.2)

is the quantum potential (see Appendix A for a detailed explanation on its origin) asso-

ciated with the j-th trajectory. If we compare now the previous quantum equation with

its classical counterpart, i.e.

m
d~vk (~rk [t] , t)

dt
=

[
−e~∇k

{MT∑
j=1
j 6=k

V0 (~rk, ~rj) +
W∑

j=MT +1

ZjV0 (~rk, ~rj)
}]

~r1=~r1[t]
:

~rW =~rW [t]

, (2.3)

it can be easily concluded that the ultimate origin of quantum phenomena can be repre-

sented by just an additional potential term1, i.e. Q.

A reasonable question arises, then, if we wonder about why such an additional poten-

tial term, Q, should be more “important” than the Coulomb one, V0, in (2.1). Indeed,

if we could exactly solve (2.1), then this question would be easily answered by simply

analyzing the results. Unfortunately, as I have already argued, due to computational

limitations, we cannot do that. So, we must decide which term in (2.1) deserves more

attention, or, in other words, what level of accuracy we want to assign to each term in

(2.1). This is not an easy decision to take, and in general on must think about it carefully.

Indeed, it seems that, depending on the particular scenario we are dealing with, quantum

potential correlations and Coulomb correlations does not take equal “weights”, and then,

the adjectives quantum and strongly-correlate will not acquire the same importance. In

fact, during this dissertation I will use both a semi-classical and a quantum approach

to electron transport presented in a very similar way, and depending on the particular

system under study, in chapter 4 I will use one or the other. In summary, from the above

discussion I want to emphasize the idea that differences between a classical and a quan-

tum description of electron transport can be less important, depending on the system

1Let me clarify that the exchange interaction is always present in a system of identical particles
(electrons), but it will not be mentioned in this section because it does not affect explicitly the expres-
sion of the (first-quantization) many-particle Hamiltonians discussed here. The exchange interaction
is introduced into the symmetry (when electron positions are interchanged) of the many-body wave-
function. We will briefly revisit this issue in section 2.4.2, when dealing with the quantum solution of
the many-particle Hamiltonian.
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under study, than the differences between single-particle and many-particle approaches.

2.2 The many-electron open system Hamiltonian

I proceed here with the deduction of an expression for the many-particle open system

Hamiltonian.

2.2.1 Towards a many-electron single-band effective mass equa-

tion

Some electron transport approaches, spend much effort on formulating a rigorous treat-

ment of the effect of the electron correlations on the description of the band structure

of the nanostructure, and much less effort on providing a reasonable description of the

correlation among transport electrons, i.e. carriers. Here, with the aim of accurately

describe the dynamical electron correlations I will took the opposite direction.

Suppose the whole closed circuit described in section 1.2.2. The Hamiltonian of such

a system can be defined as

Hcircuit (~r1, ..., ~rW , ~p1, ..., ~pW ) =

MT∑
i=1

{
K (~pi) +

1

2

MT∑
j=1
j 6=i

eV0(~ri, ~rj)
}

+
W∑

i=M+1

{
K (~pi) +

1

2

W∑
j=M+1

j 6=i

eZiZjV0(~ri, ~rj)
}

+

MT∑
i=1

W∑
j=MT +1

eZjV0(~ri, ~rj) (2.4)

where K (~pi) is the kinetic energy of the i − th particle with a momentum ~pi, e is the

electron charge, ~ri is the vector position of the i-th particle, and Zi is the atomic number

of the i-th atom. The term

V0(~ri, ~rj) =
e

4 π ε0 |~ri − ~rj| (2.5)

is the Coulomb potential with ε0 the vacuum permittivity.

The time-dependent Schrödinger equation that describes the evolution of the circuit

wave function, Ψcircuit, is

i~
∂Ψcircuit

∂t
= HcircuitΨcircuit, (2.6)
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The adiabatic and the bounded electrons approximation

Unfortunately, the solution of the Hamiltonian (2.4) is unaffordable, and we must simplify

it. In order to reduce the degrees of freedom involved in (1.1), we first remove its explicit

dependence on the valence and core electrons by modifying the vacuum permittivity

(ε0 → ε = εr · ε0, where εr is the relative permittivity) and account for an average

induced polarization between the bounded electrons and the nuclei [111]). Furthermore,

we assume the adiabatic approximation2 [10, 112–114] (also called Born-Oppenheimer

approximation) under which conducting electrons are moving in a quasi-static atomic

potential defined by the fixed positions of the atoms3.

The original Hamiltonian (1.1), has been reduced to the carrier’s one:

Hcarriers (~r1, ..., ~rM , ~p1, ..., ~pM) =

M∑
i=1

{
K (~pi) +

1

2

M∑
j=1
j 6=i

eV (~ri, ~rj) +
W∑

j=MT +1

eZjV (~ri, ~Rj)
}

(2.7)

where M is now the total number of unbounded electrons, and Rj are now the fixed

positions of the atoms. The Coulomb potential,

V (~ri, ~rj) =
e

4 π ε |~ri − ~rj| (2.8)

has been properly redefined accordingly to the effective value of the dielectric permittivity.

From now on, the dynamics of the nucleus and the bounded electrons are not anymore

explicitly accounted for, and hence, we do not deal anymore with the circuit wavefunction,

Ψcircuit, but with the wavefunction of the M (M = MT −Nb) unbounded electrons (i.e.

carriers), Ψcarriers, obeying the next Schrödinger equation

i ~
∂Ψcarriers

∂t
= HcarriersΨcarriers (2.9)

Single-band effective mass approximation for many-particle systems

Despite the previous approximations, we are still dealing with an insolvable problem. In

order to continue reducing the degrees of freedom, an important decision to be made is

that of the energy band model that will be used. Two choices have become popular for

2While the nuclei mass is much larger than the electron’s one, the mean value of their equilibrium
kinetic energy is comparable. Thus the electron’s velocities are much larger than those of the nucleus
and a new spatial electron distribution is established within a negligible time lapse in comparison with
that of the nucleus.

3An effective potential US (~ri, t) describing the interaction of the unbounded electrons with the vi-
brations of the crystal mesh can be introduced ad-hoc by using perturbation theory
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electron device modeling: the “tight-binding” model4 [115] and the “envelope-function”

model5 [114]. Here the electron-atom interaction potential is assumed to be an average

over a unit cell of the atomic lattice of the semiconductor, and the carrier kinetics, leaving

electron-electron interactions aside, is treated almost the same as a free carrier, but with a

modified mass called the effective mass, denoted m∗. The envelope-function model is thus

often called the effective mass model. The tight-binding approach, as its name indicates,

takes the opposite extreme of a nearly-bound carrier. The electron-atom interaction

potential is periodic, with deep energy wells at the atomic cores. The tight-binding

approach is theoretically more accurate, but it is significantly more computationally

demanding. This presents another trade-off choice of accuracy versus computation time.

Here, the tight-binding approach was rejected in favor of the envelope-function potential

model.

In order to further simplify the previous Hamiltonian (2.7), we define H0 as that

part of the whole Hamiltonian containing the kinetic terms and the interaction among

electrons and atoms. Hence, we can rewrite (2.7) as

Ĥcarriers = Ĥ0 +
1

2

M∑
i=1

M∑
j=1
j 6=i

eV (~ri, ~rj), (2.10)

where

Ĥ0 =
M∑
i=1

H0i =
M∑
i=1

{
K (~pi) +

G∑
j=MT +1

eZjV
(
~ri, ~Rj

)}
. (2.11)

On one hand, H0 is separable, and hence, we can find monoelectronic eigenstates for

every one of the M Hamiltonians H0i. Moreover, if we assume an ideal periodic atomic

structure, solutions of these monoelectronic Hamiltonians are the Bloch states.

Since the M Hamiltonians included in H0 are all identic, we can solve them in one go

by using a generic variable ~r instead of ~ri. Consider the solution of the time-independent

Schrödinger equation for every H0i in (2.11):

[
− ~2

2me

~∇~r +
G∑

j=MT +1

eZjV
(
~r, ~Rj

)]
φn,k(~r) = E(~k)φn,k(~r), (2.12)

where k refers to the wavevector of the well known Bloch wave functions, φn,k(~r), defined

as

φn,k(~r) = un,k(~r) exp
(
i~k~r

)
, (2.13)

where un,k are periodic functions with the same period of the lattice defined by the vector

4Also known as the LCAO (linear combination of atomic orbitals) model.
5Also known as the nearly-free carrier model or the effective mass approximation.
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~a,

un,k(~r + ~a) = un,k(~r), (2.14)

and satisfy ∫

unit−cell

un,k(~r) · u∗n′,k(~r)d3r = δn,n′ . (2.15)

For each value of ~k there exist an infinite number of eigenstates φn,k with n = 1, 2, 3, ....

Every eigenstate φn,k is associated to a different band n, i.e. when ~k varies, the eigenstates

cross a series of band energies [115]. In the present discussion I will assume that electrons

can be described by linear combinations of Bloch states of one single band, neglecting

inter-band transitions.

Since the eigenvalues, E(~k) in (2.12) are also periodic

E(~k) = E(~k + ~K), (2.16)

with

Kj = j
2 π

~a
, j = 1, 2, ..., (2.17)

then all the information related with the band structure can be spatially reduced to the

first Brillouin zone [115]. Moreover, if we develop (2.16) in second order Taylor series

around the band minimum ~k0, then we can write

E(~k) = E(~k0) +
1

2
m−1

αβ(~kα − ~kα,0) · (~kβ − ~kβ,0). (2.18)

The quantities m−1
αβ have the dimensions of an inverse mass, and represent the second

derivative of the energy with respect to the wave vector components α and β, i.e.

m−1
αβ =

1

~2

∂2E
(
~k
)

∂kα∂kβ

∣∣∣∣∣∣
~k=~k0

. (2.19)

As the value of a second derivative does not depend on the differentiation order near

the band minimum, m−1
αβ represent a symmetric tensor. The components of this tensor

depend on the coordinate system. In particular, the coordinate system can be chosen

so that the non-diagonal components vanish (we call this components x, y and z for

simplicity), that is, m−1
αβ = 0 for α 6= β. Then, we can rewrite expression (2.18) as

E(~k) = E(0) +
~2(kx − kx,0)

2

2m∗
x

+
~2(ky − ky,0)

2

2m∗
y

+
~2(kz − kz,0)

2

2m∗
z

, (2.20)
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where

1

m∗
j

=
1

~2

∂2E
(
~k
)

∂kj

∣∣∣∣∣∣
kj=kj,0

, (2.21)

is the electron effective mass associated with the spatial direction j with j = x, y, z.

Let me recall that we are looking for a solution of the whole Hamiltonian in (2.10)

instead of a solution of H0. Although the electron-electron interaction term appearing in

(2.10) does not allow a single-particle description of the problem, we can use the Bloch

states as an orthonormal basis for any M -particle wave function Ψcarriers. Hence, we can

write Ψcarriers as:

Ψcarriers(~r1, ..., ~rM , t) =
∑

k1,...,kM

a(k1, ..., kM , t) φk1(~r1) φk2(~r2) · · · φkM
(~rM), (2.22)

where φki
(~ri) is the Bloch wavefunction associated to the i-th electron with a wave vector

~ki, solution of the Hamiltonian H0i defined in (2.11). Then, we can introduce (2.22) into

the carriers Hamiltonian (2.10) to write

i ~
∂Ψcarriers(~r1, ..., ~rM , t)

∂t
=

M∑
i=1

H0i Ψcarriers(~r1, ..., ~rM , t)+

+
1

2

M∑
i=1

M∑
j=1
j 6=i

eV (~ri, ~rj) Ψcarriers(~r1, ..., ~rM , t). (2.23)

The first term in the right hand of equation (2.23) as

[ M∑
i=1

H0i

]
Ψcarriers(~r1, ..., ~rM , t) =

∑

k1,...,kM

a(k1, ..., kM , t)
[
(H01φk1(~r1)) φk2(~r2) · · · φkM

(~rM) + · · ·+

+ φk1(~r1) · · · φkM−1
(~rM−1) (H0MφkM

(~rM))
]
. (2.24)

Now, using the periodicity of E(~k), it can be demonstrate that an operator Ê(−i~∇~rj
)

involving the derivatives ~∇~rj
has the same eigenstates and eigenvalues as the monoelec-

tronic Hamiltonian Ĥ0j. That is

Ê(−i∇~ri
) · φki

(~ri) = Ĥ0i · φki
(~ri) = E(~ki) · φki

(~ri). (2.25)
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Using this property, we can write

[ M∑
i=1

Ĥ0i

]
Ψcarriers(~r1, ~r2, ..., ~rM , t) =

[ M∑
i=1

Ê(−i∇~ri
)
]
Ψcarriers(~r1, ~r2, ..., ~rM , t), (2.26)

and equation (2.23) can be finally written as:

i ~
∂Ψcarriers(~r1, ~r2, ..., ~rM , t)

∂t
=

[ M∑
i=1

Ê(−i∇~ri
) +

1

2

M∑
i=1

M∑
j=1
j 6=i

eV (~ri, ~rj)
]
Ψcarriers(~r1, ~r2, ..., ~rM , t). (2.27)

The previous equation is a single-band effective mass equation for many-particle systems,

and constitute an important simplification of equation (2.9). The complicate lattice

potential has been described by means of a single number: the effective mass.

The electron-electron interaction potential usually varies slowly in comparison with

the lattice one, and the wave function Ψcarriers(~r1, ~r2, ..., ~rM , t) can be written as the

product of an envelope function slowly varying and a product of Bloch functions evaluated

at the band minimum rapidly varying. Assuming that the Bloch functions can be written

as

φk(~r) = exp(i~k · ~r) · uk(~r) ≈ exp
(
i~k · ~r) · uk0(~r) = exp

(
i(~k − ~k0) · ~r

) · φk0(~r), (2.28)

then the many-electron wavefunction (2.22) becomes

Ψcarriers(~r1, ..., ~rM , t) =
∑

k1,..,kM

a(k1, ..., kM , t) · exp
(
i(~k1 − ~k0) · ~r1

) · φk0(~r1) · ··

· · · exp
(
i(~kM − ~k0) · ~rM

) · φk0(~rM). (2.29)

This means that Ψcarriers(~r1, ~r2, ..., ~rM , t) can be defined as the product of an envelope

function F (~r1, ..., ~rM , t) and M Bloch functions evaluated at the momentum origin ~k0:

Ψcarriers(~r1, ~r2, ..., ~rM , t) =

= φk0(~r1) · ·φk0(~rM)
∑

k1,..,kM

a(k1, .., kM , t) exp
(
i(~k1 − ~k0)~r1

) · · exp
(
i(~kM − ~k0)~rM

)

= φk0(~r1) · ·φk0(~rM) · F (~r1, ..., ~rM , t)

(2.30)

Using again the periodicity of E(~k) it can be demonstrated that:

Ê(−i ~∇~rj
) · (φk0(~rj) · F (~r1, ..., ~rM , t)) = φk0(~rj)Ê(~k0 − i ~∇~rj

) · F (~r1, ..., ~rM , t), (2.31)
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If we develope now E(~k0 − i ~∇~rj
) in Taylor series around ~k0 as in (2.20), we can write

Ê(~k0 − i ~∇~rj
) = E(~k0) +

~2

2

(
−i

∂2

m∗
x∂

2xj

− i
∂2

m∗
y∂

2yj

− i
∂2

m∗
z∂

2zj

)
. (2.32)

where E(~k0) can be set to zero since it does only defines an energy reference origin. Then

we can write a many-particle envelope equation

i ~
∂F (~r1, ..., ~rM , t)

∂t
=

[ M∑
j=1

−~
2

2

(
∂2

m∗
x∂x2

j

+
∂2

m∗
y∂y2

j

+
∂2

m∗
z∂z2

j

)
+

1

2

M∑
i=1

M∑
j=1
j 6=i

eV (~ri, ~rj)
]

F (~r1, ..., ~rM , t). (2.33)

Since the envelope function is roughly constant along a single unit cell, using the ortonor-

mality of the functions uk(~r) defined in (2.15), it can be easily demonstrate that the com-

putation of the current and charge densities averaged over a unit cell can be obtained

either from the whole carriers wave function or simply from the many-particle envelope

function in expression (2.33). Therefore, if we do not care about the ultimate atomistic

detail of the shape of the current and charge densities, we can directly deal with the en-

velope function instead of the carriers one. In this regard, references to the wave function

will denote references to the envelope function from now on.

Therefore, by simply redefining K(~pk) as:

K (~pk) = −~
2

2

(
∂2

m∗
x∂x2

j

+
∂2

m∗
y∂y2

j

+
∂2

m∗
z∂z2

j

)
, (2.34)

our initial Hamiltonian (2.4) can be finally reduced to the next one:

Ĥenv =
M∑

j=1

[
K (~pk) +

1

2

M∑
i=1

eV
(
~ri, ~rj

)]
. (2.35)

2.2.2 Many-electron open system Hamiltonian

The Hamiltonian in (2.35) is still computationally unaffordable because it involves a

huge number of degrees of freedom (those of the battery, contacts, leads, etc...). We

must reduce the described space region (see figure 2.2.1).

From now on we externally open the system and focus only on the active region6 of the

electron device we want to study in detail. This is indeed a fundamental approach that

any electron transport simulator must assume (regardless the approximations considered

6I will refer to the sample or active region indistinctly.
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Figure 2.2.1: Schematic description of the different parts of the electron device. In section 2.3,
an analytical parametric 1D solution is deduced for the (blue) dashed region, while a numerical
3D solution is obtained in the (yellow) solid central region defined as the simulation box. A
small part of the highly doped leads is included into the simulation box in order to account for
complex phenomena appearing at the interface. The definition of the variables in the figure are
introduced in section 2.3 when discussing the boundary condition algorithm. Subsets refer to
schematic representation of the (a) scalar potential, (b) electric field, (c) total charge density
and (d) doping density.

up to this point) in order to be able to solve the Schrödinger equation for quantum

systems or the Hamilton-Jacobi (Newton) equations for semi-classical systems.

We divide, then, the previous ensemble of M particles into a sub-ensemble of N(t)

particles whose positions are inside the volume Ω and a second sub-ensemble, {N(t) +

1, ...,M} which are outside7 (see figure 2.2.2). We assume that the number of particles

7For a quantum system, the number of particles inside the volume N(t) has not only a dependence
on time, but a dependence on all particle positions N(~r1, ., ~rk, ., ~rM , t). Let me assume a wave-function
whose probability presence occupies regions inside and outside Ω. Then, the limit of the sum in the
Hamiltonian (2.35) depends on the exact value of the variable ~rk. In principle, the k-particle have to
be included into the first sub-ensemble when the Hamiltonian deals with ~rk ∈ Ω and into the second
sub-ensemble when ~rk /∈ Ω. In order to avoid a very complicated notation, we do only write the time
dependence of N(t) for either classical or quantum systems. In any case, since our quantum solution will
deal with quantum (Bohm) trajectories (rather than wave-functions), the simpler notation mentioned
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inside, N(t), is a time-dependent function that provides an explicit time-dependence to

the many-particle (open-system) Hamiltonian. As drawn in figure 2.2.2, we assume a

parallelepiped where the six rectangular surfaces S = {S1, S2, ..., S6} are the boundaries

of Ω. I use ~rl as the “boundary” vector representing an arbitrary position on the surfaces

Sl. Now, the number of carriers in the system N (t) will vary with time, i.e.

Figure 2.2.2: Schematic representation of the open volume Ω = Lx · Ly · Lz and its limiting
surface S =

{
S1, S2, ..., S6

}
. There are N(t) particles inside and M−N(t) outside this volume.

The vector ~rl points to an arbitrary position at the boundary surface Sl.

Ĥopen
env (~r1, .., ~rM , ~p1, .., ~pN(t), t) =

N(t)∑

k

{
K (~pk) +

1

2

N(t)∑

k=1
k 6=j

eV (~rk, ~rj) +
M∑

j=N(t)+1

eV (~rk, ~rj)

}

(2.36)

Since throughout this dissertation I will work continuously with the many-particle open

system Hamiltonian (2.36), in order to simplify its notation, let me simply refer to it as

Ĥ.

As I will show in the next section, the third term in (2.36) can be included in the

Hamiltonian of the open system through the boundary conditions of the Poisson equation.

The roughness of the approximation bringing together the effects of all the external

particles over the N (t) carriers will depend on our ability of formulating the boundary

conditions at the borders of the active region of the electron device (see section 2.3 for

an extent discussion on this point).

In the previous paragraphs, the assumption of a series of approximations have make

it possible to go from the complex circuit Hamiltonian described in equation (2.4), to the

much more simple one describing the “interesting” region of the circuit (2.36). However,

although up to this point we have discussed the many-particle Hamiltonian in terms

of the Coulomb force, this approach is inconvenient to deal with solid-state scenarios

with a spatial-dependent permittivity [116]. For this reason, we rewrite here our many-

particle Hamiltonian in terms of the more generic Poisson equation, which can be applied

here is appropriate for the classical and quantum algorithms.
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to systems with (or without) a spatial-dependent permittivity (by simply substituting

ε → ε(~r) in the Poisson equation).

I start the discussion rewriting the previous many-particle open system Hamiltonian

(2.36) as:

H(~r1, .., ~rM , ~p1, .., ~pN(t), t) =

N(t)∑

k=1

{
K(~pk) +

N(t)∑
j=1
j 6=k

e · V (~rk, ~rj) +
M∑

j=N(t)+1

e · V (~rk, ~rj)− 1

2

N(t)∑
j=1
j 6=k

e · V (~rk, ~rj)

}
(2.37)

Each term V (~rk, ~rj) that appears in (2.37) can be explicitly obtained from a Poisson

(or Laplace) equation inside the volume Ω. Using the superposition property of the

Poisson equation, we can rewrite (2.37) as:

H(~r1, .., ~rN(t), ~p1, .., ~pN(t), t) =

N(t)∑

k=1

{
K(~pk) + e ·Wk(~r1, .., ~rN(t), t)− 1

2

N(t)∑
j=1
j 6=k

e · V (~rk, ~rj)

}
, (2.38)

where the term Wk(~r1, ., ~rk, ., ~rN(t)) is a particular solution of the following Poisson equa-

tion:

∇2
~rk

(
ε ·Wk

(
~r1, .., ~rN(t)

))
= ρk

(
~r1, .., ~rN(t)

)
(2.39)

The term ρk

(
~r1, .., ~rN(t)

)
in (2.39) depends on the position of the first N(t) electrons:

ρk

(
~r1, ., ~rk, ., ~rN(t)

)
=

N(t)∑
j=1
j 6=k

e · δ (~rk − ~rj) (2.40)

but (2.40) is independent of the position of the external particles because they only affect

the boundary conditions of (2.39). Let me notice that there are still terms, V (~rk, ~rj), in

(2.38) that are not computed from Poisson equations in (2.39), but from (2.8). However,

we will show that these terms V (~rk, ~rj) have no role in the classical (i.e. section 2.4.1) or

quantum (i.e. section 2.4.2) solutions of (2.38).

By construction, comparing (2.37) and (2.38), the term Wk(~r1, .., ~rN(t), t) can be

rewritten as:

Wk(~r1, .., ~rN(t), t) =

N(t)∑
j=1
j 6=k

V (~rk, ~rj) +
M∑

i=N(t)+1

V (~rk, ~ri) (2.41)

The dependence of Wk(~r1, .., ~rN(t), t) on the positions of the external particles is explic-
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itly written in the last sum in (2.41), while in (2.39) this dependence is hidden in the

boundary conditions of Wk(~r1, ., ~rk, ., ~rN(t)) on the surface S = {S1, S2, ..., S6}. In fact,

the boundary conditions are a delicate issue that we will discussed in next section.

2.3 Boundary conditions for the many-particle open

system Hamiltonian

Since we want to deal with solutions of the Poisson equation (2.39), the boundary con-

ditions for the N(t) terms Wk(~r1, ., ~rk, ., ~rN(t)) must be specified on the border surfaces

S = {S1, S2, ..., S6} of figure 2.2.2. Such boundary conditions will provide, somehow,

information on the electrostatic effect that outside particles (i.e. N(t) + 1, ..., M) have

on the electrons inside Ω.

In practical situations, the volume Ω describes the active region of some kind of

electron device. I will assume here a two-terminal device (source and drain) to explain

our boundary conditions algorithm8. This means that only two, S1 and S4 , of the six

border surfaces S = {S1, S2, ..., S6} are really opened to the flow of carriers (see figure

2.3.1). These opened surfaces represent indeed, the most complicate boundary conditions

to be modeled, and are the ones I will discuss in detail in this section (see also [65]). On

the “closed” non-metallic surfaces 9 , Neumann boundary conditions are used with the

educated guess that the component of the electric field normal to that surfaces is zero.

The continuity of the displacement vector normal to surfaces justifies this assumption

on “closed” boundaries when the relative permittivity inside is much higher than the

corresponding value outside. On “closed” metallic surfaces9, we assume a many-particle

version of the standard Dirichlet boundary conditions [66].

Before introducing our time-dependent boundary conditions, let me emphasize the

important role that they play in modeling of electron transport at the nanoscale.

2.3.1 On the importance of boundary conditions

In order to correctly model the DC and/or AC conductance of nanoscale systems, one has

to assure the accomplishment of the “overall charge neutrality” and “current conserva-

tion” [11, 13]. The implementation of such requirements into modern nanoscale electron

simulators demands some kind of reasonable approximation for the Coulomb interaction.

On one hand, the importance of the “overall charge neutrality” (i.e. that the total

charge in the whole device is zero) in nanoscale ballistic devices was clarified by the work

8In any case, the boundary conditions can be straightforwardly adapted to multi-terminal systems
with an arbitrary number of “opened” borders.

9Here closed means that carriers do not cross that surface.
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Figure 2.3.1: Schematic representation of the volume Ω = Lx · Ly · Lz. Only S1 and S4,
corresponding to the drain and source surfaces respectively, are opened to electron flow. On
the rest of surfaces standard Neumann boundary conditions are assumed.

of Landauer, Buttiker and co-workers on the “two-terminals” and the “four-terminals”

conductance of ballistic devices [117]. The well-known standard textbook expression of

the DC (zero temperature) conductance through a tunneling obstacle is known as the

“two-terminal” expression because it is defined as the current divided by the voltage drop

sufficiently far from the obstacle. However, the original formulation of the conductance

proposed by Landauer [9, 102] in 1957 was known as the “four-terminal” conductance

because its experimental validation needs two additional voltages probes to measure the

voltage drop close to the tunneling obstacle. The presence of resistances in the leads 10

explains the difference between both expressions. The ultimate origin of such resistances

is the requirement of “overall charge neutrality” that transforms unbalanced charges in

the leads into a voltage drop there, via the Poisson (Gauss) equation. See ref. [65] for a

detailed discussion of such lead resistances.

On the other hand, the “current conservation” (i.e. the total current computed on any

surface in the simulation box is equal to the total current measured inside an ammeter

located far from the sample) is a necessary “requirement” for the prediction of AC con-

ductances. The displacement current, i.e. the time-dependent variations of the electric

field, assures that the total (conduction plus displacement) current density is a divergent-

less vector. Important theoretical contributions were done by Büttiker and co-workers

for predicting AC properties of mesosocopic systems within a frequency-dependent scat-

tering matrix formalism, in weakly non-linear regimes taking into account “overall charge

neutrality” and “current conservation” [11, 25–27, 53, 54, 56].

In general, modern electron transport simulators do include reasonable approxima-

tions for the coulomb interactions that can guarantee the accomplishment of the “overall

10I refer to “sample” as the active region and the “leads” as the regions connecting the sample and
the ideal (black body) reservoirs. The reservoirs are usually called “contacts” in mesoscopic devices. I
avoid this last name here because “contacts” are usually understood as what we call here the sample in
those papers related with the simulation of atomistic structures.
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charge neutrality” requirement. In addition, those simulators that are developed within

a time-dependent or frequency-dependent framework can also assure the “current conser-

vation” requirement. However, the powerful treatment of quantum and atomistic effects

can only be applied to a very limited number of degrees of freedom [118]. In fact, due to

computational restrictions, a small simulation box is a mandatory requirement in many

modern simulators. This restriction on the dimensions of the simulating-box implies that

either very short leads (with screening length of few Armstrongs) are included into the

small simulation box, or the leads are directly excluded from the simulation box. The

first solution is only acceptable for metallic leads [28, 61] close to equilibrium, but it

becomes inappropriate in general scenarios ranging from highly doped poly-silicon leads

(with screening length of few nanometres) till modern juntionless devices [119]. In far-

from equilibrium conditions (i.e. high bias conditions), the standard screening lengths

have to be complemented by an additional depletion length in the leads. The second

solution (neglecting the leads) implies serious difficulties for the achievement of “overall

charge neutrality”. In any case, a possible inaccuracy in the computation of the “overall

charge neutrality” affects our ability to treat the time-dependent Coulomb correlation

among electrons and, therefore, the requirement of “current conservation”. In conclu-

sion, due to computational difficulties, modern electron transport simulators have to be

implemented in small simulation boxes that imply important difficulties for providing

accurate simulations of the DC or AC conductances of nanoscale devices.

In principle, the problem of excluding the leads from the simulation box, while re-

taining the lead-sample Coulomb correlation, can be solvable by providing adequate

boundary conditions on each of the “opened” borders of the simulation box. However,

such boundary conditions are not easily predictable. The standard boundary conditions

found in the literature for nanoscale electron device simulators are based on specifying

two conditions in each of the borders of the simulation box:

(Border-potential-BC).- We have to specify the value of the scalar potential

(or electric field) at the borders of the simulation box. These condition is a

direct consequence of the uniqueness theorem for the Poisson equation [116]

which tells that such condition are enough to completely specify the solution

of Poisson equation, when the charge inside the simulation box is perfectly

determined (the reason for discarding the electromagnetic vector potential in

nansocale systems is explained in ref. [65]).

(Border-charge-BC).- Contrarily to what is needed for the uniqueness solu-

tion of the Poisson equation, the charge density inside the simulation box

is uncertain because it depends on the electron injected from the borders

of the simulation box. Therefore, any boundary condition algorithm has to
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include the information on the charge in the borders as an additional condi-

tion. In many cases, the electron injected on the borders depends, somehow,

on the scalar potential there determined by the “Border-potential-BC” (and

a fixed electrochemical potential). Therefore, a coupled system of boundary

conditions appears.

Educated guesses for both boundary conditions (“Border-potential-BC” and “Border-

charge-BC”) are present in the literature when describing nanoscale electron devices with

simulation boxes large enough to include the leads. However, such boundary conditions

are not applicable for small simulation boxes that exclude the leads. An extent discussion

on the limitations of the standard boundary conditions when applied to small simulation

boxes, in either classical or quantum electron device simulators, can be found ref. [65].

Here, I present a novel self-consistent and time-dependent definition of the boundary

conditions for small simulation boxes (excluding most of the leads) that is able to capture

the lead-sample Coulomb correlations.

2.3.2 Single-particle time-dependent boundary-conditions at the

borders of the sample for overall charge neutrality

As explained in the previous paragraphs, all boundary condition of electrons transport

simulators are based on specifying the value of the scalar potential (or the electric field)

in the borders and the charge density there. Therefore, according to the levels of figure

2.2.1, we have to specify the values VS(t) and VD(t) for the “Border-potential-BC”, and

ρS(t) and ρS(t) for the “Border-charge-BC”11.

As we have explained in section 2.3.1, it is very difficult to provide an educated

guess of the scalar potential, the electric field or the charge density on the borders of

a small simulation box that excludes the leads. For large simulation boxes, one can

assume a known value of the electrochemical potential (deep inside the reservoir) to

controls the electron injection. However, close to the active region, where the far from

equilibrium momentum distribution can be quite arbitrary, the prediction of any value of

the electrochemical potential is quiet inappropriate. Fortunately, from the results in this

section we will be able to translate the “Border-potential-BC” and “Border-charge-BC”

discussed in 2.3.1 for the borders of a small simulation box into simpler conditions deep

inside the reservoirs. This is the key point of our boundary condition algorithm. In

particular, the two new boundary conditions that we will impose at x = ∓LC are:

11In section 2.3.2, I will provide analytical relationships between scalar potentials, electric fields and
charge densities in the borders of the simulation box, at x = 0, and those values deep inside the reservoirs,
at x = ∓LC , which adds the unknowns V C

S (t), V C
D (t), EC

S (t) and EC
D(t). In total, for our two-terminal

models, we have eight unknowns and, thus, we need eight conditions to specify the boundary conditions.
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“Deep-drift-BC”: We assume that the inelastic scattering mechanisms at,

both, the source x ≤ −LC and the drain x ≥ LC reservoirs provides a non-

equilibrium position-independent “thermal” distribution of electrons there

(it is implicitly assumed that the contact length LC is large enough and the

temperature Θ high enough so that inelastic scattering is relevant there).

Such position-independent electron distribution is consistent with the “local”

charge neutrality deduced in expression (2.47) that implies a uniform electric

field there. According to the Drude’s model, the electric fields there tend

both to EC
S/D(t) → Edrift

S/D (t) [see expressions (2.45) and (2.46)].

“Deep-potentail-BC”: We assume that electro-chemical potentials can be de-

fined for the “thermal” distribution deep inside both reservoirs. As a conse-

quence of the previous position-independent electron distribution deep inside

the reservoirs, we can assume that the energy separation between such electro-

chemical potential level and the bottom of the conduction band, in the drain

and source reservoirs (at x = ∓LC) are equal. Therefore, the energy separa-

tion between the bottoms of the conduction bands at both reservoirs (which

coincides with the separation of the electrochemical potentials) is equal to the

difference of the external voltages. Thus, V C
S (t) = 0 and V C

D (t) = Vexternal(t).

These two conditions, “Deep-drift-BC” and “Deep-potential-BC” are quite reasonable

deep inside the reservoirs. In fact, it can be shown that the numerical MC solution of the

non-equilibrium Boltzmann equation in a large simulation box provides these scenarios

in the reservoir [65].

In this subsection I will describe a formulation of the previous boundary conditions for

a single-particle system. That is, I will assume that all electrons are subjected to the same

boundary conditions. Again, this is a simplification of the real many-particle problem.

As I have shown in the previous section (see equations (2.38), (2.39) and (2.39)), every

single electron “sees” its own electrostatic potential, electric field and charge distribution.

Consequently, each electron should see its own boundary conditions. In subsection 2.3.3

I will extent the boundary conditions presented here to the many-particle ones.

Time-dependent “overall charge neutrality” in nanoscale electron devices

In order to impose a time-dependent condition for the solutions of the charge density

ρ(~r, t), the electric field ~E(~r, t) and the scalar potential V (~r, t), we start by integrating the

local continuity equation (i.e. the condition of charge conservation implicit in Maxwell’s

equations. See ref. [65]) in a large volume Ω′ (see a 1D schematic representation in figure
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2.2.1), that includes the sample, the leads and the reservoirs:

∂

∂t

∫

Ω′

ρ(~r, t) · d3~r +

∫

S′

~JC(~r, t) · d~s = 0, (2.42)

where the volume Ω′ is limited by the surface S ′.

Under some reasonable assumptions deep inside the reservoirs, expression (2.42) de-

termines the time-evolution of the total charge Q(t) =
∫
Ω′

ρ(~r, t) · d3~r in the whole system

[65]. Its solution is:

Q(t) = Q(t0) · exp
(
−t− t0

τc

)
(2.43)

with the dielectric relaxation time (sometimes called Maxwell relaxation time) defined

as:

τc = ε/σ (2.44)

being ε the effective permittivity and σ the conductivity.

As expected, the meaning of expression (2.43) is that the total charge inside the system

tends to zero in periods of time related to the dielectric relaxation time. Identically, it

can be seen that the electric fields deep inside both reservoirs (see figure 2.2.1) tends to

be identical and equal to the drift value12 Edrift
S/D (t) as:

EC
S (t)− Edrift

S (t) =
(
EC

S (t0)− Edrift
S (to)

)
· exp

(
−t− t0

τc

)
(2.45)

and

Edrift
D (t)− EC

D(t) =
(
Edrift

D (t)(t0)− EC
D(t0)

)
· exp

(
−t− t0

τc

)
(2.46)

The main approximation used to obtain (2.43), (2.45) and (2.46) is Drude’s law. This

implies that our time-dependent boundary condition algorithm is only valid for frequen-

cies below the inverse of the average electron scattering time (see ref. [65]). In good

reservoirs such frequencies are much higher than the THz range, which is high enough

for most practical electronic applications.

Analytical spatial-dependent charge density, electric field, and scalar potential

in the leads

In order to be able to evaluate the total charge in expression (2.43) or to apply expression

(2.45) and (2.46), we need a knowledge of the charge densities or the electric fields

deep inside the leads. Since we are interested in not simulating explicitly the leads, we

12In fact, the value of the Edrift(t) is not a parameter, but it will be determined from the conduction
current, via the Drude formula.
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look for analytical expressions. Nonlinear screening theory is important, but a general

analytical solution to the Poisson equation does not exist. Therefore, we have to take

some simplifying assumptions. We will use the schemes depicted in figure 2.2.1 to explain

our analytical solution in the leads and the simplifications that will be assumed.

We assume that all expressions in the leads depend only on the variable x along the

transport direction, but are independent on the lateral directions y and z, so that a 1D

scheme is appropriate. In order to develop simpler analytical expressions we consider one

specific (negative) x-axis for the source and another (positive) for the drain with different

origins. The point x = 0 is located at the interface between the numerical solution in the

simulation box and the analytical solution in the lead (see figure 2.2.1). Let me notice

that a small part of the lead is explicitly included into the numerical simulation box (see

the length ∆Lx in figure 2.2.1) in order to take into account some complex effects in the

interfaces that our simple analytical model cannot capture (e.g. the presence of quasi-

bound states [120] in the accumulation well that appears in the sample-lead interface or

the Friedel oscillations [121]).

Then, assuming some additional approximations, a reasonable expression for the

charge density, the electric field and the scalar potential at the drain are [65]:

ρ(x, t) =





ρD(t) · exp
(
−x−Lp

D

l

)
; Lp

D ≤ x ≤ LC ;

ρD(t); 0 ≤ x ≤ Lp
D;

(2.47)

E(x, t) =





EC
D(t)− ρD(t)·l

ε
· exp

(
−x+Lp

D

l

)
; Lp

D ≤ x ≤ LC ;

EC
D(t)− ρD(t)·(l+Lp

D)
ε

+ ρD(t)·x
ε

; 0 ≤ x ≤ Lp
D;

(2.48)

V (x, t) =





V C
D (t) + EC

D(t) · (−x + LC)− ρD(t)·l2
ε

· exp
(
−x+Lp

D

l

)
;

Lp
D ≤ x ≤ LC ;

V C
D (t) + EC

D(t) · (−x + LC)− ρD(t)·(−x+Lp
D)

2

2·ε − ρD(t)·l·(l+Lp
D−x)

ε
;

0 ≤ x ≤ Lp
D;

(2.49)

In the previous three equations, Lp
D is the depletion length of the drain lead indicated

in figure 2.2.1 and l is the standard Debye length [122]. Analogous expressions for the

source region can be identically deduced [65].

The validity of expressions (2.47) till (2.49) are limited to frequencies lower than the

plasma frequency in the leads. Such frequencies will also be higher than few THz in

normal highly doped leads.

Expressions (2.47) till (2.49), evaluated at x = 0, provides a relationship between the
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values of the charge densities, the electric fields and the scalar potentials deep inside the

reservoir and those in the border of the simulation box. In particular, the electric field

deep inside the leads must vary in time as [65]:

EC
S/D(t + ∆t) = ES/D(t + ∆t)∓

ρS/D(t) ·
(
l + Lp

S/D(t)
)

ε
(2.50)

where we have defined ES/D(t + ∆t) = E(0, t + ∆t). The analogous expressions for the

scalar potential are [65]:

VS/D(t+∆t) = V C
S/D(t+∆t)∓EC

S/D(t+∆t) ·LC−
ρS/D(t) ·

(
l + Lp

S/D(t)
)2

2ε
− ρS/D(t) · l2

2ε
.

(2.51)

We fix the value V C
S (t + ∆t) = 0 and V C

D (t + ∆t) = Vexternal(t + ∆t). Finally the charge

density at source and drain borders of the simulation box ρS/D must vary in time as

[65]:

ρS/D (t + ∆t) = ρS/D (t)±
(
EC

S/D (t)− Edrift
S/D (t)

) ε ·∆T(
l + Lp

S/D(t)
)
· τc

. (2.52)

Although equations (2.52) together with the values ρS(t) and ρD(t) clearly defines ρS(t+

∆t) and ρD (t + ∆t) we do not have an exact control on how to increase/decrease these

value in our simulator. On the contrary, we do only have the possibility of increas-

ing/decreasing the injecting probability (see expression (B.1) in Appendix B) through

the parameters of F inj
S (t + ∆t) and F inj

D (t + ∆t) that appear in expression (B.5) and

(B.6) of Appendix (B). The exact relationship between the displacement of the inject-

ing energy levels and the variation of the “injected” charge density in the simulation

box boundaries is not trivial. We perform a pre-processing computation of the function

ρinj
(
F inj

S,D + qVS,D

)
according to the injection model described in Appendix B. Once such

a relation has been established, we can determine exactly in which way the injecting en-

ergy levels have to be displaced. There is, however, a particular scenario that can not

be managed just by modifying the injecting energy levels. Very far from equilibrium, at

high applied bias, we can “accumulate” electrons as much as needed to decrease ρS(t) in

order to achieve “overall charge neutrality”. However, we cannot “deplete” electrons as

much as possible in the sample-lead interface. Once we arrive at zero injected electrons,

we cannot decree this number any more. In such situations, the only way to decrease the

negative charge is to enlarge the depleted (positive charge) region in the drain (see figure

2.2.1.c). The same “depleted” procedure could be needed in the source for a negative

bias. [65]
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2.3.3 Extension of the boundary conditions to many-particle

Hamiltonians

In the previous subsection I have developed a single-particle algorithm describing a unique

set of time-dependent boundary conditions for all electrons to account for overall charge

neutrality. Here I want to extent such results to a many-particle approach where each

electron has its own boundary conditions. Let me recall, that we are looking for solu-

tions for the N(t) Poisson equations (2.39). Thus, we need to specify N(t) boundary

conditions on the two opened border surfaces S1 and S4 (see figure 2.3.1) for the N(t)

terms Wk(~r1, ., ~rk, ., ~rN(t)).

In order to provide a clear notation for discussing the boundary conditions of

Wk(~r1, ..., ~rk, ..., ~rN(t)), we distinguish between the “source” vectors {~r1, ..., ~rk−1, ~rk+1, ...,

~rN(t)} and the additional “observation” vector ~r that runs over all space [116]. In partic-

ular, the electrostatic potential that appears in the Hamiltonian (2.37) is defined as the

value of the potential Wk(~r1, ..., ~rk−1, ~r, ~rk+1, ..., ~rN(t), t) at the particular position ~r = ~rk:

Wk(~r1, ..~rk−1, ~rk, ~rk+1., ~rN(t), t) = Wk(~r1, ..~rk−1, ~r, ~rk+1., ~rN(t), t)
∣∣
~r=~rk

(2.53)

Our goal is to find an educated guess for all the N(t) terms Wk(~r1, ..~rk−1, ~r, ~rk+1., ~rN(t), t)

at all “observation” points ~r = ~rS and ~r = ~rD on the surfaces S1 and S4. The information

of such boundary conditions comes from the value of the total voltage (due to internal

and external electrons) at position ~rS/D and time t. We define such a voltage as the

electrostatic potential associated to an additional probe charge qM+1 situated on that

boundary, ~rS/D ≡ ~rM+1 ∈ S4/1, which can be now identified with the voltages VS/D(t)

defined in (2.51) (see fig. 2.3.2). The electrostatic potential “seen” by this extra charge

due to the presence of the rest of the particles is just:

VS/D(t) ≡
M∑

j=1

V (~rM+1, ~rj)|~rM+1=~rS/D
(2.54)

where the expected restriction j 6= M + 1 is hidden in the limit of the sum.

Once the relationship (2.54) is established, we can easily define the boundary con-

ditions of any of the N(t) electrostatic potential Wk

(
~r1, ., ~r, ., ~rN(t)

)
from the function

VS/D(t). In particular, from (2.41), we know that:

Wk(~r1, ..~rk−1, ~r, ~rk+1., ~rN(t), t)
∣∣
~r=~rS/D

=
M∑

j=1
j 6=k

V (~rS/D, ~rj) = VS/D(t)− V (~rS/D, ~rk)

; l = 1, ..., 6 (2.55)
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where V (~rS/D, ~rk) is defined according to (2.8). The discussion done here is valid for

either classical or quantum systems13.

Figure 2.3.2: The electrostatic potential VD(t) (due to internal and external electrons) measured
on the surface S1 at position ~rD and time t by an additional probe charge qM+1 situated on
the boundary ~rD ≡ ~rM+1 ∈ S1.

The reader can be surprised by the fact that the right hand side of expression (2.55)

tend to infinite V (~rS/D, ~rk) →∞ when ~rk → ~rS/D. However, when ~rk → ~rS/D, the extra

particle at ~rS/D ≡ ~rM+1 ∈ Sl would also provide an infinite value of the electrostatic

potential, i.e. VS/D(t) →∞, due to the presence of the k-particle on the surface. There-

fore, the first infinite, V (~rS/D, ~rk) →∞, is canceled by the second infinite, VS/D(t) →∞.

Strictly speaking, our assumption that the potential at one particular surface is position-

independent, VS/D(t), is not completely accurate because it should reproduce, somehow,

the atomistic charge distribution and the carrier inhomogeneity on the surface. In par-

ticular, one can expect VS/D(t) →∞ when the electron is close to the border, ~rk → ~rS/D.

However, due to our ignorance about the atomistic description of the contact interface,

we apply the boundary conditions (2.55) assuming that the distance between ~rk and

rS/D is always greater than 1 nm (this value is interpreted as a measure of range of the

atomistic pseudo-potential [15] in the spatial-dependent permittivity scenarios discussed

here).

Finally, it can be shown that the boundary conditions (2.55) developed here provides,

for metallic contacts, the same electrostatic description obtained from the image-charge

method. But moreover, it has the fundamental advantage that it can be directly imple-

mented into realistic (classical or quantum) electron device simulators via a 3D Poisson

solver [66].

13Classically, the definition of VS/D(t) can be directly associated to the voltage “measured” at ~rS/D

by an external meter. On the contrary, quantum mechanically, the voltage “measured” at ~rS/D would
require evaluating a bracket between the many-particle wave-function and VS/D(t). In this section we are
not discussing the many-particle wave-function, but only an expression of the many-particle Hamiltonian.
Therefore, it is important to remark that VS/D(t) is not defined as the voltage “measured” at ~rS/D, but
as the electrostatic potential that describes the interaction of the electron at ~rS/D with the rest of M
electrons. This last definition is identical for classical and quantum cases.
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2.4 Numerical solution of the many-particle open

system Hamiltonian

Once I have introduced the many-particle open system Hamiltonian and its boundary

conditions, we are ready to solve it. In this section I present two kind of solutions. On

one hand I present a semi-classical solution based on Hamilton-Jacobi equations. On the

other, I present a quantum solution based on Bohmian mechanics.

2.4.1 Semi-classical solution of the many-particle Hamiltonian

The classical description of the particle dynamics subjected to the many-particle Hamilto-

nian (2.38) can be computed by using the well-known Hamilton equations. In particular,

we can obtain the (Newton like) description of the classical trajectory ~ri[t] in the real

space through:

d~pi[t]

dt
=

[−∇~ri
H(~r1, .., ~rN(t), ~p1, .., ~pN(t), t)

]
~r1=~r1[t],..,~pN(t)=~pN(t)[t]

, (2.56a)

d~ri[t]

dt
=

[∇~pi
H(~r1, .., ~rN(t), ~p1, .., ~pN(t), t)

]
~r1=~r1[t],..,~pN(t)=~pN(t)[t]

. (2.56b)

For the many-particle Hamiltonian studied in this work, expression (2.56b) gives the

trivial result m ·~vi[t] = ~pi[t], while the evaluation of expression (2.56a) requires a detailed

development. We know that the ~ri-gradient of the exact many-particle Hamiltonian

(2.38) can be written as:

[∇~ri
H]~R=~R[t] =

[
∇~ri

N(t)∑

k=1

{
e ·Wk(~r1, .., ~rN(t), t)− 1

2

N(t)∑
j=1
j 6=k

e · V (~rk, ~rj)

}]

~R=~R[t]

. (2.57)

We define the multi-dimensional vector ~R =
(
~r1, ..., ~rN(t)

)
to account, in a compact way,

for the classical trajectories of N(t) electrons ~R[t] =
(
~r1[t], ..., ~rN(t)[t]

)
. Substituting the

definition of Wk(~r1, .., ~rN(t), t) done in expression (2.41) into equation (2.57), we find:

[∇~ri
H]~R=~R[t] =

[
∇~ri

{
2

N(t)∑
j=1
j 6=i

eV (~rj, ~ri) +
M∑

j=N(t)+1

eV (~rj, ~ri)

}
−∇~ri

N(t)∑
j=1
j 6=i

e · V (~rj, ~ri)

]

~R=~R[t]

. (2.58)

Note the elimination of the factor 1
2

in the first term of the right hand part of (2.58)

that accounts for those terms e · V (~rk, ~rj) in (2.57) where ~rk 6= ~ri and ~rj = ~ri, that are

identical to the term e · V (~ri, ~rk) in (2.58). For the same reason, we include a factor 2
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on the first term of right hand of (2.58). From expressions (2.41) and (2.58), we realize

that:

[∇~ri
H]~R=~R[t] =

[∇~ri
Wi(~r1, .., ~rN(t))

]
~R=~R[t]

. (2.59)

Only the term Wi(~r1, .., ~rN(t)) of the whole Hamiltonian (2.38) becomes relevant for a

classical description of the i-particle. In fact, since we only evaluate a ~ri-gradient, the

rest of particle positions can be evaluated at their particular value at time t, i.e. ~rk → ~rk[t]

for all k 6= i. Therefore, we define the single-particle potential W̄i(~ri, t) from the many-

particle potential as:

W̄i(~ri, t) = Wi(~r1[t], ., ~ri−1[t], ~ri, ~ri+1[t], ., ~rN(t)[t]). (2.60)

We use a “hat” to differentiate the (time-dependent) single-particle electrostatic poten-

tial from the many-particle potential. Each i-term of the single-particle electrostatic

potential, W̄i(~ri, t), is a solution of one particular 3D-Poisson equation:

∇2
~ri

(
ε(~ri) · W̄i (~ri, t)

)
= ρ̄i (~ri, t) , (2.61)

where the single-particle charge density is defined as:

ρ̄i (~ri, t) =

N(t)∑
j=1
j 6=i

eδ (~ri − ~rj[t]) , (2.62)

and the boundary conditions are adapted here as:

W̄i (~ri, t)
∣∣
~ri=~rS/D

= VS/D(t)− V
(
~rS/D, ~ri[t]

)
. (2.63)

Let me remind that expressions (2.60), (2.61) and (2.62) together with the boundary

conditions in (2.63), provide an exact treatment of the many-particle correlations in

classical scenarios. The N(t) Newton equations are coupled by N(t) Poisson equations.

Therefore, the many-particle Hamiltonian of (2.38) can be written exactly (without mean-

field approximation) as a sum of single particle Hamiltonian for classical scenarios:

H(~r1, .., ~rN(t), ~p1, .., ~pN(t), t) =

N(t)∑

k=1

{
K(~pk) + e · W̄k(~rk, t)

}
. (2.64)

As I have already argued, our many-electron method applied to semiclassical devices can-

not be considered as a solution of the Boltzmann equation because the latter is developed

within a classical mean-field approximation. The term W̄k(~rk, t) in the Hamiltonian of

expression (2.64) means that each particle “sees” its own electrostatic potential which is
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different to that of the others. Apart from the scattering rates, this is the fundamental

difference between our “many-electron” method applied to classical transport and the

standard Monte Carlo solution of the Boltzmann equation method for electron devices.

2.4.2 Quantum Solution of the many-particle Hamiltonian

The many-particle open-system Hamiltonian developed in expression (2.38) is also valid

for quantum systems. In this section, I will explain its practical quantum solution using

a quantum (Bohm) trajectory formalism discussed in Appendix A. For convenience, we

rewrite the many-particle Hamiltonian in (2.38) as:

H(~r1, .., ~rN(t), t) =

{
N(t)∑

k=1

− ~2

2 ·mk

∇2
~rk

+ U(~r1, .., ~rN(t), t)

}
, (2.65)

where we explicitly write the electron momentum as ~pk = −i~∇~rk
in the kinetic en-

ergy. According to eq. (2.38), the many-particle electrostatic potential U(~r1, .., ~rN(t), t)

is defined as:

U(~r1, .., ~rN(t), t) =

N(t)∑

k=1

{
e ·Wk(~r1, .., ~rN(t), t)− 1

2

N(t)∑
j=1
j 6=k

e · V (~rk, ~rj)

}
. (2.66)

Then, the time-dependent Schrdinger equation that provides the many-particle wave-

function, Φ(~r1, .., ~rN(t), t), that describes the electron dynamics associated to our many-

particle (open-system) Hamiltonian is:

i~
∂Φ(~r1, .., ~rN(t), t)

∂t
=

{
N(t)∑

k=1

− ~2

2 ·m∇
2
~rk

+ U(~r1, .., ~rN(t), t)

}
· Φ(~r1, .., ~rN(t), t). (2.67)

The practical utility of expression (2.67) in understanding quantum scenarios can seem

quite doubtful because its direct solution becomes computationally inaccessible for more

than very few electrons [14, 15, 123]. However, we can use a transport formalism based

on Bohm trajectories that simplifies the complexity of evaluating (2.67) (see appendix

A and [67]). Here, I go directly to the main result of Ref. [67] (see also Appendix A),

where it is shown that a many-particle electron Bohm trajectory ~ra[t] computed from

the many-particle wave-function, Φ(~r1, .., ~rN(t), t), solution of the equation (2.67) can be

equivalently computed from the single-particle wave-function Ψa(~ra, t) solution of the
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following single-particle Schrdinger equation:

i~
∂Ψa(~ra, t)

∂t
=

{
− ~2

2 ·m∇
2
~ra

+ Ua(~ra, ~Ra[t], t)+

Ga(~ra, ~Ra[t], t) + i · Ja(~ra, ~Ra[t], t)

}
Ψa(~ra, t),

(2.68)

where I have defined ~Ra[t] = {~r1[t], ~ra−1[t], ~ra+1[t], ~rN [t], t} as a vector that contains all

Bohm trajectories except ~ra[t]. The exact definition of the other potentials that appear

in (2.68), Ga(~ra, ~Ra[t], t) and Ja(~ra, ~Ra[t], t), can be found in Appendix A (see also [67]).

The total many-particle electrostatic potential in (2.67) can be divided into two parts:

U(~ra, ~Ra[t], t) = Ua(~ra, ~Ra[t], t) + Ub(~Ra[t], t). (2.69)

From expressions (2.41) and (2.66), we realize that can be greatly simplified as:

Ua(~ra, ~Ra[t], t) = 2

N(t)∑
j=1
j 6=a

qa · V (~ra, ~rj[t]) +
M∑

i=N(t)+1

qa · V (~ra, ~ri[t])−

N(t)∑
j=1
j 6=a

qa · V (~ra, ~rj[t]) = W̄a(~ra, ~Ra[t], t). (2.70)

The rest of the terms V (~rj[t], ~ri[t]) of expression (2.70) appear in Ub(~Ra[t], t) and they

are included in the potential Ga(~ra, ~Ra[t], t). However, the term Ub(~Ra[t], t) has no role

on the single-particle wave-function Ψa(~ra, t) because it has no dependence on ~ra and it

only introduces an irrelevant global phase on Ψa(~ra, t).

Let me notice that, in the right hand side of expression (2.70), we have used the

same definition of the potential profile as in the classical expression (2.60). The only

difference here is that ~Ra[t] are not classical trajectories, but quantum (Bohm) trajecto-

ries. Therefore, the computation of the potential profile W̄a(~ra, ~Ra[t], t) that appears in

the single-particle Schrödinger equation (2.68) just needs a 3D Poisson equation (2.61),

(2.62) with the boundary conditions (2.63). Interestingly, since the term W̄a(~ra, ~Ra[t], t)

is computed from a Poisson equation, our quantum-trajectory algorithm can also be

directly extended to spatial dependent permittivity systems.

In fact, in order to effectively solve the Schrödinger equation (2.68), we need to know

the position of the rest of Bohm particles ~Ra[t] = {~r1[t], ~ra−1[t], ~ra+1[t], ~rN [t], t}. There-

fore, all N(t) Bohm trajectories have to be computed simultaneously within a system

of N(t) Schrdinger equations coupled by N(t) Poisson equations. The keystone of our
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quantum trajectory algorithm is that, in order to find ~ra[t], we do not have to evalu-

ate the electrostatic potential, U(~r1, .., ~rN(t), t), and the wave-function, Φ(~r1, .., ~rN(t), t),

everywhere in the N-multidimensional configuration space
{
~r1, ., ~ra, ., ~rN(t), t

}
, but only

over a smaller number of configurations points where all positions of electrons are fixed,
~Ra[t], except ~ra, i.e.

{
~r1[t], ., ~ra, ., ~rN(t)[t], t

}
. We want to remark that the full (short and

long range) Coulomb interaction present in (2.38) is considered explicitly in (2.68) with-

out any (mean-field or perturbative) approximation. In particular, defining Ψa (~ra, t) =

ra (~ra, t) exp
[

isa(~ra,t)
~

]
from the many-particle wave function Φ

(
~r1, ..., ~rN(t), t

)
evaluated

at {~ra, ~Ra [t]}, we can write the trajectory ~ra [t] (see appendix A) as

~ra [t] = ~ra [t0] +

∫ t

t0

~va

(
~ra [t′] , t′

)
dt′, (2.71a)

~va (~ra[t], t) =
1

m
~∇~rasa (~ra, t) . (2.71b)

In this quantum (Bohm) trajectory algorithm, the use of single-particle Schrödinger

equations (2.68) is exact to treat many-particle system as demonstrated in [67]. However,

the exact values of the terms Ga(~ra, ~Ra[t], t) and Ja(~ra, ~Ra[t], t) that appear in the Hamil-

tonian (2.68) are unknown (because they require the partial knowledge of the shape of

the many-particle wave-function). Thus, form a practical point of view, they need to be

approximated by some educated guess. In addition, the exchange interaction among the

(fermions) electrons can also be considered in the present quantum algorithm. A brief

explanation of how the exchange interaction can be introduced in the present quantum

(Bohm) trajectory algorithm is mentioned in Ref. [67]. Here we will use a particular

algorithm, discussed at the end of Appendix A, which let us avoid the computation of

Ga(~ra, ~Ra[t], t) and Ja(~ra, ~Ra[t], t).

2.5 A simple example: Simulation of a two-electron

system

In this sub-section I will explain the origin of the important differences appearing between

a time-dependent mean-field algorithm described below and our time-dependent many-

particle algorithm. Although I will use here a simple semi-classical two-electron system,

the conceptual differences remarked here between the mean-field and the many-particle

approaches, can be extrapolated not only to quantum simulations but also to much

complex systems. Let me first introduce the mean-field version of expression (2.38), and

then analyze some remarkable results for a simple two-electron system.
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2.5.1 Semi-classical solution of the mean-field Hamiltonian

As described in the introduction of this chapter, the mean-field approximation provides

a single average potential for computing the dynamics of all electrons. This average po-

tential, that we label here by the suffix “mean” W̄mean(~r, t), is still capable of preserving

most of the collective effects of the Coulomb interaction. Here, I compare this approxi-

mation with our exact many-particle Hamiltonian. The term W̄mean(~r, t) is computed by

taking into account all charges inside the volume Ω. However, since one particle can not

“feel” its own charge, in fact, W̄mean(~r, t) can be interpreted as the electrostatic potential

“seen” by an additional probe charge whose position is ~r.

W̄mean(~r, t) = W̄M+1(~r1[t], .., ~rN(t)[t], ~r). (2.72)

This term W̄mean(~r, t) is a solution of a unique 3D-Poisson equation:

∇2
~rW̄mean(~r, t) = ρ̄mean (~r, t) , (2.73)

where the charge density is defined as:

ρ̄mean (~r, t) =

N(t)∑
j=1

qjδ (~r − ~rj[t]) , (2.74)

and, according to expression (2.54) in the previous section, the boundary conditions for

this additional probe charge must be:

W̄mean (~r, t)
∣∣
~r=~rS/D

= VS/D (t) . (2.75)

Let me notice that the time-dependent mean-field approximation discussed here can be

applied to either the classical or quantum systems. Both approaches share expressions

(2.73), (2.74) and (2.75) for the computation of the electrostatic potentials (change the

classical trajectories by the quantum ones). I also want to remark the time-dependence

of expression (2.73). This is a common feature for classical (semiconductor Monte Carlo

[32]) simulations, but less frequent for quantum mean-field approaches.

Now, I estimate the error of our time-dependent mean-field approximation. First, I

show that the mean-field potential can be written in terms of the potentials W̄i(~ri, t) men-

tioned in equation (2.60). In particular, we can write the mean-field potential W̄mean (~r, t)

as:

W̄mean (~r, t) =
1

N(t)

{
N(t)∑
j=1

W̄mean (~r, t)

}
=

1

N(t)

N(t)∑
j=1

{
W̄j (~r, t) + V (~r, ~rj[t])

}
. (2.76)



2.5. A simple example: Simulation of a two-electron system 51

Now, I compute the error, Errork (~r, t), as:

Errork (~r, t) = W̄mean (~r, t)−Wk (~r, t) =
1

N(t)

{
N(t)∑
j=1

W̄j (~r, t) + V (~r, ~rj[t])

}
− W̄k (~r, t) ,

(2.77)

that can be finally rewritten as:

Errork (~r, t) =
1

N(t)

N(t)∑
j=1

{(
W̄j (~r, t)− W̄k (~r, t)

)
+ V (~r, ~rj[t])

}
= V (~r, ~rk[t]), (2.78)

where, according to (2.41), we have used the identity:

W̄j (~r, t)− W̄k (~r, t) =
M∑
i=1
i 6=j

V (~r, ~ri[t])−
M∑
i=1
i6=k

V (~r, ~ri[t]) = V (~r, ~rk[t])− V (~r, ~rj[t]). (2.79)

Expression (2.78) shows that Errork (~r, t) → ∞, when ~r → ~rk[t]. The mean-field

approximation implies that the potential “felt” by the k-particle at ~r → ~rk[t] is its own

potential profile. In fact, from a numerical point of view, the use of the mean-field

approximation is not so bad. For example, classical simulators uses 3D meshes with cell

sizes of few nanometers, DX ≈ DY ≈ DZ À 10 nm. Then, the error of the mean-field

approximation is smaller than the technical error (i.e. mesh error) due to the finite size

of the cells. The long range Coulomb interaction is well captured with the mean-field

approximation, while this approximation is really bad strategy to capture the short range

Coulomb interaction (see figure 2.5.5).

Finally, let me remark another important point about the mean-field approxima-

tion. Looking at the final expression (2.78), rewritten here as Wk (~r, t) = W̄mean (~r, t) −
V (~r, ~rk[t]), it seems that Wk (~r, t) can be computed from a unique mean-field solution of

the Poisson equation W̄mean (~r, t) when subtracting the appropriate two-particle potential

V (~r, ~rk[t]). However, such an strategy is not as general as our procedure because it re-

quires an analytical expression for the two-particle Coulomb interaction V (~r, ~rk[t]). The

analytical expression of V (~r, ~rk[t]) written in expression (2.8) is only valid for scenarios

with homogenous permittivity. On the contrary, our procedure with N(t) electrostatic

potentials computed from N(t) different Poisson equations in a limited 3D volume Ω can

be applied inside general scenario with (or without) spatial dependent permittivity.
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2.5.2 Simulation of a two-electron system

I consider one electron (labeled as 1-electron) injected from the source surface, S4, at an

arbitrary position. A second electron is injected, arbitrarily, from the drain surface, S1.

A battery provides an external voltage equal to zero at the drain and source surface. A

3D cubic system with a volume of Ω = (20 nm)3 is considered as the active device region.

We consider Silicon parameters for the numerical simulation. Within the mean-field

approximation only the potential profile W̄mean(~r, t) is calculated for the two electron

system using expressions (2.72)-(2.75). Then, we realize from figure 2.5.1 that each

electron can be reflected by an artificial alteration of the potential profile related to its

own charge. In figures 2.5.2 and 2.5.3 we have plotted the energy potential profile “seen”
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Figure 2.5.1: Potential energy profile W̄mean(~r, t) computed with a 3D Poison solver using the
classical “mean-field” approximation on the plane X-Y of the active region Ω = (20nm)3 at
z=6nm at 0.4 fs. The solid points are electron positions.

by the 1-electron, W̄1(~r1, t), and by the 2-electron, W̄2(~r2, t), using the many-particle

algorithm described by expressions (2.60)-(2.63). Electrons are not affected by their

own charge. We clearly see that, within the mean-field approximation, electrons can be

unable to overcome the large potential barrier that appears at their own position (due

to their own charge). In addition, the simple results confirm that the mean-field error

is equal to expression (2.78), i.e. the error of the mean-field potential profile at each

position of the active region is Errork (~r, t) = V (~r, ~rk [t]). Finally, a discussion about

the role of the spatial mesh used for the numerical solution of the Poisson equation is

relevant. For an electron device with a length of hundreds of nanometers, we need a mesh

of the 3D active region with spatial step DX ∼ DY ∼ DZ > 10 nm to deal with no

more than one thousand nodes in the numerical solution of the Poisson equation. This



2.5. A simple example: Simulation of a two-electron system 53

2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

4
8

12
16

20

Drain

Source

Po
te

nt
ia

l E
ne

rg
y 

(m
eV

)

Y P
os

iti
on

 (n
m

)

X Position (nm)

1-Electron

Figure 2.5.2: Potential energy profile of the 1-electron, W̄1(~r1, t), with the “many-electron”
algorithm in the plane X-Y of the active region Ω = (20nm)3 at z=6nm at 0.4 fs. The solid
point is the 1-electron position.
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Figure 2.5.3: Potential energy profile of the 2-electron, W̄2(~r2, t), with the “many-electron”
algorithm in the plane X-Y of the active region Ω = (20nm)3 at z=6nm at 0.4 fs. The solid
point is the 1-electron position.

computational limitation in the resolution of the potential is present either when solving

the mean-field or the many-electron algorithm. With such spatial resolution, the short-

range interaction is missing in both procedures because two electrons inside the same

spatial cell will not repel each other. In addition, the error between both procedures,

Errork (~r, t) = V (~r, ~r [t]k), is reduced because the numerical Coulomb potential profile

is smoothed due to the low resolution (i.e. the diameter of the region where V (~r, ~r [t]k)

has a strong influence is shorter than the cell dimensions). Therefore, we obtain roughly

identical results with both schemes. In the subplots of figure 2.5.4, the same electron

trajectory is presented for different mesh resolution. As can be seen, for the best mesh

resolution (DX = DY = DZ = 2 nm), the differences between both treatments are
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maximized due to the important spurious auto-reflection effect found in the mean-field

trajectory. On the other hand, as the resolution of our mesh is reduced, differences

between both treatments disappear, giving roughly equal trajectories for cell dimensions

above 5 nm. In summary, when the spatial cells are large, the mean-field and the many-
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Figure 2.5.4: Electron trajectory computed with the “mean-field” (circles) and the “many-
electron” (squares) algorithms for four different mesh resolutions. a) DX = DY = DZ = 2 nm,
b) DX = DY = DZ = 4 nm, c) DX = DY = DZ = 6nm, and d) DX = DY = DZ = 8nm.

electron schemes correctly model the long-range Coulomb interaction, but both neglect

the short-range component. On the contrary, with smaller spatial steps DX ∼ DY ∼
DZ < 5 nm, the many-electron resolution takes into account long- and short- range

Coulomb interaction correctly, whereas the description of the short-range component

within the mean-field approximation is completely incorrect (i.e. electrons are repelled

by themselves). In other words, when DX, DY, DZ → 0 the mesh error in our many-

electron algorithm reduces to zero, while the error in the mean-field approach tends

to infinite, Errork (~r, t) → ∞. See a schematic summary of the explanation of this

discussion in figure 2.5.5. Finally, it is important to remark that the electron trajectories

Figure 2.5.5: Schematic representation of the errors associated to mean-field and many-electron
approaches as a function of the size of the discretization mesh.
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in Fig. 2.5.4 are computed using the classical scheme of section 2.4.1, but the electrostatic

potential profiles are computed from a 3D Poisson solver that is identical for the classical

or quantum algorithms. Therefore, the conclusions drawn here for the classical algorithm

can be directly extrapolated to our quantum algorithm. In the classical algorithm, the

wrong potential profile of Fig. 2.5.1 affects the electric field [equations 2.56] that modifies

the electron dynamics. Identically, the wrong ”mean-field” potential in expression (2.68)

will affect the solution of the Schrödinger equation that will modify Bohm trajectories

(2.71).
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Chapter 3

The prediction of measurable results

As I have pointed out several times along this dissertation, the exact many-body state of

the system can not be solved. Nonetheless, from a pragmatic point of view, the knowledge

of the exact microstate of the system is not useful by itself. What is really usable is to

predict measurable properties such as the electrical current flowing through a particular

nanostructure.

In the first section of this chapter I will argue that the kind of information extracted

from our simulations that can be ultimately associated to real measurement results is

that of expectation (or average) values. In section 3.2 I will discuss the definition of

expectation values for classical and quantum open systems. Finally, in sections 3.3 and

3.4 I will focus on two particularly important observable measurements, that of the

electrical current and that of the electric power consumption.

3.1 Observable results from stochastic simulations

It is important to recall here that the theoretical study of electron transport ultimately

constitutes an statistical problem. Due to computational limitations, we have been forced

to reduce the degrees of freedom of our system. Since we can only describe a very reduced

number of variables in a very reduced region of space (an open system representing the

active region of an electron device), we are obliged to deal with an essentially uncertain en-

vironment (see the discussion in section 1.2.2). In particular, although electron dynamics

within our open system is deterministically described by the many-particle Hamiltonian

(2.38) supplied with the Hamilton-Jacobi equations (2.56) for classical systems and the

pseudo-Schrödinger equations in (2.68) for quantum systems, our simulations are subject

to an stochastic injection of electrons describing how (i.e. in which position, time and

momentum) electrons enter the simulated region, or equivalently, how are those electrons

outside the open system distributed in phase space. Certainly, this is an information that

can be known, at best, statistically, i.e. according to the Fermi-Dirac statistics (the reader

57
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is referred to section 2.3 and Appendix B for a detailed discussion on this point). The

injection process, is then the responsible of coupling an statistical external environment

to our “deterministic” simulation box, and thus, it is also one of the main responsibles of

converting the information that we have on the dynamics occurring inside the simulation

region into something statistical1 (see figure 3.1.1 for an schematic representation of this

problem).

Figure 3.1.1: Schematic representation of the whole closed circuit available information. The
statistical description of the simulation box environment is coupled to the deterministic de-
scription of the active region by an stochastic injection process.

Although the injection of electrons in the open system constitutes an essentially

stochastic process, it is indeed capable of politely reproducing the probabilistic distribu-

tion of electrons in the spatial limits of the simulation box (see section 2.3 and Appendix

B). Therefore, although we are not capable of describing at every single time which is the

real microstate occupied by our open system, we do are able to predict the probability

that our system occupies a particular microstate. In other words, although we cannot

reproduce the result of a single measurement (associated to a particular microstate of

the system), we can reproduce the probability of measuring such a result, and hence, we

can also predict the mean value of a long series of identical measurement results, i.e. its

expectation value2. Repeating several times the same simulation, we can elaborate a list

of possible outcomes ai, e.g. {a5, a1, a32, a1, ...}, of an observable A(t), with an occurrence

probability P (ai, t). From these data we can then compute the expectation value of the

observable A(t) as:

〈A(t)〉 =
∞∑
i=1

aiP (ai, t). (3.1)

1The injection process is also the responsible of converting our open system into an irreversible system.
Irreversibility of physical process is related to loss or transfer of information during time evolution from
the system whose dynamics we are interested in to other degrees of freedom, that either we choose not
to consider, or their number is so large that it is practically impossible to follow each and every one of
them in time.

2In practice, since we simulate a single open system and we let it evolve in time, then, at time t
we will deal with a single possible microstate of the system. Such a microstate is not able to give us
information about the result of a real measurement.
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This is the standard (either classical or quantum) definition of the expectation value of

an observable measurement A(t), and represents the kind of information that we can

obtain from our electron transport approaches. The previous discussion is valid for both

classical and quantum systems, however, when dealing with quantum systems there is an

additional source of statistical uncertainty associated to the wave nature of the carriers

(see section 3.2.3 for an extended discussion on this point).

In conclusion, the price that we have to pay for the reduction of the degrees of freedom

is that we do not deal anymore with a pure many-particle microstate, but with a mixed

many-particle microstate (the reader can find an extensive discussion on this point in

Appendix C), and therefore, only that information referring to expectation values has to

do with real measurable results. In the next sections I will extend the previous discussion

for both classical and quantum open systems, focusing on the practical computation of

expression (3.1).

3.2 Expectation values from stochastic simulations

3.2.1 The measurement as a detection of pointer positions

Clearly, in all measurements, we are not directly measuring the outcomes ai but the

position of a pointer. These data are, indeed, of a very simple nature. Usually the value

of ai can be ascribed to a detector pointer described by the positions of the particles

conforming it, ~rp[t] = ~rp1[t], ..., ~rpN [t]. Hence, the measurement of any magnitude is a

position measurement. In this regard, the outcomes of an observable A can be always

defined as a function, fA, of the pointer positions, i.e. fA(~rp[t]). In particular, expression

(3.1) can be also written as

〈A(t)〉 =
∞∑
i=1

aiP (ai, t)

=
∞∑
i=1

fA(~rp,i[t]) · P (~rp,i[t]), (3.2)

where fA(~rp,i[t]) = ai, ~rp,i[t] = {~rp1,i[t], ..., ~rpN,i[t]}, and P (~rp,i[t]) = P (ai, t). As I will

show in brief, the position vectors ~rp,i[t] can refer either to classical or quantum trajec-

tories.

Although the previous affirmation could seem quite obvious when dealing with clas-

sical systems, as I will discuss in section 3.2.3, it is certainly a delicate issue when we

discuss the measurement process within its “orthodox” formulation of quantum mechan-

ics (i.e. the problem of the wave function collapse). Bell expressed this point in this

way:
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In physics the only observations we must consider are position observations,

if only the positions of instrument pointers. It is a great merit of the de

Broglie-Bohm picture to force us to consider this fact. If you make axioms,

rather than definitions and theorems, about the “measurement” of anything

else, then you commit redundancy and risk inconsistency. — John S. Bell

(1987) [124].

In any case, in practical situations, accounting for the degrees of freedom of the

pointer would force us to include the whole measuring apparatus, the battery and the

wires into our simulations. Obviously, this is computationally unviable, and hence, we

should be capable of finding a function, f ′A, relating the simulated degrees of freedom of

the open system, i.e. {~r1, ..., ~rN(t)}, and the measured quantities ai. In Appendix C I

will discuss in detail how the probabilities appearing in expression (3.2) can be formally

rewritten in terms of the simulated degrees of freedom and the function f ′A (for both

classical and quantum systems). In the rest of this section I will explain how we can

compute, in practice, the expectation value of a particular observable A(t) departing

from the supposition that we already know the function f ′A. In sections 3.3 and 3.4 I will

provide a reasonable definition of f ′A when measuring the electrical current and power.

3.2.2 The classical expectation value of an observable result

The uncertainty associated to the electrons entering the simulation box can be practically

represented by an h-ensemble of different electron characteristics. As I have already

noticed, such an uncertainty, h = 1, ..., H, is partially related to the lack of information

we have on the energies, positions and injection times of the electrons at the borders of

the simulation box.

Now, the practical procedure to compute the expectation value of the observable A at

time t1 is the following. At t = 0, we select a particular realization of the h-uncertainty.

Then, we solve the (many-particle) Hamilton-Jacobi equations (2.56b) and (2.56b) from

time t = 0 till t = t1. Next, we compute the values ah(t1) as

ah(t1) = A′
f (~r1,h[t1], ..., ~rN(t),h[t1]). (3.3)

After that, we repeat the previous procedure for h = 1, ...,∞. The expectation value or

the ensemble average of the observable A at time t1 can be then computed as:

< A(t1) >= lim
H→∞

1

H

H∑

h=1

ah(t1). (3.4)

The probability of each element of the h−ensemble is 1/H.
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For a stationary process, the mean value (3.4) is independent of time. Then, if the

process is ergodic, we can compute the expectation value of A from the next time average

expression:

ah(t) = lim
T→∞

1

T

∫ T/2

−T/2

ah(t)dt (3.5)

In this case, the practical procedure for the computation of the mean value of the

Figure 3.2.1: Schematic representation of the simulation box for a particular selection of classical
trajectories during an infinite time.

observable A is the following. Before beginning the simulation, we select a particular

realization of the whole h-uncertainty for an “infinite” number of electrons, that is the one

of a whole closed circuit, i.e. {~r1,h, ..., ~rM,h, t0} (with M the total number of unbounded

electrons in the whole circuit). In figure 3.2.1 I have represented an scheme of the

simulation box in position and time. A single sample function will often provide little

information about the statistics of the process. However, if the process is ergodic, that

is, time averages equal ensemble averages3, then all statistical information can be derived

from just one sample function.

3.2.3 The quantum expectation value of an observable result

The use of quantum mechanics is certainly a delicate issue when discussing the measure-

ment process. In this regard, let me first introduce the measurement problem of quantum

mechanics.

A measurement performed on a quantum system with a pure wave function, typically

yields a random result. However, the quantum dynamics governing the evolution of the

wave function over time, at least when no measurement is being performed, given by

3The trajectory of a representative point in the phase-space traverses, during a time evolution, any
neighborhood of any relevant point of the phase space.
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the Schrödinger’s equation, is completely deterministic. Thus, insofar as the particular

physical processes which we call measurements are governed by the same fundamental

physical laws that govern all other processes, one is naturally led to the hypothesis that

the origin of the randomness in the results of quantum measurements lies in random

initial conditions, in our ignorance of the complete description of the system of interest

of which we know only the wave function.

The measurement problem, however, is often expressed a little differently in the con-

text of orthodox quantum mechanics. Textbook on quantum theory provides two rules for

the evolution of the wave function of a quantum system: A deterministic dynamics given

by Schrödinger’s equation for when the system is not being “measured” or observed, and

a random collapse of the wave function to an eigenstate of the “measured observable”

for when it is4’5. In short, the measurement problem of the orthodox formulation of

quantum mechanics is this:

It would seem that the theory [quantum mechanics] is exclusively concerned

about “results of measurement”, and has nothing to say about anything else.

What exactly qualifies some physical systems to play the role of “measurer”?

Was the wavefunction of the world waiting to jump for thousands of millions

of years until a single-celled living creature appeared? Or did it have to wait

a little longer, for some better qualified system ... with a Ph.D.? If the theory

is to apply to anything but highly idealized laboratory operations, are we not

obliged to admit that more or less “measurement-like” processes are going on

more or less all the time, more or less everywhere. Do we not have jumping

then all the time? — John S. Bell (1987) [124].

From these considerations Bell has drawn the conclusion that we have only two possibil-

ities. Either we add something to the wave function for the description of the state of

the system or we modify the Schrödinger equation6. The former solution given by Bell

fits perfectly with Bohmian mechanics, which in order to wholly describe a system adds

4According to orthodox quantum theory, the wave function of any individual system provides a
complete description of that system.

5John Bell emphasized several times that the ’orthodox’ formulation of the quantum theory is un-
professional. It does not explain with accuracy which parts of the whole quantum system forms the
measurement apparatus and which the quantum system itself, or wheatear the measurement process
requires some kind of human action or not.

6The allure of wave function monism (monism means here that the complete description of a system is
provided by only its wave function) is so strong that some solutions to the orthodox measurement problem
in fact involve the abrogation of Schrödinger’s equation. There have been several recent proposals [125–
129] suggesting explicitly that the quantum evolution is not of universal validity, that under suitable
conditions, encompassing those which prevail during measurements, the evolution of the wave function
is not governed by Schrödinger’s equation. A common suggestion is that the quantum dynamics should
be replaced by some sort of “nonlinear” (possibly nondeterministic) modification, to which, on the
microscopic level, it is but an extremely good approximation. One of the most concrete proposals along
these lines is that of Ghirardi, Rimini, and Weber [129].
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the configuration space, i.e. the position of the particles are guided by the wave function

(see Appendix A).

Next, I introduce the quantum expectation value of an observable in terms of Bohmian

mechanics. The reader can find a particular deduction of this formulation, departing from

the orthodox definition of an expectation value, in Appendix C.

The quantum expectation value of an observable result in terms of bohmian

trajectories

Contrarily to orthodox quantum mechanics, the Bohmian formulation of quantum me-

chanics states that an observable is finally measured by an apparatus that provides a

relationship between the value of a particular outcome of the observable and the position

of a pointer (just as in classical mechanics). The very relevant point of the Bohmian

measurement process is that it emphasizes that what we have ultimately “measured” is

the position of the pointer, not the observable itself. In this regard, if we are able to find

a function f ′A relating the position of the simulated bohmian trajectories (in the open

system) and the positions of the pointer ~rp, then we can also compute its expectation

value in terms of theses trajectories.

As I have already announced, the addition of the wave nature of the electron intro-

duces an additional source of uncertainty in the classical definition of the expectation

value, i.e. in quantum open systems there exists two types of uncertainty. One is shared

with classical systems, and another one belongs exclusively to quantum systems. The

former is ultimately related with the characteristics of the electrons injected into the

simulation box and, as in the classical case, I will use the subindex h to refer to it. The

second uncertainty, has a pure quantum mechanical origin, and it can be ultimately re-

lated with the initial positions of Bohmian trajectories. In the predictions of Bohmian

mechanics concerning the result of a quantum experiment, it is assumed that, prior to the

experiment, the positions of the particles involved in the system are randomly distributed

according to Born’s statistical law. In this sense, according to the quantum equilibrium

hypothesis (see expressions (A.14) in Appendix A and (C.14) in Appendix C), we know

that there exists an ensemble g = 1, .., G of possible distributions of Bohmian initial

positions that exactly reproduce the modulus of the wave function at any time.

Therefor, similarly to its classical counterpart, the practical procedure to compute the

quantum expectation value of an observable A is the following. At t = 0, we select a par-

ticular realization of the h-uncertainty and a particular realization of the g-uncertainty.

Then, we solve the (many-particle) pseudo-Schrödinger equations (2.68) from time t = 0

till t = t1. Next, for each particular observable A, we compute the values ag,h(t1) as

ag,h(t1) = f ′A(~r1,h,g[t1], ..., ~rN(t),h,g[t1]). (3.6)
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Finally, we repeat the procedure for g = 1, ...,∞ and h = 1, ...,∞, and after that, the

expectation value or the ensemble average of A at time t1 can be computed as:

< A(t1) >= lim
G,H→∞

1

GH

H∑

h=1

G∑
g=1

ag,h(t1) (3.7)

The probability of each element of the g−ensemble is 1/G. Identically, the probability

of each h−element is also 1/H.

Again, for a stationary process, the mean value (3.18) is independent of time. Then,

if the process is ergodic, we can compute the expectation value of A from the next time

average expression:

ag,h(t) = lim
T→∞

1

T

∫ T/2

−T/2

Ag,h(t)dt. (3.8)

In this case, the practical procedure for the computation of the mean value of the observ-

able is the following. Before beginning the simulation, we select a particular realization of

the h-uncertainty for an “infinite” number of electrons, that is the one of a whole closed

circuit, i.e. {~r1,h,g, ..., ~rM,h,g, t0} (with M the total number of unbounded electrons in the

whole circuit). Simultaneously, we fix the “quantum” g-uncertainty of this particular

realization (see figure 3.2.2 where I have represented an scheme of the simulation box in

position and time). Again, a single sample function will often provide little information

about the statistics of the process. However, if the process is ergodic, then all statistical

information can be derived from just one sample function.

Figure 3.2.2: Schematic representation of the simulation box for a particular selection of wave-
packets and Bohmian trajectories during an infinite time.

In summary, the ability of Bohmian mechanics to predict measurable results without

invoking the wavefunction collapse resides in the fact that the measured quantity de-
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pends, ultimately, on the distribution of positions of a set of Bohmain particles. Roughly

speaking, we avoid collapsing the wavefunction to a particular position ~r[t] at time t

because we have already “collapsed” it to ~r[t0] at the initial time t0.

3.3 Computation of the electrical current

The functionality of any electronic device is determined by the relationship between the

current measured by an ammeter an the voltage imposed at the external battery. See

Fig. 3.3.1 for a description of the whole circuit that will support most of our explanations

in this section. The current I(t) is experimentally measured by an ammeter located far

Figure 3.3.1: Schematic representation of the current measurement in an electron device. Device
simulators compute the current in the surface, SD, of the device active region, while the ammeter
measures the current in the surface, SA.

from the device active region using, for example, the magnetic deflection of a pointer7.

We define, as in the previous section, ~rp = ~rp1, .., ~rpN as those positions of the particles

forming the pointer that completely specify its spatial location. In principle, if one

solves the many-particle Hamiltonian (with classical or quantum trajectories) of the

whole circuit including the measuring apparatus, the exact microstate of the system can

be exactly known at every time t. Then, each possible experimental value of the current

I(t) is related to a particular distribution of the particles of the “pointer” at time t.

Unfortunately, the huge number of variables contained in the Hamiltonian make its

solution through the many-particle Hamiltonian untractable. Instead of trying to describe

a whole closed circuit, we have been forced to drastically reduce the number of degrees

of freedom being simulated. In particular, we can only describe electron dynamics in

the active region of an electron device. The elimination of all the degrees of freedom of

the wire, the battery and the ammeter can seem surprising. At the end of the day, we

will compare our predictions for I(t) with the current measured experimentally at the

7A current passing through a coil in a magnetic field causes the coil to move. The position of a
’pointer’ fixed to this coil will indicate the value of the current.
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ammeter, not at the device active region. Therefore, if we eliminate the “pointer” of the

ammeter from the set of simulated degrees of freedom, we need another definition of the

current I(t), based on the position of the simulated electron trajectories. In the next

subsection I will provide a reasonable expression for such a function.

3.3.1 The relationship between currents on the ammeter and

on the active region surfaces

Let us assume that we deal with a particular h−element and g−element of the Bohmian

trajectories of the circuit (if we deal with a classical systems we just remove the subindex

g in the next argumentation). We will keep the subindexes g and h to remind this point.

Next. we show that the current ISA,g,h(t) crossing a surface of the ammeter, SA, drawn in

Fig. 3.3.1 can be related to the current ISD,g,h(t) on the surface of the device active region,

SD
8. We will provide this demonstration without simulating explicitly the dynamics of

the Bohmian trajectories, but assuming that they fulfill Maxwell equations. Let us start

by rewriting the current conservation in any point along the wire:

~∇~jc,g,h(~r, t) +
∂ρg,h(~r, t)

∂t
= 0. (3.9)

The first term of Eq. (3.9) is the divergence of the conduction current density, ~jc,g,h(~r, t),

while the other is the temporal variations of electron charge density ρg,h(~r, t). The second

term can be related to the electric field, ~Eg,h(~r, t), by using the Poisson (i.e. first Maxwell)

equation:
~∇

(
ε(~r) ~Eg,h(~r, t)

)
= ρg,h(~r, t), (3.10)

where the electric permittivity, ε(~r), is assumed to be a time-independent scalar function.

Thus, we can rewrite Eq. (3.9) as:

~∇~jc,g,h(~r, t) + ~∇
(

ε(~r)
∂ ~Eg,h(~r, t)

∂t

)
= ~∇

(
~jc,g,h(~r, t) +~jd,g,h(~r, t)

)
= 0. (3.11)

where the displacement current density is ~jd,g,h(~r, t) = ε(~r)
∂ ~Eg,h(~r,t)

∂t
. From equation

(3.11), we can define the total current ~jT,g,h(~r, t) = ~jc,g,h(~r, t) +~jd,g,h(~r, t) as a divergence

free vector. Finally, we arrive to the following identity for the total currents:

∫

Λ

~∇~jT,g,h(~r, t)dΛ =

∫

S

~jT,g,h(~r, t)d~s = 0, (3.12)

8In principle, we do also need a demonstration that the current Ig(t) indicated by the “pointer”
positions can be related with the current crossing a surface of the ammeter, SA. We avoid the explicit
demonstration, which will follow the identical steps done in this section.
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where the first integral is evaluated inside an arbitrary volume Λ and the second integral

over the closed surface S limiting this volume Λ drawn in Fig. 3.3.1. The surface S is

composed of the ammeter surface, SA, the device surface, SD and a lateral cylindrical

surface. We assume that this lateral surface is so far away from the metallic wire, so that

the electric field there is almost zero and there are no particles crossing it9. Thus, the

integral surface of the right hand side of expression (3.12) can be rewritten as:

∫

SD

~jT,g,h(~r, t)d~s +

∫

SA

~jT,g,h(~r, t)d~s = 0 (3.13)

Expression (3.13) tells us that ISA,g,h(t) = −I(t)SD,g,h. There is an irrelevant sign

related with the direction of the vector d~s. In conclusion, the current measured on the

surface of an ammeter is equal to the current measured on a surface of the simulation

box.

3.3.2 The relationship between the current on the active region

surfaces and the simulated trajectories

Now, we determine the function f ′A between the positions of the open system trajectories

{~r1,k,g[t], .., ~rN(t),k,g[t]} and the value of the current ISD,h,g(t) measured on the surface SD

(recall that for recovering a classical explanation we just have to erase the subindex g in

what follows).

I will discuss the charge associated with the conduction and displacement components

of the total current. From the continuity equation 3.9 that accomplishes the simulated

trajectories, we conclude that:

∫

SD

~jc,g,h(xD, y, z, t)d~s =
d

dt

∫

SD

∫ x=xD

x=−∞
ρg,h(x, y, z, t)dxdydz (3.14)

We have defined xD as the x-position of the SD surface. In principle, we known that

the density of particles at time t in the whole circuit can be written as ρg,h(r, t) =∑MP

i=1 δ(~r − ~ri,g,h[t]). Then, we can define the conduction charge as:

Qc,g,h(t) =

∫

SD

d~s

∫ xD

x=−∞
dx

M∑
i=1

δ(~r − ~ri,g,h[t]) = q

(
M∑
i=1

u(xi,g,h[t]− xD)

)
(3.15)

where the unit step function (Heaviside) is u(ξ) = 1 when ξ > 0 and zero elsewhere and

the number of particles M accounts for all the unbounded electrons in the whole circuit.

9In fact, the relevant point is not only that the lateral surface is far away from the wire, but also that
the difference between the relative dielectric constants in the wire and in the air tends to concentrate
the electromagnetic field inside the wire
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In addition, we know that the displacement current is defined as ~jd,g,h(~r, t) =

ε(~r)
∂ ~Eg,h(~r,t)

∂t
. Therefore, we can interpret the displacement charge, as:

Qd,g,h(t) =

∫

SD

d~sε(~r) ~Eg,h(xD, y, z, t) (3.16)

The electric field, ~Eg,h(xD, y, z, t) depends directly on the position of the simulated par-

ticles and the boundary conditions on the borders of our simulation box. Finally, we can

interpret one particular outcomes of the total current measured by an ammeter, Ig,h(t),

as the time-derivative of the conduction plus displacement charge:

ISDg,h(t) =
d (Qc,g,h(t) + Qd,g,h(t))

dt
. (3.17)

Notice that the title of this subsection makes reference to find a relationship between the

current on the active region surfaces and the simulated trajectories. From the definition

of the conduction charge (Eq. (3.15)), however, it could seem that what we have done

is finding a relation between the trajectories (simulated and non-simulated) of the whole

circuit and the current on the active region surfaces. Fortunately, the time derivative of

this quantity appearing in (3.17), can be computed by simply counting the number of

trajectories (all of them simulated) crossing the surface SD [130].

In conclusion, we have found a function between one particular set of trajectories

~r1,h,g[t], .., ~rN(t),h,g[t] and the charge Qc,h,g(t) + Qd,h,g(t). According to expression 3.13,

hereafter, we simplify our notation ISD,h,g(t) = Ih,g(t).

3.3.3 The practical computation of DC, AC and transient cur-

rents

As discussed in subsections 3.2.2 and 3.2.3, when dealing with an open simulation box,

the measured observables need one subindex for each of the two sources of uncertainty,

h and g (only the subindex h when dealing with classical systems). We can determine

the average value of the current at time t1 (or the expectation value, or the mean, or the

first moment) from the following ensemble average:

< I(t1) >= lim
G,H→∞

1

GH

G∑
g=1

H∑

h=1

Ig,h(t1) (3.18)

As we have discussed, the probability of each element of the g−ensemble is 1/G. Identi-

cally, the probability of each h−element is also 1/H.

When the battery of Fig. 3.3.1 is fixed to a constant value, then, the whole circuit

becomes stationary. This is the DC measurement of the current. Now, for a stationary
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process, the classical mean current computed from (3.18) is independent of time. Then,

if the process is ergodic, we can compute the mean current from the a time average

expression:

Ih(t) = lim
T→∞

1

T

∫ T/2

−T/2

Ih(t)dt. (3.19)

Equivalently, for quantum systems, we can compute the mean current from the (first-

order) time average expression:

Ig,h(t) = lim
T→∞

1

T

∫ T/2

−T/2

Ig,h(t)dt. (3.20)

Electrical engineers are not only interested in the DC behavior of nanoelectronic de-

vices, but also in their transient or AC performance. For these time-dependent scenarios,

the circuit is no longer neither stationary nor ergodic. Then, we cannot use ergodicity

and we have to compute the mean value of the current at each particular time, t1, only

from the ensemble average in (3.18).

3.3.4 The computation of the current fluctuations for a station-

ary and ergodic system

When we measure experimentally the current, we found a randomly varying function of

time, not a constant value. We named these fluctuations of the current as noise. The

characterization of the noise is a extremely important issue in electronics to understand

how to avoid it in practical applications. In addition, from a physical point of view,

there is a lot of useful information in the noise that is missing (because of the average)

in the mean values discussed above. Before writing the mathematical expression for the

practical evaluation of noise, we provide a brief summary of noise features in electronics

that will be useful latter to discuss the noise results.

The thermal and shot noises

Noise in electronic devices can be understood as a consequence of uncertainties in the

electron transport process. Theoretical approaches to analyze and model noise in semi-

conductor devices are carried out using stochastic calculus and microscopic noise sources

(see for example [131] for a semi-classical treatment of noise in semiconductor devices).

There are two fundamental sources of noise in nanostructures, the thermal and the

shot noise. The former is at non-zero temperature where the thermal agitation causes the

occupation number of the state to fluctuate. Typically, we can characterize the presence

or not of an electron in a particular region of phase-space by the occupation number n

which is either zero or one, at each particular time. In simple scenarios, the average of
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the occupation number 〈n〉 is determined by the Fermi distribution function f and we

have simply 〈n〉 = f . At equilibrium the probability that a state is empty is on the

average given by 1− f , and occupied is on the average given by f . Taking into account

that n2 = n, we find immediately that the fluctuations of the occupation number are

given by:

〈
(n− 〈n〉)2

〉
= f (1− f) (3.21)

At high temperatures and high enough energies f is much smaller than one and thus

the factor 1−f in Eq. (3.21) can be replaced by 1. Thus the fluctuations are determined

by the Boltzmann distribution.

The latter noise source, namely the shot noise, can be explained with the simple

case of a flux of particle incident upon a barrier. At the barrier the particle is either

transmitted with probability T or reflected with probability R = 1− T (not both!). We

now only consider the transmitted state characterized by the occupation numbers nT and

its average value simply given by 〈nT 〉 = T . To find the mean squared fluctuations in

the transmitted state, we consider the average of the product of the occupation numbers

of the transmitted and reflected beam 〈nT (1− nT )〉. Since in each event the particle

is either transmitted or reflected, the product nT (1− nT ) vanishes. Notice that this

mechanism is essentially the particle nature of the charge as anticipated above. Hence

the average 〈nT (1− nT )〉 vanishes also and we find easily:

〈
(nT − 〈nT 〉)2〉 = T (1− T ) (3.22)

Such fluctuations are called partition noise since the scatterer divides the incident

carrier stream into two streams.

Both the thermal and shot noise at low frequencies and low voltages reflect in many

situations independent quasi-particle transport. Electrons are, however, interacting en-

tities and both the fluctuations at finite frequencies and the fluctuation properties far

from equilibrium require in general a discussion of the role of the Coulomb interaction.

A quasi-particle picture is no longer sufficient and collective properties of the electron

system come into play. Moreover, for finite frequency the electrodynamics (Maxwell

equations) must be included. Please see the review of Blanter and Büttiker [11] as a

guide for theoretical approach to noise in mesoscopic devices.

The practical compaction of current fluctuations

Now, we return to the practical expressions for the computation of the current fluctu-

ations in nanoelectroinc devices with trajectories. Since we directly know all possible

measurable current values Ig,h(t1) and their probabilities 1/(GH), we can use standard
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techniques for characterizing the fluctuations of the current (this is a very relevant ad-

vantage of using Bohmian mechanics to study electron transport).

The fluctuating signal of the current can be defined from ∆Ig,h(t) = Ig,h(t)− <

Ig,h(t) >. We can obtain information of the noise from the variance (or the mean square

or the second moment) defined as < ∆I(t)2 >=< I(t)2 > − < I(t) >2. However, exper-

imentalist are interested in having information on the distribution of noise at different

frequencies10. Therefore, the characterization of fluctuations of the current, i.e. the noise,

are computed from the covariance:

< ∆I(t1)∆I(t2) >= lim
g,h→∞

1

GH

G∑
g=1

H∑

h=1

∆Ig,h(t1)∆Ig,h(t2) (3.23)

If the process is ergodic, we can compute the noise equivalently from the autocorrelation

function:

∆I(t)∆I(t + τ) = lim
T→∞

1

T

∫ T/2

−T/2

∆Ig,h(t)∆Ig,h(t + τ)dt (3.24)

We mention ergodicity of the correlation when < ∆Ig,h(t)∆Ig,h(t+τ) >= ∆Ii(t)∆Ii(t + τ).

In addition, a process is called wide-sense (or weakly) stationary if its mean value is con-

stant and its autocorrelation function can be defined as:

R(τ) = ∆I(t)∆I(t + τ) (3.25)

because depends only on τ = t2 − t1. Wide-sense stationary processes are important

because the autocorrelation function 3.24 and the power spectral density function S(f)

(measured by experimentalist) form a Fourier transform pair:

S(f) =

∫ ∞

−∞
R(τ)e−j2πfτ dτ (3.26)

This is known as the Wiener-Khinchine theorem. In many systems, without correlations

one obtains the well known Schottky’s result [132] for the shot noise:

Sschot(f) = 2e 〈I〉 (3.27)

which is also referred to in literature as Poissonian value of shot noise.

Our ability to make a “continuous” measurement of the time-dependent current needs,

perhaps, some additional explanation. When we have considered the elimination of the

degrees of freedom associated to the battery, the wire and the ammeter and re-introduce

10Most of electronic apparatuses and the ammeter itself have to be interpreted as low-pass filters.
Therefore, they are able to measure the noise up to a maximum frequency
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them , somehow, by the boundary conditions in our simulation box and electron injection

algorithm, we have also assumed that the simulated electrons of the active region have

a significant influence on the degrees of freedom of the ammeter, ~ra, but the degrees of

freedom of the ammeter have small (negligible) influence on the simulated particles. In

the literature, this type of measurement is called “ideal” or “weak” measurement and

they are also present in the orthodox interpretation of quantum mechanics11.Under the

“weak” measurement done by the ammeter, we can consider the measurement of the

current of one particular sample at two different times.

3.4 Computation of the electrical power

Power consumption is one of the main drawbacks when scaling down any new technology

[133, 134]. In the last few years, the electronic development is being driven not only by

the desire of improving circuit density and speed but also of reducing power consumption.

The ITRS has identified this last constraint as one of the top three overall challenges for

the next 15 years [72]. In this sense, accuracy is a mandatory requirement when predicting

electric power in the active region of a FET transistor because the results of the single

transistor are then extrapolated to the large number of transistors in present-day CPUs.

In this section I show that the formulation of the electric power in nanoscale open classical

and quantum systems can not be reduced to the standard expression I · V when dealing

with full Coulomb correlations. Only when taking the single-particle classical limit we

recover the well known textbook expression.

In the next discussion I will eliminate again the “pointer” of the measuring apparatus

from the set of simulated degrees of freedom. Then, we need a definition of the electrical

power P (t), based on the position of the simulated electron trajectories (both classical and

quantum), i.e. we must find the function f ′P . Let me notice that if we could associate the

electric power to the standard expression, I · V , we would not had major problems when

comparing our theoretical predictions with the results obtained with an experimental

setup. In the previous section I discussed how to associate our predictions of electric

current with the measure performed in an ammeter. It is not more difficult to associate

the applied voltage V with the measure performed with a voltmeter. Unfortunately, if

we take a look to expressions (3.44) and (3.46), which correspond to the electrical power

11The type of measurement process with orthodox quantum mechanics first introduced to students
is the so-called “strong” measurement. the measurement transforms “instantaneously” the wavepacket
into one of the eigenstate of an operator. However, there are many measurements that do not fit with the
(von Neumann) “strong” measurement. For example, when one illuminates an object and continually
detects the reflected light in order to track the object motion, or when one sees the bubbles originated by
a electrically charged particles (coming from cosmic reactions) moving through a bubble chamber. The
’orthodox’ theory itself has developed its own formal formalism to discuss these new type of continuous
measurements named ’weak’ measurements [125].
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for quantum and classical open systems respectively, things seem much complicated.

Nonetheless, as I will show, these expressions are reasonable. Moreover, the kinetic

energy gained or loosed by electrons in the open system (consider for instance the active

region of a particular electron device), which is directly related to the electric power

P (t), could be, in principle, related to other magnitudes such as thermal dissipation in

the leads. In this regard, we should be able to measure the discrepancies between the

standard I · V electric power and expressions (3.44) and (3.46).

In section 3.4.1 I will first deduce the expression of the electrical power and the energy

conservation law in a simple closed system. Such expressions will be useful later, in

subsection 3.4.2, in order to identify the proper expressions of the classical and quantum

electric power for open systems. Although along the whole section I will use a quantum

formulation of the problem in terms of Bohmian mechanics for a pure microstate of

the system, when taking the expectation values of the electric power I will assume a

summation over both the h- and g-uncertainties. Moreover, I will present the classical

limit of the most relevant results. Finally, in 3.4.3 I will use the measurement theory

discussed at the beginning of this chapter in order to recover the standard expectation

value of the electric power, I · V , for a single-particle classical system.

3.4.1 Expectation value of the energy in closed systems

Let me start with a closed system Hamiltonian such as the one described in (2.7). The

3-dimensional generalization of the quantum Hamilton-Jacobi equation, (A.36), deduced

in Appendix A reads

M∑

k=1

{(
~∇rk

S (~r1, ..., ~rM , t)
)2

2m
+

1

2

M∑
i=1
i6=k

eV (~rk, ~ri) + Qk (~r1, ..., ~rM , t)

}
+

+
∂S (~r1, ..., ~rM , t)

∂t
= 0. (3.28)

Taking the gradient, ~∇rj
, of (3.28) and using the hydrodynamic derivative d

dt
=∑M(t)

i=1 ~̇ri · ~∇ri
+ ∂

∂t
, we obtain the quantum analogous of the Newton’s second law for

many-particle systems

m̈~rj[t] = −1

2

M∑

k=1
k 6=j

e~∇jV (~rk[t], ~rj)−
M∑

k=1

~∇rj
Qk (~r1[t], ..., ~rj, ..., ~rM [t], t), (3.29)

where the coordinates ~rk[t] are now understood as quantum trajectories. In order to do

not complicate the notation, however, from now on I will omit the explicit apparition of
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[t].

The first term on the right side of (3.29) is just the Lorentz force in absence of

magnetic fields. The second term represents the quantum force (the reader is referred

to Appendix A for a brief discussion on its significance). Except for the quantum force,

which is the ultimate source of quantum phenomena, equation (3.29) is identical to the

classical Newton’s second law for the j-th particle.

Taking now the product of (3.29) and~̇rj, and then summing over all j− th terms, we

finally find:

P (t) =
M∑

j=1

d

dt

(
1

2
ṁ~rj

2 + Qj (~r1, ..., ~rM , t)

)
= −1

2

M∑
j=1

M∑

k=1
k 6=j

ė~rj
~∇rj

V (~rk, ~rj)+

+
M∑

j=1

∂Qj (~r1, ..., ~rM , t)

∂t
. (3.30)

The term in parenthesis on the left hand of (3.30) is the total quantum kinetic en-

ergy, K, (the many-particle generalization of expression A.32), i.e. K =
∑N(t)

j=1 Kj =
∑N(t)

j=1

(
1
2
ṁ~r2

j + Qj

)
. Then, expression (3.30) can be identified with the electric power,

if we realize that it leads to the energy conservation law. In order to see it, let me use

again the hydrodynamic derivative to rearrange equation (3.30) and write

M∑
j=1

d

dt

(
1

2
ṁ~r2

j +
M∑

k=1
k 6=j

eV (~rk, ~rj) + Qj (~r1, ..., ~rM , t)

)
=

M∑
j=1

∂Qj (~r1, ..., ~rM , t)

∂t
. (3.31)

Since we are dealing with a closed system, it can be demonstrate that the expectation

value of
∂Qj

∂t
vanishes [135]:

〈
∂Qj

∂t

〉
=

+∞∫

−∞

d3rR2 ∂

∂t

(
~∇2

rj
R

R

)

=

+∞∫

−∞

d3r

(
R~∇2

rj

∂R

∂t
− ∂R

∂t
~∇2

rj
R

)

=

+∞∫

−∞

d3r~∇rj

(
R~∇rj

∂R

∂t
− ∂R

∂t
~∇rj

R

)

=

+∞∫

−∞

d2r

(
R~∇rj

∂R

∂t
− ∂R

∂t
~∇rj

R

)

= 0, (3.32)
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where in the last equality I have used the boundary condition ~r2R → 0 as ~r →∞.

Therefore, from (3.31) and (3.32) we can identify the total energy of the system, ε(t),

with

ε(t) =
M∑

j=1

(
1

2
ṁ~r2

j +
M∑

k=1
k 6=j

eV (~rk, ~rj) + Qj (~r1, ..., ~rM , t)

)
. (3.33)

Thus, the conservation law for the total energy of our closed system in terms of Bohmian

mechanics reads

〈
dε(t)

dt

〉
=

M∑
j=1

〈
d

dt

(
1

2
ṁ~r2

j +
M∑

k=1
k 6=j

eV (~rk, ~rj) + Qj (~r1, ..., ~rM , t)

)〉
= 0. (3.34)

The last term on the right hand of equation (3.30) can be interpreted as the quantum

deviation from the classical electrical power, and from (3.32) we can conclude that it

is both positive and negative. In other words, the system borrows energy or gives up

energy per unit time to an unspecified source or sink, which is sometimes identified as the

quantum field. The previous demonstration constitutes the generalization of the Donald

H. Kobe’s result presented for a single-particle system in Ref. [135].

From (3.34), if we let Q → 0 we recover the energy conservation law for classical

closed systems, i.e.

〈
dεclass

dt

〉
=

M∑
j=1

〈
d

dt

(
1

2
ṁ~r2

j +
M∑

k=1
k 6=j

eV (~rk, ~rj)

)〉
= 0. (3.35)

3.4.2 Expectation value of the energy and electric power in

open systems

Let me now show what happens with the energy and the electric power when we open

the previous system. Let me first recall the many-particle Schrödinger equation defined

in equation 2.67, i.e.

i~
∂Φ(~r1, .., ~rN(t), t)

∂t
=

{
N(t)∑

k=1

− ~2

2 ·m∇
2
~rk

+ U(~r1, .., ~rN(t), t)

}
· Φ(~r1, .., ~rN(t), t) (3.36)

where

U(~r1, .., ~rN(t), t) =

N(t)∑

k=1

{
e ·Wk(~r1, .., ~rN(t), t)− 1

2

N(t)∑
j=1
j 6=k

e · V (~rk, ~rj)

}
. (3.37)
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From (3.37), it can be deduced the next many-particle quantum Hamilton-Jacobi equa-

tion:

N(t)∑

k=1

{(
~∇rk

S(~r1, .., ~rN(t), t)
)2

2mk

+ U(~r1, .., ~rN(t), t) + Qk (~r1, ..., ~rM , t)

}
+

+
∂S(~r1, .., ~rN(t), t)

∂t
= 0. (3.38)

As in the previous subsection, taking the gradient, ~∇rj
, of expression (3.38) and using

the hydrodynamic derivative, we obtain the quantum analogous of the Newton’s second

law for many-particle systems, but now for open systems:

m̈~rj = −~∇jU(~r1, .., ~rN(t), t)−
N(t)∑

k=1

(
~∇rj

Qk(~r1, .., ~rN(t), t)
)
. (3.39)

We can now rewrite (3.39) as

m̈~rj = −e~∇rj
Wj(~r1, .., ~rN(t), t)−

N(t)∑

k=1

(
~∇rj

Qk(~r1, .., ~rN(t), t)
)
, (3.40)

where I have omitted the second term on the right side of equation (3.37) using the

same argument discussed in reference to equation (2.70). Except for the quantum force,

equation (3.40) is again the classical Newton’s second law. Taking now the product of

(3.40) and~̇rj and summing over the N(t) particles conforming the open system, we find

N(t)∑
j=1

d

dt

(
1

2
ṁ~r2

j

)
= −

N(t)∑
j=1

ė~rj
~∇rj

Wj(~r1, .., ~rN(t), t)−
N(t)∑

k=1

N(t)∑
j=1

~̇rj
~∇rj

Qk(~r1, .., ~rN(t), t), (3.41)

If we use once more the hydrodynamic derivative we can rearrange expression (3.41) to

finally read

d

dt

N(t)∑
j=1

{
1

2
ṁ~r2

j + Qj(~r1, .., ~rN(t), t)

}
=

N(t)∑
j=1

(
− ė~rj

~∇rj
Wj(~r1, .., ~rN(t), t)+

+
∂Qj(~r1, .., ~rN(t), t)

∂t

)
.

(3.42)

The term in parenthesis on the left hand of (3.42) is again the total quantum kinetic

energy, K. Therefore, we can identify the right hand of (3.42) as the quantum power,
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P (t), i.e.

P (t) =

N(t)∑
j=1

d

dt
Kj =

N(t)∑
j=1

(
−ė~rj

~∇rj
Wj(~r1, .., ~rN(t), t) +

∂Qj(~r1, .., ~rN(t), t)

∂t

)
. (3.43)

Taking the expectation value of (3.43) we find:

〈P 〉 =

N(t)∑
j=1

〈
d

dt
Kj

〉
=

N(t)∑
j=1

〈
−ė~rj

~∇rj
Wj(~r1, .., ~rN(t), t) +

∂Qj(~r1, .., ~rN(t), t)

∂t

〉
. (3.44)

Contrarily to the previous closed case, now the expectation value of the time derivative

of the quantum force,
∂Qj

∂t
, does not vanish:

〈
∂Qj

∂t

〉
=

∫

Ω

d3rR2 ∂

∂t

( ~∇2
rj

R

R

)

=

+∞∫

−∞

d2r

(
R~∇rj

∂R

∂t
− ∂R

∂t
~∇rj

R

)

6= 0, (3.45)

where Ω is the volume of the active region (see figure 2.3.1). Since we are dealing now

with an open system, we can not use anymore the boundary condition ~r2R → 0 as ~r →∞
for the two opened surfaces.

We can probably better recognize the classical limit of expression (3.44) letting Q → 0:

〈Pclass(t)〉 =

N(t)∑
j=1

〈
d

dt

(
1

2
ṁ~r2

j

)〉
=

N(t)∑
j=1

〈(
−ė~rj

~∇rj
Wj(~r1, .., ~rN(t), t)

)〉
=

=

N(t)∑
j=1

〈
~vj · ~Fj

〉
, (3.46)

where ~Fj = −e ~Ej is the Lorentz force in absence of magnetic fields. As expected, the

many-particle classical limit of the electric power is nothing more but the sum over all

electrons of the product of their velocities and their correspondent electrostatic forces.
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3.4.3 Computing the classical single-particle limit: Recovering

the standard classical P = I · V expression

We have still not recovered the standard expression I ·V , neither for classical nor quantum

open systems. In what follows, I will demonstrate that the classical expression (3.46) leads

to the standard prediction of power consumption when the single-particle limit is taken.

From expression (3.46) it is easy to realize that if we approximate the scalar potential

as

Wj

(
~r1, ..., ~rN(t), t

) → W (~rj) , (3.47)

that is taking the single-particle limit, then d
dt

W (~rj) = ė~rj
~∇jW (~rj). In such a particular

case, we can express the expected value of equation (3.46) for a mixed microstate as

〈Pclass(t)〉 =

N(t)∑
j=1

〈
d

dt
Kj

〉
=

N(t)∑
j=1

〈
e

d

dt
Wj

(
~r1, ..., ~rN(t), t

)〉
. (3.48)

Expression (3.48) evidences that the total energy of every single electron is conserved for

single-particle systems.

If the previous process is ergodic, then we can convert this ensemble average into a

time average and the expectation of the single-particle classical power can be computed

from:

〈P (t)〉 = lim
T→∞

1

T

+T/2∫

−T/2

N(t)∑
j=1

e
d

dt
Wj

(
~r1, ..., ~rN(t), t

)
(~rj (t)) · dt. (3.49)

Expression (3.49) can be rewritten as

〈P 〉 = lim
t→∞

e

T

+T/2∫

−T/2

{
d

dt
W1 (~r1 (t)) · θ (t1o, t1f ) + ... +

d

dt
WÑ (~rÑ (t)) · θ (

tÑo, tÑf

)} · dt

(3.50)

where I have defined

θ (t; tio, tif ) =

{
0 tio ≤ t ≤ tif

1 otherwise

}
(3.51)

In (3.51), Ñ is the total number of electrons that have entered the volume Ω from time

t = 0 until t → ∞. Assume now the open system subject to an applied voltage (the

channel of an electron device for instance). Then, it can be easily argued that only those

electrons crossing the volume Ω, from one opened surface to the other, will contribute to
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Figure 3.4.1: Schematic representation of the open volume Ω = Lx · Ly · Lz subject to an
applied bias. Only two boundary surfaces, S1 and S4, corresponding to the drain and source
respectively, are opened to electron flow. For single-particle classical systems the energy of
every single electron is conserved and the energy gained or loosed when traversing the open
region equals ±e · Vapplied.

the integral in (3.50) with exactly the amount

lim
T→∞

1

T

+T/2∫

−T/2

dt
d

dt
Wi (~ri (t)) · θ (tio, tif ) = eWi (~ri (tif ))− eWi (~ri (tio)) = ±e · Vapplied,

(3.52)

where the sign of the contribution depends on the direction electrons crosse the volume

and the polarity of the applied voltage. From (3.52) and (3.50) we can finally conclude

that the expectation value of the classical electric power in the single-particle limit reduces

to

〈P 〉 = e

(
ÑSD

T
− ÑDSq

T

)
· Vapplied = 〈I〉 · Vapplied, (3.53)

where ÑSD is the total number of electrons that have traversed the active region from

source to drain, and ÑDS is the total number of electrons that have traversed the active

region from drain to source.
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Chapter 4

Application to the simulation of

electron devices

Up to now I have been mainly focused on the theoretical aspects of our trajectory-based

classical and quantum approaches to electron transport. Chapters 2 and 3 constitute the

keystone pieces for the development of a versatile simulation tool capable of describing

electron transport including Coulomb correlations at a many-particle level. The aim of

this chapter is to present some examples of the capabilities of such a simulator to predict

certain relevant aspects of future nanoscale electron devices. Let me first summarize in

a few paragraphs the state-of-the of nanoelectronic devices.

4.1 Simulation models for state-of-the-art nanoelec-

tronic devices

For over four decades, microelectronics industry has been characterized by an exponential

growth of the performance of its products [72, 136]. On one hand, the level of integra-

tion has increased (Moore’s law), as well as the switching velocity and functionality of

integrated circuits. On the other hand, power consumption and cost per operation has

decreased. Most of these developments have arisen as a direct consequence of the ability

of the electronics industry to further reduce the size of conventional MOSFET. How-

ever, there is nowadays a broad consensus that the geometric scaling of MOSFET is not

enough to provide the expected performance gain of future electronic devices [72, 136].

Given this, the scientific community has identified the “More Moore” domain, which

looks for avenues to evolve traditional CMOS devices by means of a tradeoff between

the traditional miniaturizing and the introduction of new technological solutions (high-k

dielectric, multiple gate transistors, stressed silicon, metal gates, etc.), known as “equiv-

alent scaling” [72]. There is a wide agreement that these are currently the best strategies

for the electronics industry in the 2007-2022 period predicted by the latest ITRS [72].

81
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However, the scientific community is searching also for completely different alternatives

to CMOS, since the long-term scaling required by Moore’s law (4 nm channel length

transistors predicted for 2022 [72]) will be technologically and economically unattain-

able. In this sense, the “Beyond CMOS” domain explores emerging electronic devices

whose operation is based on different physical principles than MOSFET, being able to

improve at least some aspects of the FET performance. For example, devices based on

the spin orientation control rather than the electron charge dynamics are being pursued

(“spintronics”), as well as devices based on tunnel transport such as “Resonant Tun-

neling Diodes” and “single-electron devices”. Building block materials different from

bulk Silicon are also under investigation, such as “silicon nanowires” or “Carbonbased

Nanoelectronics” (i.e. carbon nanotubes and graphene). It is currently not clear which

of these proposals may replace the FET. In any case, it is believed that in the near

future some of these emerging devices can coexist with nanometer CMOS structures by

using technologies not necessarily based on electronics (MEMS, sensors, etc), combined

with new architectures (quantum computing, bio-inspired, etc.) or new connections (3D,

“Silicon-on-Package”), what has come to be known as the “More than Moore” domain

[72, 136].

Here, our many-particle approaches to electron transport are applied to predict the

behavior of certain relevant aspects of future nanoscale electron devices. In particular, we

will study mainly two different electronic devices belonging to the transition between the

“More Moore” and “Beyond CMOS” domains whose relevance is widely acknowledged in

the international community. In one hand, as pointed out by subsequent ITRS predictions

[72]), a considerable effort is required to understand the real limitations of the “ultimate

Nanoscale MOSFETs”. In this chapter we examine multi-gate FETs with channel lengths

on the order of 10 nanometers or less by means of our many-particle classical simulator to

explore the dynamic performance where the correlations are more relevant. Our results

show, for example, that fluctuations in current can generate “BIT-errors” or intolerable

“Signal-to-noise” ratios [70], or that the study of discrete doping induced fluctuations ne-

glecting the time-dependent Coulomb correlations among (transport) electrons can lead

to misleading predictions [68], or that the conventional single-particle I · V definition of

the electric power can ultimately induce not negligible errors when computing the ener-

getic consumption of aggressively scaled MOSFETs [69]. On the other hand, nowadays

there is a revival of the interest in Resonant Tunneling Diodes, the goal not being the

substitution of the MOSFET in general applications, but their use as devices that may

have some niche applications of interest (such as oscillators, frequency multipliers, etc.)

because their use can imply a dramatic reduction of circuit complexity when compared

to the traditional CMOS implementation. Our quantum simulator provides a unique

tool to describe rigorously these Resonant Tunneling devices, and its predictions shows
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important divergences with respect to those of mean-field approaches [65, 66].

In summary, in this chapter, the importance of accounting for strongly-correlate phe-

nomena is demonstrated when predicting several macroscopic and microscopic charac-

teristics, such as the mean current, electric power consumption, electron transit times or

current and voltage fluctuations, for two particularly relevant nanoelectronic devices.
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4.2 Many-particle transport in the channel of quan-

tum wire DG-FETs with charged atomistic im-

purities

Differences in number and the position of dopant atoms in Sub-10nm channel devices will

produce important variations on the devices’ microscopic behavior, and consequently, the

variability of macroscopic parameters such as drive current or threshold voltage will in-

crease. This particular phenomenon is known as discrete dopant induced fluctuations,

and constitutes one of the most reported causes of variations in electron devices char-

acteristics (coming from the atomistic nature of mater). In this work we highlight the

importance of accurately accounting for (time-dependent) Coulomb correlations among

(transport) electrons in the analysis of discrete doping induced fluctuations. In particu-

lar, we study the effect of single ionized dopants on the performance of a quantum wire

double-gate FET, mainly when its lateral dimensions approach the effective cross sec-

tion of the charged impurities. We reveal the significant impact of the sign and position

of the impurity along the transistor channel on the on-current, the threshold voltage,

the distribution of the current in the channel cross-section, the transmission probabili-

ties and the distribution of transit times. We find that neglecting the (time-dependent)

Coulomb correlations among (transport) electrons can lead to misleading predictions of

the previous results.

G. Albareda, X. Saura, X. Oriols, and J. Suné, “Many-particle transport in

the channel of quantum wire DG-FETs with charged atomistic impurities”,

Accepted for publication in J. Appl. Phys.

Figure 4.2.1: Spatial distribution of the transit times along the y direction (centred in z) when
a negatively charged impurity is placed at different places of the channel.
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4.3 Electric power in nanoscale electron devices with

full coulomb interaction

Power consumption is one of the main drawbacks when scaling down any new technology.

In the last few years, the electronic development is being driven not only by the desire of

improving circuit density and speed but also of reducing power consumption. The ITRS

has identified this last constraint as one of the top three overall challenges for the next

15 years. In this sense, accuracy is a mandatory requirement when predicting electric

power in the active region of a MOS transistor because the results of the single transis-

tor are then extrapolated to the large number of transistors in present-day CPUs. The

conventional single-particle I·V definition of the electric power is compared here with the

many-particle formulation presented in chapter 3 for classical 3D, 2D and 1D double-gate

MOSFETs. The results computed with our many-particle approach show not-negligible

discrepancies when compared with the conventional definition of electric power. Such

small discrepancies become very important when the single-transistor power is multi-

plied by the huge number of transistors present in state-of-the-art integrated circuits.

G. Albareda, A. Alarcón and X. Oriols, “Electric power in nanoscale elec-

tron devices with full coulomb interaction”, Int. J. Numer. Model. DOI:

10.1002/jnm.748 (2010).
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Figure 4.3.1: Time evolution of the power consumption in the 1D DG-FET, (a), 2D DG-FET,
(b), and 3D DG-FET, (c), for the two computational methods at Vdrain=1V and Vgate=0.05V
in (a) and (b), and Vgate=0V in (c). Dashed line refers to the many-electrons method and
solid line refers to the mean-field method.
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4.4 Intrinsic noise in aggressively scaled DG-FETs

The ITRS predicts for the near future the introduction of nanoscale field-effect transistors

with channel lengths below 30 nm, including novel structures with two, three or even four

gates provided in order to improve the gate control over the sourcedrain conductance.

The advantages of these nanoscale FETs in overcoming the physical limits of traditional

FETs are clearly established in terms of size, speed and power consumption. However,

few studies deal with the noise performance of these aggressively scaled FETs. This is

the main goal of this work. Here, an study of the effect of the intrinsic (thermal and shot)

noise of aggressively scaled (3D and 1D) FETs on the performance of an analog amplifier

and a digital inverter is carried out by means of our many-particle approach. The numer-

ical data indicate important drawbacks in the noise performance of aggressively scaled

FETs that could invalidate roadmap projections as regards analog and digital applica-

tions. In particular it is shown that smaller devices produce a smaller average current

and a larger Fano factor, leading to a signal-to-noise (S/N) degradation. Moreover, the

increase of the clock frequency and reduction of the FET lateral dimensions result in

a drastic increase of the Bit-Error-Rate, mainly because smaller devices (with smaller

capacitances) are more sensitive to electrostatics.

G. Albareda, D. Jimenez and X. Oriols, “Intrinsic noise in aggressively scaled

DG-FETs”, J. Stat. Mech. (2009), P01044.
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4.5 Semi-classical simulation of a N+NN+ structure

with time-dependent boundary conditions includ-

ing lead-sample Coulomb correlations

In this manuscript, we consider an N+NN+ resistor with two different simulation boxes.

First, a large simulation box (Lx(LB) = 42nm), that includes the leads and reservoirs

(N+ region) plus the sample (N region). Second, a smaller simulation box, (Lx(SB) =

8nm), that only includes the sample (N region) plus a small part of the leads. It is

shown that our BC (described in section 2.3) provides an excellent description of the

coulomb coupling between the sample and the leads, even at (far from equilibrium) high

bias conditions for classical systems. The (reservoir plus lead) resistance obtained from

a LB simulation box is practically identical to that obtained from a SB simulation. The

comparison of the current voltage-characteristic are discussed in detail. We do also show

numerically the enormous difficulties that the standard BC, applied to small simulation

boxes that exclude the leads, have when trying to reproduce the previous set of results

obtained with our algorithm. The ultimate reason why none of the standard BC types

are able to produce reasonable results is because they do not achieve the “overall charge

neutrality” requirement.

G. Albareda, H. López, X. Cartoixà, J. Suné, and X. Oriols, “Time-dependent

boundary conditions with lead-sample Coulomb correlations: Application to

classical and quantum nanoscale electron device simulators”, Accepted for

publication in Phys. Rev. B.
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4.6 Quantum simulation of a RTD structure with

time-dependent boundary conditions including

lead-sample Coulomb correlations

Here, we provide an example of the implementation of our BC algorithm into a Resonant

Tunneling Diode. In order to emphasize the relevance of taking into account the Coulomb

correlations among the active region and the leads, we compare the results obtained with

our BC model and those obtained through standard Dirichlet external bias at the borders

of the simulation box. We emphasize the ability of our boundary conditions algorithm

to assure overall charge neutrality in simulation boxes much smaller than the total lead-

sample-lead length. The results are compared with those obtained with standard fixed

bias boundary conditions showing relevant discrepancies. In the results of the RTD with

our BC algorithm, we can guarantee that the profile of the charge density along the whole

device (the reservoirs, the leads and the sample) is compatible with the requirement of

“overall charge neutrality”. In addition, we can also guarantee that the profiles of the

electric field and scalar potential are self-consistent with the profile of the charge density.

Even more, the requirement of “overall charge neutrality” is achieved in time intervals

related with the relaxation dielectric time.

G. Albareda, H. López, X. Cartoixà, J. Suné, and X. Oriols, “Time-dependent

boundary conditions with lead-sample Coulomb correlations: Application to

classical and quantum nanoscale electron device simulators”, Accepted for

publication in Phys. Rev. B.
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4.7 Many-particle semi-classical computation of the

I-V characteristics of a DG-FET

We use the classical solution of the many-particle Hamiltonian to provide a full simula-

tion for a nanoscale DGFET. The classical many-electron algorithm is compared with the

classical mean-field one. It is shown that when the FET remains under the subthreshold

region, the results are quite similar for both methods. However, interestingly, the average

current of the FET system in the subthreshold region predicted by the many-electron

algorithm is slightly larger than the result obtained by the mean-field approximation. In

other words, the mean-field results remain in the subthreshold region, while the many-

electron results show a DG-FET channel partially opened. In any case, the most im-

portant differences occur for higher gate voltages. The number of electrons inside the

channel tends to be identical within both methods. However, the average current that

is sensible to electron dynamics is higher with the many-electron method than with the

mean-field approximation because fewer electrons are reflected in the former (i.e., there

are no electrons reflected by its own charge). For the highest gate voltages, equal results

for the mean current are obtained for both methods.

G. Albareda, J. Suné and X. Oriols, “Many-particle Hamiltonian for open

systems with full Coulomb interaction: Application to classical and quantum

time-dependent simulations of nanoscale electron devices”, Phys. Rev. B 79,

075315 (2009).
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4.8 Many-particle quantum computation of the I-V

characteristics of a RTD

In this manuscript, we provide a numerical example of the solution of the quantum

many-particle Hamiltonian for an ensemble of electrons in a RTD. We again compare

our many-electron method with the mean-field approximation. In the resonant region,

the correct consideration of the electron-electron interaction is very relevant because the

quantum transport is very sensible to the quantum well electrostatics. The potential

profile determines the shape of the quantum well and, therefore, the resonant energies.

When a “mean-field” electron tries to traverse the “empty” double barrier structure, it

“feels” a perturbation in the quantum well due to its own charge implying an increase

in the resonant energy and the possibility of being finally reflected by its own charge. In

other words, the “mean-field” electron can be Coulomb blockaded by itself. Our many-

electron algorithm is free from this pathological behavior. This important difference

explains the spurious reduction in the current with the mean-field method at resonance.

It also explains the movement of the position of the resonant voltage (i.e., the voltage at

the maximum current).

G. Albareda, J. Suné and X. Oriols, “Many-particle Hamiltonian for open

systems with full Coulomb interaction: Application to classical and quantum

time-dependent simulations of nanoscale electron devices”, Phys. Rev. B 79,

075315 (2009).
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Chapter 5

Conclusions

In this dissertation I have presented both a classical and a quantum trajectory-based

approach to electron transport at the nanoscale without assuming any mean-field or per-

turbative approximation to describe the Coulomb interaction among transport electrons.

In chapter 1, I have presented an introductory motivation for the development of an

electron transport simulator capable of accurately describing electron-electron Coulomb

correlations beyond standard mean-field approaches. I have emphasized the essentially

many-body and statistical characters of electron transport at the nanoscale. Due to

the huge number of variables involved in a whole closed system, we are obliged to re-

strict our study to a limited number of degrees of freedom within a reduced region of

space. During the process of reduction of degrees of freedom, most approaches to electron

transport subjugate the role of the Coulomb correlations to different kinds of mean-field

approximations. However, it is known that a very reduced number of carriers involved in

nanoscale active regions are determining the ultimate functionality of an electron device.

The Coulomb correlations among these carriers become, hence, critical in the establish-

ment of a particular value of any macroscopic magnitude such as electrical current. In

this regard, an improvement of the description of the electrostatic correlations among

electrons would not only contribute to provide more accurate predictions of the function-

ality of modern electron devices, but also to understand many-body phenomena taking

place at the nanoscale.

Chapter 2 constitutes the theoretical core of our classical and quantum approaches.

In section 2.2, a many-particle Hamiltonian for N(t) electrons inside an open system

has been developed. Departing from the exact Hamiltonian of a whole closed circuit,

after assuming a single-band effective mass approximation, we are capable of construct-

ing a many-particle Hamiltonian (2.38) built of a sum of N(t) electrostatic potentials,

Wk(~r1, ., ~rk, ., ~rN(t)), solutions of N(t) Poisson equations (2.39). We use the Poisson equa-

tion to define Wk(~r1, ., ~rk, ., ~rN(t)), instead of the Coulomb law, because the former is valid

for scenarios with (or without) a spatial-dependent permittivity. After that, in section

2.3, I have presented a novel boundary conditions algorithm describing the Coulomb

91
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correlations among electrons inside and outside the open system without having to en-

large the explicitly simulated degrees of freedom. Interestingly, we have seen that in

terms of analytical expressions describing the charge density, the electric field and the

scalar potential along the leads and reservoirs, we can transfer the assumptions about the

boundary conditions at the borders of a small simulation boxes into the simpler specifi-

cations of the boundary conditions deep inside the reservoirs. In particular, the two new

boundary conditions that we impose deep inside the reservoirs are, first, the electric field

tends to a drift value EC
S/D(t) → Edrift

S/D (t) (that we refer as Deep-drift-BC) and, second,

the scalar potentials deep inside the reservoir is fixed by the external bias V C
S (t) = 0 and

V C
D (t) = Vexternal(t). We have highlighted that our algorithm is able to discuss far from

equilibrium situations where depletion lengths in the leads have to be added to standard

screening. More over, the frequency-dependent correlations included into our boundary

conditions algorithm, due to sample-lead Coulomb interaction, allow us to investigate

the computation of (zero-frequency or high-frequency) current fluctuations beyond the

standard external zero impedance assumption (i.e. most of the computations of current

fluctuations in electron devices assume that the voltage applied in the simulation box

is a non-fluctuating quantity). Finally, it is shown that the boundary conditions (2.55)

are different for each term Wk(~r1, ., ~rk, ., ~rN(t)). In particular, these particle-dependent

boundary conditions of the electrostatic potentials provide the same electron dynamics

than the image charge method applied to electron transport. However, our many-particle

approach has the fundamental advantage that it can be directly implemented into 3D re-

alistic (classical or quantum) electron device simulators, while the image-charge method

is an excellent analytical approach applicable only to very simple systems (such as one

electron crossing an ideal infinite metallic surface). In section 2.4, I have present classi-

cal and quantum solutions of the many-particle open system Hamiltonian supplied with

our many-particle boundary conditions. Classically, the solution of this time-dependent

many-particle Hamiltonian is obtained via a coupled system of Newton-like equations

with a different electric field for each particle. This solution constitutes a generalization

of the Monte Carlo technique for the semi-classical single-particle Boltzmann distribution

towards many-particle systems. The quantum mechanical solution of the Hamiltonian has

been achieved using a time-dependent quantum (Bohm) trajectory algorithm described

in appendix A and in reference [67]. In this quantum (Bohm) trajectory algorithm,

the use of single-particle Schrödinger equations is exact to treat many-particle systems.

However, similarly to Density functional theories, the formidable simplification allowing

an exact treatment of the many-particle Coulomb interaction comes at price that some

terms appearing in the single-particle Schrödinger equation are in general unknown.

In chapter 3, I have discussed in detail which kind of information is accessible through

our classical and quantum approaches. The ultimate reason that determines the success
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of the different approaches to electron transport is their practical ability to improve our

capabilities of predicting measurable observables. Therefore, it is quite relevant to recog-

nize the amount of information extracted from our simulations that really has to do with

real experimental results. First, due to computational limitations, we have been forced to

reduce the degrees of freedom of our system. Since we can only describe electron dynam-

ics in a very reduced region of space, we are obliged to deal with an essentially statistical

environment. Therefore, although electron dynamics within the open system is deter-

ministically described by the many-particle Hamiltonian, our simulations are subject to

an stochastic injection of electrons and certain statistical parameters such as the effective

mass or the effective permittivity, and hence, our predictions can provide only statistical

information, i.e. expectation values of observable results (see section 3.1). Second, I have

emphasized the necessity of recognizing the real nature of the measurement process. In

all measurements, data can be always ascribed to a detector pointer described by the

positions of the particles conforming it. Hence, all detectors are ultimately position mea-

surements. Contrarily to this simple statement, “ortodox” quantum mechanics presents

several difficulties when discussing the measurement process (i.e. the problem of the wave

function collapse). The Bohmian formulation of quantum mechanics, on the other hand,

emphasizes that what we have ultimately “measured” is the position of the pointer, not

the observable itself (see section 3.2). Unfortunately, due again to computational lim-

itations, we can not simulate the degrees of freedom of the measuring apparatus, and

then we need another definition of an observable result based on the position of the sim-

ulated electron trajectories within our open system. In section 3.3 I have demonstrate

the existence of a relationship between the current on the ammeter and the simulated

trajectories. Such a relationship provides a rigorous definition of the expectation values

of the electrical current and noise in terms of the classical and quantum trajectories con-

stituting our open system. In particular, it is shown that if the process is ergodic and

stationary, then we can compute the expectation value of the current and its fluctuations

from time average expressions. Finally, in section 3.4 I have reformulated the expression

of the electric power for many-particle classical and quantum open systems with the aid

of the energy conservation law for closed systems. I have shown that only when taking

the single-particle limit of the classical expression for the electric power, we recover the

standard textbook formula I · V .

Finally, in chapter 4, our many-particle approaches to electron transport have been

applied to predict the behavior of some relevant aspects of future nanoscale electron de-

vices. After a brief introduction of the state-of-the-art of the nanoscale devices, I have

emphasized the importance of accounting for Coulomb correlated phenomena when pre-

dicting several macroscopic and microscopic characteristics such as the mean current,

electric power consumption, electron transit times or current and voltage fluctuations for
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two particular devices belonging to the frontier between the “More Moore” and “Beyond

CMOS” domains: a nanoscale double-gate transistor and a resonant-tunneling diode.

Results in this section are simply summarized, and the reader is referred to the corre-

spondent articles published by the author to discuss the details.
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theory of shot noise in ballistic n+ − i − n+ semiconductor structures: Relevance

of pauli and long-range coulomb correlations,” Physical Review B, vol. 66, no. 7,

pp. 075302, Aug 2002.

[36] T. Gonzalez and D. Pardo, “Physical models of ohmic contact for monte carlo

device simulation,” Solid-State Electronics, vol. 39, pp. 555, 1996.

[37] T. Gonzalez and D. Pardo, “Ensemble monte carlo with poisson solver for the

study of current fluctuations in homogeneous gaas structures,” Journal of Applied

Physics, vol. 73, pp. 7453, 1993.

[38] A. Reklaitis and L. Reggiani, “Monte carlo study of shot-noise suppression in

semiconductor heterostructure diodes,” Physical Review B, vol. 60, no. 16, pp.

11683, Oct 1999.

[39] T. Gonzalez, O. M Bulashenko, J. Mateos, D. Pardo, and L. Reggiani, “Effect of

long-range coulomb interaction on shot-noise suppression in ballistic transport,”

Physical Review B, vol. 56, pp. 6424, 1997.

[40] C. J. Wordelman and U. Ravaioli, “Integration of a particle-particle-particle-mesh

algorithm with the ensemble monte carlo method for the simulation of ultra-small

semiconductor devices,” Transaction on Electron Devices, IEEE, vol. 47, pp. 410,

2000.

[41] S. Babiker, A. Asenov, N. Cameron, and S. P. Beaumont, “Simple approach to

include external resistances in the monte carlo simulation of mesfets and hemts,”

Transactions on Electron Devices, IEEE, vol. 43, pp. 2032, 1996.

[42] C. Riddet, A. R. Brown, S. Roy, and A. Asenov, “Boundary conditions for density

gradient corrections in 3d monte carlo simulations,” Journal of Computational

Electronics, vol. 7, pp. 231, 2008.

[43] D. Reid, C. Millar, G. Roy, S. Roy, and A. Asenov, “Analysis of threshold volt-

age distribution due to random dopants: A 100.000 sample 3d simulation study,”

Transactions on Electron Devices, IEEE, vol. 56, pp. 2255, 2009.

[44] M. O. Vasell, J. Lee, and H. F. Lockwood, “Current density for cold cathode

discharge gap in rare gases,” Journal of Applied Physics, vol. 54, pp. 5206, 1983.

[45] B. Ricco and M. Ya. Azbel, “Physics of resonant tunneling. the one-dimensional

double-barrier case,” Physical Review B, vol. 29, no. 4, pp. 1970, Feb 1984.



BIBLIOGRAPHY 99

[46] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, “Theory of ballistic nano-

transistors,” Transaction on Electron Devices, IEEE, vol. 50, pp. 1853, 2003.

[47] G. C. Liang, A. W. Ghosh, M. Paulsson, and S. Datta, “Electrostatic potential

profiles of molecular conductors,” Physical Review B, vol. 69, no. 11, pp. 115302,

Mar 2004.

[48] M. J. McLennan, Y. Lee, and S. Datta, “Voltage drop in mesoscopic systems: A

numerical study using a quantum kinetic equation,” Physical Review B, vol. 43,

no. 17, pp. 13846, Jun 1991.

[49] R. Venugopal, S. Goasguen, S. Datta, and M. S. Lundstrom, “Quantum mechanical

analysis of channel access geometry and series resistance in nanoscale transistors,”

Journal of Applied Physics, vol. 95, pp. 292, 2004.

[50] R. Venugopal, Z. Ren, and M. S. Lundstrom, “Simulating quantum transport

in nanoscale mosfets: ballistic hole transport, subband engineering and boundary

conditions,” Transactions on Nanotechnology, IEEE, vol. 2, pp. 135, 2003.

[51] Z. Ren, R. Venugopal, S. Goasguen, S. Datta, and M.S. Lundstrom, “nanomos

2.5: A two-dimensional simulator for quantum transport in double-gate mosfets,”

Transactions on Electron Devices, vol. 50, pp. 1914, 2002.

[52] T. C. Au Yeung, Yu. Yabin, W. Z. Shangguan, and W. K. Chow, “Dynamic

response of a double barrier system: The effect of contacts,” Physical Review B,

vol. 68, no. 7, pp. 075316, Aug 2003.
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[54] M. Büttiker, H. Thomas, and A. Prtre, “Mesoscopic capacitors,” Physics Letters

A, vol. 180, no. 4-5, pp. 364, 1993.
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Appendix A

A Primer on Bohmian Mechanics

A.1 Introduction

Early twentieth-century experiments on the physics of very small-scale phenomena led

to the discovery of results that could not be explained with classical mechanics. It was

mandatory a new physical theory capable of interpreting these experiments from novel,

abstract and imaginative formalisms. In 1927, Louis de Broglie proposed an interpreta-

tion of these experiments based on a pilot field that guides particles towards non-classical

trajectories [110]. This was the origin of the pilot-wave formulation of quantum mechanics

(also referred as Bohmian mechanics to account for the posterior work of David Bohm

[109]). Simultaneously, Niels Bohr, Max Born and Werner Heisenberg, in the course

of their collaboration in Copenhagen, provided an original formulation of these experi-

ments without the need of trajectories [137, 138]. This was the origin of the so-called

Copenhagen interpretation of quantum phenomena. For historical reasons, the latter is

widely accepted as the orthodox formulation of quantum mechanics and it is the only

interpretation of quantum phenomena explained at most universities.

“Orthodox” quantum mechanics explored a route to understand quantum mechan-

ics where waves and particles were incompatible properties of the electrons, while the

Bohmian mechanics explored the compatible route.

1. .. Wave and particle: In this route, the wave and particle concepts are merged

on atomic dimensions by assuming that a pilot–wave solution of the Schrödinger

equation guides the electron trajectory. In the same manner as an electron is guided

by an electromagnetic field. This is what we call the Bohmian route.

2. .. Wave or particle?: The successful route to merge wave and particles concepts

was, however, the so called Copenhagen interpretation. Electrons are associated

basically to probability (amplitude) waves. The particle nature of the electron ap-

pears when we measure the position of the electron. In Bohr’s words, an object

cannot be both a wave and a particle at the same time; it must be either one or
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the other, depending upon the situation.

The ability of the wave and particle route to explain quantum phenomena is ex-

plained in a very didactic way in the double-slit experiment (see figure A.1.1). In this

particular example, a beam of electrons with low intensity (so that electrons are injected

one by one) travels through a barrier with two slits removed. If one puts a detector screen

on the other side, the pattern of detected particles shows interference fringes character-

istic of waves; however, the detector screen responds to particles. The system exhibits

behavior of both waves (interference patterns) and particles (dots on the screen). Let me

summarize what is going on in such an experiment with an enlightening quotation:

“Is it not clear from the smallness of the scintillation on the screen that we

have to do with a particle? And is it not clear, from the diffraction and

interference patterns, that the motion of the particle is directed by a wave?

De Broglie showed in detail how the motion of a particle, passing through just

one of two holes in screen, could be influenced by waves propagating through

both holes. And so influenced that the particle does not go where the waves

cancel out, but is attracted to where they cooperate. This idea seems to me

so natural and simple, to resolve the wave-particle dilemma in such a clear

and ordinary way, that it is a great mystery to me that it was so generally

ignored.” — John S. Bell (1987) [124].

Figure A.1.1: An ensemble of trajectories for the two-split experiment. Notice that while each
trajectory passes through but one of the slits, the wave passes through both, and the interference
profile that therefore develops in the wave generates a similar pattern in the trajectories guided
by this wave.
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A quite general way of introducing Bohmian mechanics is as the theory of motion

that resolves the dilemma of the appearance of both particle and wave properties in

a rather trivial manner. In Bohmian mechanics, particles are moving in a completely

deterministic —but non Newtonian— way, with the wave function guiding this motion.

This wave and particle route to quantum mechanics appears in contraposition to the

standard wave or particle interpretation.

Bohmian Mechanics for 1D single particle non-relativistic sys-

tems

We can start from the quantum wave equation (i.e the Schrodinger equation) and arrive

at a quantum Hamilton-Jacobi equation. That is, directly following the work presented

by Bohm in his original paper [109]. We write the quantum (complex) wavefucntion,

ψ(x, t) = ψr(x, t) + iψi(x, t), in a polar form:

R2(x, t) = ψ2
r(x, t) + ψ2

i (x, t) (A.1)

S(x, t) = ~ tan−1

(
ψi(x, t)

ψr(x, t)

)
(A.2)

We assume that the wavefunction is single-valued so that R(x, t) is also single-valued.

However, the definition of S(x, t) has some practical difficulties1. Similarly, the function

S(x, t) can not be computed when ψr(x, t) = 0 and ψi(x, t) = 0. However, then R(x, t) =

0 meaning that no electrons will reach this configuration point, so that we do not need

the compute the velocity.

In order to find the quantum Hamilton-Jacobi equation, we can introduce ψ(x, t) =

R(x, t)exp(iS(x, t)/~) into the Schrödinger equation

i~
∂ψ(x, t)

∂t
= − ~

2

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t). (A.3)

Then, the imaginary part of (A.3) gives a local conservation law:

∂R2(x, t)

∂t
+

∂

∂x

(
1

m

∂S(x, t)

∂x
R2(x, t)

)
= 0, (A.4)

1In principle, S(x, t) is a multi-valued function because the function tan−1(x) itself is a multi-valued
function. All action functions S′(x, t) = S(x, t) + 2πn with an arbitrary value of n give identical
wavefunction. In fact, they do also provide identical velocity because its spatial derivative is independent
on the constant 2πn. Therefore, such technical multi-valued value of the action function is not a practical
problem for computing the Bohmian trajectories from the wavefunction. If we want to use (A.1) and
(A.2) to reconstruct the wavefunction, then, the multi-valued problem can be eliminated by imposing
an (arbitrary) additional restriction on the definition of S.
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and the real part of (A.3) gives the following quantum Hamilton-Jacobi equation:

∂S(x, t)

∂t
+

1

2m

(
∂S(x, t)

∂x

)2

+ V (x, t) + Q(x, t) = 0, (A.5)

where the term Q(x, t) is the so-called quantum potential defined as:

Q(x, t) = − ~
2

2m

∂2R(x, t)/∂x2

R(x, t)
(A.6)

On one hand, from the quantum Hamilton-Jacobi equation (A.5) it can be defined

the velocities of an ensemble of quantum trajectories as ∂S(x, t)/∂x. From A.2, it can

be easily shown that this new expression of quantum velocity is:

v(x, t) =
∂S(x, t)

∂x
= ~

∂

∂x
tan−1

(
ψi(x, t)

ψr(x, t)

)

= ~
∂
∂x

ψi(x,t)
ψr(x,t)

1 +
(

ψi(x,t)
ψr(x,t)

)2

= ~
ψr(x, t)∂ψi(x,t)

∂x
− ψi(x, t)∂ψr(x,t)

∂x

ψ2
r(x, t) + ψ2

i (x, t)
(A.7)

Using now the following identity:

ψ(x, t)
∂ψ∗(x, t)

∂x
− ψ∗(x, t)

∂ψ(x, t)

∂x
=

2

i

(
ψr(x, t)

∂ψi(x, t)

∂x
− ψi(x, t)

∂ψr(x, t)

∂x

)
(A.8)

we obtain another common way of introducing the velocity of quantum trajectories in

terms of the probability current density J(x, t):

v(x, t) =
1

m

∂S(x, t)

∂x
=

J(x, t)

|ψ(x, t)|2 (A.9)

where J(x, t) is defined as

J(x, t) = i
~

2m

(
ψ(x, t)

∂ψ∗(x, t)

∂x
− ψ∗(x, t)

∂ψ(x, t)

∂x

)
(A.10)

On the other hand, since the quantity R(x, t) reproduces the wave function’s modulus,

|ψ(x, t)|, at time t0, from the local conservation law (A.4) it can be demonstrate that

a set of quantum trajectories with velocities ∂S(x, t)/∂x will reproduce at any time the

wave function ψ(x, t).
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The quantum Newton-like equation

Now, it can be interesting to compute the time-derivative of the Bohmian velocity

(A.9) to realize if some kind of quantum Newton-like equation can be recovered. In

particular, we compute:

m
d

dt
v(x[t], t) =

d

dt

[
∂S

∂x

]

x=x[t]

=

[
∂2S

∂x2

]

x=x[t]

· ẋ[t] +

[
∂

∂x

∂S

∂t

]

x=x[t]

, (A.11)

and rewrite (A.11) as:

m
d

dt
v(x[t], t) =

[
∂

∂x

(
1

2m

(
∂S

∂x

)2

+
∂S

∂t

)]

x=x[t]

. (A.12)

Finally, using (A.5) we conclude:

m
d

dt
v(x[t], t) =

[
− ∂

∂x
(V (x, t) + Q(x, t))

]

x=x[t]

. (A.13)

The quantum (complex) single-particle wave-function can be interpreted as an ensem-

ble of trajectories which are all solutions of the same single-particle experiment but with

different initial conditions. The quantum trajectories are not solutions of the classical

Newton law with a classical potential energy, but solutions of the a “quantum” Newton

law (A.13) where a quantum potential (that accounts for all non-classical effects) is added

to the classical potential.

A.2 The basic postulates

Here I present the basic postulates of Bohmian mechanics. Although I present them for

the single-particle case, they can be directly extended to many-particle systems. In gen-

eral, the postulates of any physical theory can be presented in different alternative (and

compatible) ways. For example, classical mechanics can be postulated from Newton’s

laws, from Lagrange’s equations, Feynman paths, etc. We follow here the standard pre-

sentation of Bohmian mechanics that provides the smaller number of ingredients needed

to present the theory.

First postulate: The dynamics of a single-particle in a quantum system comprises a

wavefunction ψ(x, t) plus a trajectory x[t] that moves continuously under the guid-

ance of the wave.
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a.- The wavefunction ψ(x, t) is a solution of the Schrdinger equation (A.3):

i~
∂ψ(x, t)

∂t
= − ~

2

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t)

b.- The trajectory x[t] is obtained by time-integrating the particle velocity v(t)

defined in expression (A.9):

v(x, t) =
J(x, t)

|ψ(x, t)|2
where |ψ(x, t)|2 = ψ(x, t)ψ∗(x, t) is the square modulus of the wavefunction and

J(x, t) is the mean value of the current density defined in (A.2)as:

J(x, t) = i
~

2m

(
ψ(x, t)

∂ψ∗(x, t)

∂x
− ψ∗(x, t)

∂ψ(x, t)

∂x

)

The initial position x[to] = xo has to be specified to completely determine the tra-

jectory x[t]. The initial velocity v[to] = vo is already determined by the knowledge

of ψ(xo, to).

Second postulate (Quantum equilibrium Hypothesis) An ensemble of N → ∞
trajectories, xi[t], associated to the same ψ(x, t) have to be generated by varying

the initial position xoi of each trajectory. In particular, the number of particles

of the ensemble that lies between x and x + dx at the initial time to have to be

selected proportionally to R2(x, to) = |ψ(x, to)|2. This condition can be written

mathematically as:

R2(x, to) = lim
N→∞

1

N

(
N∑

i=1

δ(x− xi[to])

)
for t = to (A.14)

where 1/N is a constant that determine the proportionality between the number

of particles and R2(x, to).

This second postulate has one very important corollary on how Bohmian mechanics

reproduce the predictions of the “orthodox” quantum theory. It can be seen that an

ensemble of Bohmian trajectories will reproduce R(x, t)2 = |ψ(x, t)|2 at any time.

The computation of the mean value of a measurement

In chapter 3 I have shown that the definition of the measurement process in terms of

Bohmian mechanics can be related with the position of the pointer of a measuring ap-
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paratus. In other words, in order to predict observable results, Bohmian mechanics does

not require the use of Hermitian operators and the wavefunction collapse as the orthodox

quantum mechanics does. Nonetheless, Bohmian mechanics can also express the expec-

tation value of an observable in terms of “local” observables which are directly deduced

from “orthodox” Hermitian operators. Indeed, this is a quite usual way of introducing

the Bohmian average of a measurement. Here, contrarily to chapter 3, I will follow this

path to introduce the Bohmain expectation value of an observable.

The exact outcome of a particular quantum experiment described by the pure wave-

function ψ(x, t) is uncertain. If we repeat a quantum experiment many times with exactly

the same wavefunction ψ(x, t), we will obtain different outcomes. The probabilistic in-

formation of the experiment can be treated to obtain the mean value. There are several

equivalent ways for computing the mean value of the magnitude that we are measuring.

We named this magnitude as the observable Â.

1. .. Mean value from the list of outcomes and its probabilities: After a large

number N of repetitions of the same experiment, we can elaborate a list of the

possible outcomes ai with its occurrence probability Pi. From these data we can

compute the mean value as:

< Â >ψ=
N∑

i=1

aiPi (A.15)

This is a standard (classical or a quantum) definition of the mean value.

2. .. Mean value from the wavefunction and the operator: According to the

orthodox quantum theory, an observable is associated to a hermitian operator Â

that describes the measurement process. Such operator determines the possible

outcomes ai and the eigenstates, ui, with Â|ui >= ai|ui >.

Therefore, Pi =< ψ|ui >< ui|ψ > so that we can write:

< Â >ψ=< ψ|
(

N∑
i=1

ai · |ui >< ui|
)
|ψ >=< ψ|Â|ψ > (A.16)

where we use ai|ui >= Â|ui > and we have identified expression
∑N

i=1 |ui >< ui|
as the identity because of the ortonormality of the eigenstates. Therefore, we can

compute the mean value of an ensemble of experiments from (A.16) by only knowing

the wavefunction and the operator (without knowing neither the eigenstates nor

the outcome values and its probabilities). The reader can be surprised because

we use a bra-ket notation in (A.16) instead of our wavefunction in the position
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representation. The bra-ket notiation provides a more compact notation. In any

case, expression (A.16), can be rewritten in the position representation by write

the hermitian operator Â in the position representation. Then, the mean value of

this operator over the wavefunction ψ(x, t) is given by:

< Â >ψ=

∫ ∞

−∞
ψ∗(x, t)Â

(
x,−i~

∂

∂x

)
ψ(x, t)dx (A.17)

3. .. Mean value from the Bohmian mechanics in the position representa-

tion We can always write the hermitian operator Â an the mean value < Â >ψ

in the position representation. Then, the mean value of this operator over the

wavefunction ψ(x, t) is given by:

< Â >ψ=

∫ ∞

−∞
ψ∗(x, t)Â

(
x,−i~

∂

∂x

)
ψ(x, t)dx (A.18)

Alternatively, the same mean value can be computed from Bohmian mechanics by

defining an spatial average of a “local” magnitude AB(x) weighted by R2(x, t):

< Â >ψ=

∫ ∞

−∞
R2(x, t)AB(x)dx (A.19)

In order to obtain the same value with (A.18) and (A.19), we can easily identify

the “local” mean value AB(x) as:

AB(x) = Real




[
ψ∗(x, t)Â

(
x,−i~ ∂

∂x

)
ψ(x, t)

ψ∗(x, t) · ψ(x, t)

]

ψ(x,t)=R(x,t)ei
S(x,t)
~


 , (A.20)

where we take only the real part, Real(), because we know that the mean value is

real, but expression (A.20) without Real() can take complex values. In any case,

it is clear that the integration of the imaginary part in (A.19) would give zero.

4. .. Mean value from the Bohmian trajectories For practical computations,

we will compute the mean value using (A.19) with a finite number of Bohmian

trajectories. Let us assume that we compute N trajectories x[t]. We will select

the initial position xoi of the Bohmian trajectories xi[to] according to the second

postulate. Therefore, we can use expression (A.14) to rewrite R2(x, t) in (A.19).

Finally, we obtain:

< Â >ψ= lim
N→∞

1

N

N∑
i=1

AB(xi[t]) (A.21)
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By construction, in the limit N →∞, the value of expression (A.21) is identical to

the value of (A.19).

Now, we provide several examples on how some common mean values are computed

from the orthodox quantum formalism and from Bohmian trajectories. First, we compute

the mean value of the position:

< x >ψ=

∫ ∞

−∞
ψ∗(x, t)xψ(x, t)dx, (A.22)

with xB(x) = x so that

< x >ψ=

∫ ∞

−∞
R2(x, t)xdx. (A.23)

Identically, the mean value of the momentum:

< p >ψ=

∫ ∞

−∞
ψ∗(x, t)(−i~

∂

∂x
)ψ(x, t)dx, (A.24)

with pB(x) = ∂S(x, t)/∂x is

< p >ψ=

∫ ∞

−∞
R2(x, t)

∂S(x, t)

∂x
dx. (A.25)

For the classical potential energy, we have:

< V >ψ=

∫ ∞

−∞
ψ∗(x, t)V (x, t)ψ(x, t)dx, (A.26)

with VB(x) = V (x, t) so that:

< V >ψ=

∫ ∞

−∞
R2(x, t)V (x, t)dx. (A.27)

Now, we compute the mean value of the kinetic energy:

< K >ψ=

∫ ∞

−∞
ψ∗(x, t)

(
− ~

2

2m

∂2

∂x

)
ψ(x, t)dx. (A.28)

It is important to notice that the local mean value of the kinetic energy takes into account

the Bohmian kinetic energy plus the quantum potential energy. In particular, KB(x) can

be obtained from the expression:

KB(x) = Real

(
−R(x, t)e−iS(x,t)/~ ~2

2m

(
∂
∂x

)2
R(x, t)eiS(x,t)/~

R2(x, t)

)
. (A.29)
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The real part2 of KB is:

KB =

(
∂S(x, t)

∂x

)2

+ Q(x, t), (A.30)

so that, finally, we obtain the Bohmian expression of the mean kinetic energy of the

ensemble of trajectories:

< K >ψ=

∫ ∞

−∞
R2(x, t)

((∂S(x, t)

∂x

)2
+ Q(x, t)

)
dx. (A.31)

Finally, we compute the mean value of the current density operator. First, let us notice

that probability density operator can be written as |x >< x| and its expected mean value

is < ψ|x >< x|ψ >= |ψ(x, t)|2 or, in the Bohmian language, < ψ|x >< x|ψ >= R2(x, t).

The (hermitian) current operator can be written as Ĵ = 1/(2m)(|x >< x|p̂− p̂|x >< x|).
It can be easily demonstrated that:

< J >ψ= J(x, t) = v(x, t)R2(x, t) = lim
N→∞

1

N

N∑
i=1

v(xi[t]) · δ(x− xi[t]) (A.32)

The average value of the current density depends on the position and it is equal to the

average Bohmian velocity multiplied by the square modulus of R. At a particular position

“x”, this current is just the sum of all particles that reside at this position x = xi[t] at

time t multiplied by their bohmian velocities v(xi[t]).

A.3 Bohmian Mechanics for 1D many-particle non-

relativistic systems

Most of our knowledge about the behavior of a quantum system has been understood for

a simple systems composed of just one particle (i.e. the so-called single-particle systems

discussed in the previous section). However, a single particle system is some kind of

idealization of real systems. A macroscopic object is composed of a very large number

of particles. This is true even for an atom which is composed of several protons and

neutrons, plus few electrons.

2It can be demonstrated quite easily that the imaginary part of (A.29) is equal to the spatial derivative
of the current that becomes zero when integrated over all space. We use that J(x = ±∞, t) = 0 which
is always valid for wavefunction that are normalized to unity, but it is not true for other types of
wavefunctions such as plane wave.
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Many-particle quantum Hamilton-Jacobi equation

We start by introducing the polar form of the many-particle wavefunction ψ(x1, .., xN , t) =

R(x1, .., xN , t)eiS(x1,..,xN ,t)/~ into the (non-relativistic) many-particle Schrödinger equation

i~
∂ψ(x1, ..., xN , t)

∂t
= − ~

2

2m

N∑
i=1

∂2ψ(x1, ..., xN , t)

∂x2
i

+V (x1, ..., xN , t)ψ(x1, ..., xN , t). (A.33)

Then, after a quite simple manipulation, one obtains from the imaginary part:

∂R2(x1, .., xN , t)

∂t
+

N∑
i=1

∂

∂xi

(
1

m

∂S(x1, .., xN , t)

∂xi

R2(x1, .., xN , t)

)
= 0, (A.34)

where we recognize the velocity of the xi particle as:

vi(t) =
1

m

∂S(x1, .., xN , t)

∂xi

, (A.35)

and from the real part:

∂S(x1, .., xN , t)

∂t
+

N∑
i=1

1

2m

∂2S(x1, .., xN , t)

∂x2
i

+ V (x1, .., xN , t) + Q(x1, .., xN , t) = 0 (A.36)

where we have defined the quantum potential as

Q(x1, .., xN , t) =
N∑

i=1

Qi(x1, .., xN , t) (A.37)

with

Qi(x1, .., xN , t) = − ~
2

2m

∂2R(x1, .., xN , t)/∂x2
i

R(x1, .., xN , t)
(A.38)

Let us emphasize the similarities and differences between the classical potential energy

V (x1, .., xN , t) and the quantum potential energy Q(x1, .., xN , t) that appears in (A.36).

In principle, both, provides correlations among electrons because the dynamics of the

xi particle depends on the positions of the rest of the particles. In general, the term

V (x1, .., xN , t) can produce classical correlations and the term Q(x1, .., xN , t) quantum

(or nonclassical) correlations which are generally refereed as entanglement. The impor-

tant point is that the classical correlations will be slower than light speed because the

dependence of all variables in V (x1, .., xN , t) imposes such restriction. For example, the

potential energy that determines the electromagnetic interaction among different parti-

cles takes into account the distance among the particles to assure that the influence of

one particle into the other is not faster than the light speed. However, such restriction
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is not present in the quantum potential that is directly defined from the wave-function

as expression (A.38), and therefore it does not vanish at large distances. Very far par-

ticles have an “instantaneous correlation”. In addition, let us notice that the quantum

potential obtained from (A.38) with R(x1, .., xN , t), or with a · R(x1, .., xN , t) under the

condition a → 0, is exactly the same. A typical example of this nonlocal characteristic

is the quantum entanglement [139].

Solution of the many-particle Schrd̈inger equation from a cou-

pled system of single-particle Schrodinger equations

As we have discussed, the main reason why the many-particle Scrödinger equation is

practically unsolvable is because it seeks for a unique solution within the whole con-

figuration space of all the particles x1, .., xi, .., xN , while the classical equations seeks

for one solution for each particle using a much smaller configuration space where all

other particles are assumed as “known” parameters {x1[t], ..., xi−1[t], xi, xi1[t], ..., xN [t]}.
The Newton solution of xi[t] just needs the spatial dependence of V (x1, ..., xN) on the

variable xi to make the derivative. The rest of spatial variables can be fixed to the

particle positions x1 = x1[t] (i.e. we do not need information on its spatial dependence

for computing xi[t]). The main idea behind the work developed in [67] is that any tra-

jectory xa[t] that is computed from the many-particle wave-function ψ(xa, ~xb, t), where

~xb[t] = x1[t], ..xa−1[t], xa+1[t], ..xN [t], can be alternatively computed from a much sim-

pler single-particle wave-function ψa(xa, t) = Ψ(xa, ~xb[t], t). It is quite trivial to realize

that this is true. By definition, the angle Sa(xa, t) of ψa(xa, t) is identical to the angle

S(xa, ~xb, t) of Ψ(xa, ~xb, t) when evaluated at xa, ~xb[t]. Therefore, since the velocity of the

trajectory xa[t] is computed from the spatial dependence of S(xa, ~xb, t) on xa when all

other positions are fixed at ~xb = ~xb[t], the same velocity will be obtained from the spatial

dependence of Sa(xa, t). Interestingly, ψa(xa, t) is a solution of single-particle (pseudo)

Schrodinger equation because it depends only on time t and position xa. Next, our effort

will be knowing which is such single-particle equation.

First of all, it is easily verifiable that any (single-valued) function ψa(xa, t) which has

well-defined (i) second order spatial derivative and (ii) first order temporal derivative,

can be obtained from a Schrodinger like equation when the following potential energy

W (xa, t) is used:

W (xa, t) =
i~∂ψa(xa,t)

∂t
+ ~2

2m
∂2ψa(xa,t)

∂2
xa

ψa(xa, t)
(A.39)

for ψa(xa, t) 6= 0, and W (xa, t) = 0 for ψa(xa, t) = 0. In fact, it would be interesting

to rewrite the expression of W (xa, t) in terms of the polar form of the wavefunction
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ψ(xa, t) = R(xa, t)e
iS(xa,t)/~. We obtain for the real part,

Re[W (xa, t)] = −
(

Ka(xa, t) + Qa(xa, t) +
∂S(xa, t)

∂xa

)
(A.40)

the Hamilton-Jacobi equation. However, we do also obtain Im[W (xa, t)] that accounts

for the “strange” wavefunctions that do not preserve its total norm:

Im[W (xa, t)] =
~

2R2
a(xa, t)

(
∂R2

a(xa, t)

∂t
− ∂

∂xa

(
R2

a(xa, t)

m

∂Sa(xa, t)

∂xa

))
(A.41)

It can be easily verified that Im[W (xa, t)] = 0 when the wavefunctions preserver the

norm. Finally, we are interested in rewriting this expressions in terms of the global

many-particle wave-function. Then, we realize that the total many-particle Schrödinger

equation can be written in terms of a coupled single-particle pseudo-Scrödinger equations:

i~
∂ψa(xa, t)

∂t
=

(
− ~

2

2m

∂2

∂2
xa

+ Ua(xa, ~xb[t], t) + Ga(xa, ~xb[t], t) + iJa(xa, ~xb[t], t)

)
ψa(xa, t),

(A.42)

where we have defined

Ga(~x, t) = Ub(~xb, t) +
N∑

k=1;k 6=a

(
Ka(~x, t) + Qa(~x, t)− ∂S(~x, t)

∂xk

vk(~x[t], t)

)
, (A.43)

and

Ja(~x, t) =
N∑

k=1;k 6=a

~
2R2(~x, t)

(
∂R2(~x, t)

∂xk

vk(~x[t], t)− ∂

∂xk

(
R2(~x, t)

m

∂S(~x, t)

∂xk

))
. (A.44)

In the previous equations we have defined ~x = {xa, ~xb}. In order to obtain this expres-

sions, one have to carefully evaluate:

∂S(xa, ~xb[t], t)

∂t
=

(
∂S(xa, ~xb, t)

∂t

)

~xb=~xb[t]

+
N∑

k=1

∂S(xa, ~xb[t], t)

∂xk

vk(~x[t], t), (A.45)

and use expression (A.35) evaluated at {xa, ~xb[t]}. Identically for ∂R2(xa, ~xb[t], t)/∂t with

expression (A.34).

It is interesting to understand what will be the solution ψa(xa, t) when the wave-

function is separable. Then, equation (A.5) is valid for each summand of the term of

Ga(xa, ~xb[t], t), so that it can be written as:
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Ga(xa, ~xb[t], t) = −
N∑

k=1;k 6=a

dSk(xk[t], t)

dt
. (A.46)

Then, a (real) time-dependent term (without any spatial dependence) appears in the

potential energy of expression (A.42). It can be easily demonstrated that such term

introduces a time-dependent term βa(t) into the phase of ψa(xa, t):

βa(t) = −
N∑

k=1;k 6=a

∫ t

to

dSk(xk[t
′], t′)

dt
)dt′ = −

N∑

k=1;k 6=a

Sk(xk[t
′], t′). (A.47)

Identically, equation (A.4) is valid for each term of Ja(xa, ~xb[t], t), so that it can be written

as:

Ja(xa, ~xb[t], t) = −
N∑

k=1;k 6=a

~
2

d

dt
ln

(
R2

k(xk[t])
)
. (A.48)

Using that ln(ab) = ln(a)+ln(b), then, we can obtain an αa(t) term multiplying the wave

function:

αa(t) = −~
∫ t

to

d

dt
ln

(
N∏

k=1;k 6=a

Rk(xk[t
′], t′)

)
dt′) = −~ ln

(
N∏

k=1;k 6=a

Rk(xk[t
′], t′)

)
. (A.49)

Finally, we obtain:

ψa(xa, t) = ψ1(x1[t], t)....ψa(xa, t).......ψN(xN [t], t), (A.50)

certainly, the expected result.

In the rest of this section, I explain how the previous formulation of the many-particle

Schrödinger equation is used in combination with our quantum approach to electron

transport. The procedure that I will explain here have similarities with the original work

of Kohn and Sham on the DFT [22]: the formidable simplification on the many-particle

computations comes at the price that some terms of the potential energy of the cor-

responding single-particle Schrödinger equations are unknown [the exchange-correlation

functional in the DFT and, here, the terms (A.43) and (A.44)].

I consider a system of N electrons with Coulomb interaction but without exchange

interaction. As mentioned, the solution of Eq. (A.42) needs educated guesses for the

terms (A.43) and (A.44). Since no exchange interaction is considered, the correlation be-

tween the xa electron and the rest is mainly contained in the term Ua(xa, ~xb[t], t). Thus,

we can assume a zero-order Taylor expansion of the terms (A.43) and (A.44) in the vari-

able xa around xa[t] to obtain Ga(xa, ~xb[t], t) ≈ Ga(xa[t], ~xb[t], t) and Ja(xa, ~xb[t], t) ≈
Ja(xa[t], ~xb[t], t) [67]. Then, the wave-function solution of (A.42) can be written as
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ψa(xa, t) ≈ ψ̃a(xa, t) · exp[αa(t)
~ − iβa(t)

~ ] where αa(t) =
∫ t

t0
Ja (xa[t

′], xb[t
′], t′) · dt′ + αa(t0)

and βa(t) =
∫ t

t0
Ga (xa[t

′], xb[t
′], t′) · dt′ + βa(t0). The wave function ψ̃a(xa, t) is the solu-

tion of Eq. (A.42) with Ua(xa, ~xb[t], t) = ua(xa, t). Since the velocity in (A.35) does not

depend on the terms αa(t) and βa(t), we do not have to compute them explicitly. Finally,

if we fix the initial many-particle wave function ψ(xa, ~xb, t0) = χ1(x1, t0) · · · χN(x1, t0)

as a product of single-particle wave functions. Then, the initial boundary condition for

solving ψ̃a(xa, t0) is just χa(xa, t0).
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Appendix B

Electron injection model for non

zero-external impedance systems

A time-dependent degenerate (i.e. taking into account Pauli the exclusion principle)

injection model for electron devices is presented here under the assumption that the

sample is part of a circuit with non zero external impedance (see figure B.0.1). In this

appendix, I will present a brief summary of such an injection model and its ability

to determine either the average value of the current or its time-dependent fluctuations

for non-zero external impedance systems and also its limit for zero external impedance

systems. There are well-know analytical expressions for the average current and its

fluctuations at zero frequency in either equilibrium or far from equilibrium situations,

when the zero-external impedance assumption is considered. We will reproduce those

expressions here as a particular case.

Figure B.0.1: Schematic description of a circuit with non-zero external impedance

123
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Electron injection probability

The rate and randomness of the injection of electrons into the sample can be modeled

through the following binomial probability P (E,N, τ) defined in Ref. [140]:

P (E, N, τ) =
Mτ !

N ! · (Mτ −N)!
fS/D(E)N

(
1− fS/D(E)

)Mτ−N
(B.1)

This expression defines the probability that N electrons with wave-vectors in the range

kx ∈ [kox, kox + ∆kx) are injected into the sample during the time interval τ . The

parameter Mτ is the number of attempts of injecting electrons during the previous time

interval τ , defined as a number that rounds the quotient τ/to to the nearest natural

number towards zero. The number of injected electrons can be N = 1, 2, .... ≤ Mτ . The

time t0 is the minimum temporal separation between the injection of two electrons into

the particular cell phase-space cell kx ∈ [kox, kox + ∆kx) and x ∈ [xo, xo + ∆x). For a

1D system, the value of t0 can be easily estimated. The number of electrons n1D in the

particular phase space cell ∆kx ·∆x is n1D = 2 ·∆kx ·∆x/(2π) where we consider a factor

2 for spin degeneracy [140]. These electrons have been injected into ∆x during the time

interval ∆t defined as the time needed for electrons with velocity vx = ∆x/∆t = ~ kx/mt

to travel a distance ∆x. Therefore, the minimum temporal separation, t0, between the

injection of two electrons into the previous particular cell is ∆t divided by the maximum

number n1D of electrons:

t0(kx)|1D =
∆t

n1D

=

(
1

π

~ kx

mt

∆kx

)−1

(B.2)

The practical application of such definition of t0 requires a mesh with a small step ∆kx

on all possible values of kx. Identically, for a 2D and 3D system, we obtain:

t0(y, kx, ky)|2D =
∆t

n2D

=

(
1

2 π2

~ kx

mt

∆y ∆kx ∆ky

)−1

(B.3)

and

t0(y, z, kx, ky, kz)|3D =
∆t

n3D

=

(
1

4 π3

~ kx

mt

∆y ∆z ∆kx ∆ky ∆kz

)−1

(B.4)

On the other hand, the function fs(E) that appears in (B.1) determines the proba-

bility that a state with kinetic energy E measured from the bottom of the conduction

band −q · VS(t) is occupied by an electron that will effectively enter into the simulation

box. In particular, we assume that such probabilities is determined by half of the Fermi

distribution:
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fS(E) =
1

1 + exp
(

E−F inj
S (t)+q·VS(t)

kB ·Θ

) for E = E(~k) with kx > 0 (B.5)

where the electron wave-vector ~k is related with the ”kinetic” energy by the appropriate

energy dispersion relationship E(~k). The term F inj
S (t) is defined here as the source

injecting energy level and it determines how to increase the rate of injection of electrons,

while respecting the Pauli restriction. This restriction implies that injecting two electrons

with identical velocity have to be injected with a temporal separations equal or larger

than the t0. In order to avoid confusion, we avoid the name electrochemical-potential

for such energy F inj
S (t) because (B.5) does not refer to all electrons, but only to those

with kx > 0. In addition, close to the active region the electron distribution for kx < 0

will be quite unpredictable (see insets of figure 18 in ref. [65]). We reserve the name

electrochemical-potential to the energy levels of the “thermalized” energy distribution

deep inside the reservoirs, at x = ∓LC . In other words, the parameter F inj
S (t) is a

parameter that control the rate of injection of electrons in the border of the simulation

box. Equivalently, the electrons injected from the drain have an energy distribution

determined by:

fD(E) =
1

1 + exp
(

E−F inj
D (t)+q·VD(t)

kB ·Θ

) for E = E(~k) with kx < 0 (B.6)

with F inj
D (t) the drain injecting energy level.

It is very instructive to understand the Binomial distribution of the injection process,

expression (B.1), as a consequence of the discreetness of the electron charge. For a

particular cell, at zero temperature, we inject an electron every interval of time t0. The

average current per cell is e/to. At room temperature, the average current is lower,

e · f(E)/to, because of the uncertainty in the occupation. However, it is not possible to

inject a fractional charge e · f(E) into the system at each interval of time t0 (i.e. the

electron charge is indivisible). Therefore, at each interval of time t0, either we inject the

full charge, e (if the state is occupied), or we do not inject charge (if the state is empty)

according to the probability f(E).

Test for zero external impedance

As a simple test of our injection model in the zero-external impedance limit, we compute

analytically the current and its fluctuations (i.e. the noise) for a one-subband ballistic

1D system. According to the zero external impedance, we assume that F inj
S/D(t) → EF

(where EF is the Fermi level) and that VS/D(t) → V ext
S/D, where V ext

S/D are the external

applied voltages in (B.5) and (B.6). We assume a transmittance equal to unity. For such
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conditions, the injection probability and the transmitting probability are identical and

there are well-known analytical results in the literature for both, average current and

noise [8, 11].

The average current 〈I〉 is an experimental measure of the charged transmitted

through the system during a long time interval. For our ballistic system, the charge

transmitted through the source is just the charge injected over the barrier. Therefore:

〈I〉 = lim
τ→∞

e
∑
E

EN [τ, E]

τ
(B.7)

An irrelevant negative sign (the current and the electron flow have opposite direction)

is omitted in (B.7). The average number EN [τ, E] of injected particles during the time

interval τ is computed from the probability P (E, N, τ):

EN [τ, E] =
N=∞∑
N=0

P (E,N, τ) ·N (B.8)

As we mentioned before, we divide the whole phase-space into cells with a small ∆kx,

so that all electrons in the cell have roughly the same energy. The average number of

injected particles with wave vector kx during the time τ can be computed from (B.8)

as EN [τ, E] = fS(E) · τ/to(kx) for each cell of the source injection. Previous expression

is just the mean value of the Binomial distribution (B.1) where fS(E) is defined by

expressions (B.5). From (B.7), the average current of each kx-phase-space cell can be

computed as < I >kx= e · fS(E)/to(kx). The sum over all phase-space cells with kx > 0,

< I >=
∑
kx

< I >kx , does exactly reproduce the Landauer average current. The drain

current is computed equivalently. The total current is the source component minus the

drain component:

< I >= 2e/h

∫ ∞

0

(fS(E)− fD(E)) · dE (B.9)

where we have used dE ≈ ~2kx · ∆kx/mt and 1/t0(kx) = ~ kx · dkx/(π · mt). This is

just expressions [49] and [47] in ref. [11] for a transmission coefficient equal to one. For

low temperature (i.e. f(E) = 1 for all injected electrons), we obtain the well-known

Landauer conductance G = 2e2/h.

For the ballistic devices, the one-side power spectral density of the current fluctuations

at zero (low) frequency can be also obtained from probability (B.1) as:

SI(0) = lim
τ→∞

2 · e2
∑
E

EN2 [τ, E]− (EN [τ, E])2

τ
, (B.10)
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where we defined EN2 [τ, E] as:

EN2 [τ, E] =
∑N=∞

N=0
P (E, N, τ) ·N2. (B.11)

For the binomial distribution of expression (B.1), we obtain EN2 [τ, E] − (EN [τ, E])2 =

fS(E) · (1− fS(E)) · τ/to(kx). Then, using (B.10), we found Skx
I (0) = 2 e2 · fS(E) ·

(1− fS(E)) /to(kx) for the source injection. Identical results are obtained for the drain

injection. Since there is no drain-source correlation in our simple ballistic model, the

total power is the sum of both. After integration over all energies, we obtain:

SI(0) = (4 e2/h)

∫ ∞

0

(fS(E) · (1− fS(E)) + fD(E) · (1− fD(E))) · dE (B.12)

This expression does exactly reproduce Büttiker results for a system with transmission

coefficient equal to one. See expression (61) in Ref. [8]. Expression (B.12) includes the

thermal and the shot noise (i.e. it is valid at equilibrium and far from equilibrium). Un-

der equilibrium conditions, the previous result reproduces the Nyquist-Johnson thermal

noise, as can be shown by introducing the identity −kBT ·∂f(E)/∂E = f(E) · (1− f(E))

into the previous result.

In conclusion, the (time-dependent) injection model discussed here correctly accounts

for the Pauli correlations amount electrons under the assumption that the active region

is part of a circuit with zero external impedance. In this case, the voltages applied to

the sample can be viewed as a fixed non-fluctuating quantity and the noise properties

are determined only by the Pauli correlations discussed above. In general, the sample

is a part of a larger circuit (with non-zero external impedances). Then, the current

fluctuations in the sample, implies voltage fluctuations in the leads [through the time-

dependence of VS(t) and VD(t) in (B.5) and (B.6)] that, in turn, implies fluctuations on

the injecting probabilities into the sample [through expression (B.1)] and the current in

the sample. The complicated correlations that appears between sample and leads shows

the importance of such time-dependent correlations to correctly achieve the “current

conservation” requirement.
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Appendix C

Classical and quantum expectation

values for mixed open systems

In this section I provide a formal (in contraposition to the practical discussion of sections

3.2.2 and 3.2.3) discussion of the expectation value of an observable A(t) for classical and

quantum mixed open systems.

Classical expectation values of mixed states in open

systems

Let me first reintroduce the concept of the many-particle distribution function (already

defined in expression (1.2)). That is f(~r1,k, ..., ~rW ′,k, t), i.e. the probability of finding

a carrier distribution with locations centered at (~r1,k, ..., ~rW ′,k, t) and time t, where the

subindex W ′ refers to the total number of variables conforming a whole closed circuit

plus the variables conforming the measuring apparatus.

Now, we know that, the many-particle distribution function, f , fulfills, by construc-

tion, the normalization relation

1 =
∞∑

k=1

f (~r1,k, ..., ~rp1, ..., ~rpN , ..., ~rW ′,k, t). (C.1)

We can extend the previous expression to the case of an open system subject to an

stochastic injection of electrons as

1 =
∞∑

k=1

∞∑

N(t)=1

f
(
~r1,k, ..., ~rN(t),k, t

)
, (C.2)

where now f(~r1,k, ..., ~rN(t),k, t) is defined as the probability of finding N(t) electrons within

the opened region with positions
{
~r1,k, ..., ~rN(t),k

}
at time t. Equation (C.2) emphasizes

129
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the fact that, since our knowledge on how the electrons are distributed outside the open

system is certainly statistical, our knowledge on how are distributed those inside be-

comes also unprecise. As I have already mentioned in chapter 3, such a transference of

uncertainty from the environment into the active region of an electron device is partially

introduced by the stochastic injection of electrons (see figure 3.1.1).

As discussed at the beginning of chapter 3, we can now relate an outcome ai of

the observable A at time t to the position of the pointer of the measuring apparatus

{~rp1,i[t], ..., ~rpN,i[t]}. Such a particular microstate of the pointer, however, can be identi-

fied, in general, to more than one microstate of the open system. For any particular num-

ber of electrons conforming the open system, N(t), the s microstates {~r1,k[t], ..., ~rN(t),k[t]},
with k = k1,i,N(t), ..., ks,i,N(t) (where the value of s depends, at the same time, on the

subindexes i and N(t)) are all giving rise exactly to the same outcome ai. Expression

(3.2) can then be written in terms of the many-particle distribution function of the open

system as

〈A (t)〉 =
∞∑
i=1

∞∑

N(t)=1

∑ks,i,N(t)

k=k1,i,N(t)

f ′A(~r1,k[t], ..., ~rN(t),k[t]) · f(~r1,k[t], ..., ~rN(t),k[t]). (C.3)

Comparing expressions (C.3) and (3.2), we realize that

P (ai, t) = P (~rp,i[t]) =
∞∑

N(t)=1

∑ks,i,N(t)

k=k1,i,N(t)

f(~r1,k[t], ..., ~rN(t),k[t]) (C.4)

is the probability of finding the outcome ai, when measuring A at time t, in terms of the

classical trajectories simulated within our open system.

In expression (C.3), it is implicit that, in principle, we can compute the expecta-

tion value of an observable without explicitly simulating the degrees of freedom of the

“pointer” of the measuring apparatus. Such an affirmation could seem a little bit tricky.

Indeed, although we can easily find an expression for the function of the pointer positions

fA (given directly by the functionality of the measuring apparatus), it is not obvious how

to find the function f ′A.

Quantum expectation values of mixed states in open

systems

Here, I will first discuss the quantum expectation of an observable by means of orthodox

quantum mechanics. Later, in contraposition, I will introduce the same concept in terms

of bohmian trajectories.
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The quantum expectation value of an observable result in orthodox quantum

mechanics

We can establish an analogy between the classical many-particle distribution function

introduced in (C.1) and the quantum many-particle density matrix, already introduced

in section 1.3, i.e.

ρ̂ =
∞∑

k=1

P (ϕk, t) |ϕk (t)〉 〈ϕk (t)|. (C.5)

In particular, expression (C.5) tells us that in orthodox quantum mechanics the definition

of a particular microstate of the system is no longer defined by the distribution of particles

in the phase-space configuration but by the wave functions ϕk(t), (i.e. {~r1,k, ..., ~rW ′,k, t} →
ϕk (t)).

Now, the expectation value of the operator Q̂ (~r1, ..., ~rW ′) = |~r1, ..., ~rW ′ ·〉 〈~r1, ..., ~r
′
W |

(where, again, the subindex W ′ refers to the total number of particles conforming the

whole closed circuit plus those of the measuring apparatus) can be defined in terms of

the density matrix as:

1 = tr
(
ρ̂ · Q̂ (~r1, ..., ~r

′
W )

)
=

∞∑

k=1

P (ϕk, t)

+∞∫

−∞

d3r1 · · · d3r′W |ϕk (~r1, ..., ~r
′
W , t)|2, (C.6)

where I have used the cyclic property of the trace [139]. Expression (C.6) can be un-

derstood as the quantum counterpart of the classical equality (C.1). However, while

we can establish a direct analogy between f (~r1,k, ..., ~rW ′,k, t) and P (ϕk, t), we have an

additional uncertainty with a pure quantum origin, |ϕk (~r1, ..., ~r
′
W , t)|2, that has not any

classical counterpart. Even if we could have total confidence on the definition of the

microstate occupied by the system, let me say ϕk (P (ϕj, t) is 0 for all unoccupied states

and 1 for the single occupied state k), then, contrarily to the classical case, we would

be still dealing with some amount of uncertainty coming from the wave nature of the

carriers, |ϕk (~r1, ..., ~r
′
W , t)|2. In other words, a pure density matrix contains an intrinsic

uncertainty described by the square modulus of the wave function, i.e.

1 =
(
ρ̂pureQ̂ (~r1, ..., ~r

′
W )

)
=

+∞∫

−∞

d3r1 · · · d3r′W |ϕ (~r1, ..., ~r
′
W , t)|2 (C.7)

We can now extend expression (C.6) to the case of an open system subject to an
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stochastic injection of electrons as

1 = tr
(
ρ̂ · Q̂ (~r, t)

)
=

∞∑

k=1

∞∑

N(t)=1

P
(
ϕN(t),k, t

) +∞∫

−∞

d3r1 · · · d3rN(t)

∣∣ϕN(t),k

(
~r1, ..., ~rN(t), t

)∣∣2 ,

(C.8)

where ϕN(t),k(t) is now the k-th many-particle wave function describing N(t) electrons at

time t1. Although P
(
ϕN(t),k, t

)
has a clear analogy in classical systems f(~r1,k, ..., ~rN(t),k, t)

→ P
(
ϕN(t),k, t

)
, again we cannot find a classical counterpart for the quantum probability

distribution
∣∣ϕN(t),k

(
~r1, ..., ~rN(t), t

)∣∣2. Therefore, contrarily to the classical case, due to

the uncertainty related to the wave nature of electrons, we cannot associate the outcome

ai of an observable A to a particular microstate of the system anymore (the outcome

of the quantum measurement of a pure state is still uncertain). Instead, according to

the orthodox quantum theory, an observable A is associated to an hermitian operator

Â which describes the measurement process2. Such an operator determines the possible

outcomes ai and the eigenstates, ui, with Â|ui >= ai|ui >. Therefore, the expectation

value of Â, i.e.

〈
Â(t)

〉
= tr

(
ρ̂Â(t)

)
=

∞∑

k=1

∞∑

N(t)=1

P
(
ϕN(t),k, t

) 〈
ϕN(t),k

∣∣ Â(t)
∣∣ϕN(t),k

〉
, (C.9)

can be written as

〈
Â(t)

〉
=

∞∑
i=1

ai

∞∑

k=1

∞∑

N(t)=1

P
(
ϕN(t),k, t

) ∣∣〈ui

∣∣ϕN(t),k

〉∣∣2, (C.10)

where I have used the identity relation I =
∑∞

i=1 |ui〉 〈ui| defining the ortonormality of

the eigenstates ui. Now, comparing equation (C.10) with expression (3.2) we can state

the next equality

P (ai, t) =
∞∑

k=1

∞∑

N(t)=1

P
(
ϕN(t),k, t

) ∣∣〈ui

∣∣ϕN(t),k

〉∣∣2, (C.11)

As in (C.3), equation (C.10) expresses the probability of measuring a particular observ-

able result ai as a function of the uncertainties involved in our quantum open system, one

1For a quantum system, the number of particles inside the volume N(t) has not only a dependence
on time, but a dependence on all particle positions. In any case, since our quantum solution will deal
with quantum (Bohm) trajectories (rather than wave-functions), the simple notation mentioned here is
appropriate for the classical and quantum algorithms.

2Recall that the “orthodox” time-evolution of a wavefunction is governed by two different dynamical
laws. First, there is a dynamical (deterministic) evolution according to the Schrödinger equation. Second,
there is an (stochastic) evolution known as “collapse” of the wavefunction when it interacts with a
measurement apparatus
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with a classical counterpart and another with a pure quantum origin. However, expres-

sion (C.10) does not say anything about any “pointer” position or a measuring apparatus.

The measurement process explained by orthodox quantum mechanics states that we mea-

sure directly an observable instead of the position of a “pointer”, and furthermore, it is

done by a rather strange process called wavefunction collapse.

The quantum expectation value of an observable result in Bohmian mechanics

Whenever we can express the operator Â as a function of the position operator X̂,

i.e. Â = f ′A(X̂), then we can assure that the eigenstates of Â are also eigenstates of

the position operator, i.e. f ′A(X̂)
∣∣~r1,k, ..., ~rN(t),k

〉
= f ′A

(
~r1,k, ..., ~rN(t),k

) ∣∣~r1,k, ..., ~rN(t),k

〉
.

Therefore, from (C.9) we can write the expectation value of Â in (C.9) as

〈
f ′A(X̂)

〉
=

∞∑

k=1

P (ϕk, t)

+∞∫

−∞

d3~r1 · · · d3~rN(t)f
′
A

(
~r1,k, ..., ~rN(t),k

)·

·
∣∣ϕk

(
~r1,k, ..., ~rN(t),k, t

)∣∣2 , (C.12)

where I have used the identity operator I =
∫ +∞
−∞

∣∣~r1, ..., ~rN(t)

〉 〈
~r1, ..., ~rN(t)

∣∣ d3r1 · · · d3rN(t).

In the predictions of Bohmian mechanics concerning the result of a quantum ex-

periment, it is assumed that, prior to the experiment, the positions of the particles of

the system involved are randomly distributed according to Born’s statistical law. Then,

according to the quantum equilibrium hypothesis (also called the second postulate of

Bohmian mechanics, i.e. expression (A.14) in Appendix A), the relation between the

quantum trajectories and the modulus of the wave function in the position representa-

tion is:

R2
k(~r1, ..., ~rN(t), t) =

∣∣ϕk

(
~r1,k, ..., ~rN(t),k, t

)∣∣2 = lim
G→∞

1

G

G∑
g=1

N(t)∏
j=1

δ(~rj,k − ~rj,k,g[t]), (C.13)

where the summation over trajectories (referred with the subindex g) implicitly accounts

for the shape of the initial wave function. Indeed, expression (C.13) can be alternatively

written as

R2
k(~r1, ..., ~rN(t), t) =

∞∑

l=1

N(t)∏
j=1

∣∣ϕ (
~r1,k, ..., ~rN(t),k, t0

)∣∣2 δ(~rj,k − ~rj,k,l[t]). (C.14)



134 ChapterC. Classical and quantum expectation values for mixed open systems

Now, if we introduce expression (C.14) into (C.12) we obtain

〈
f ′A(X̂)

〉
=

∞∑

k=1

∞∑

l=1

f ′A
(
~r1,k,l[t], ..., ~rN(t),k,l[t]

) · P (ϕk, t) ·
∣∣ϕk

(
~r1,k,l, ..., ~rN(t),k,l, t0

)∣∣2 .

(C.15)

In expression (C.15), each value of f ′A
(
~r1,k,l[t], ..., ~rN(t),k,l[t]

)
corresponds to a particu-

lar outcome ai corresponding to a particular position of the pointer of the measuring ap-

paratus {~rp1,i[t], ..., ~rpN,i[t]}. Indeed, such a particular microstate of the pointer can corre-

spond, again, to more than one microstate of the open system {~r1,k,l[t], ..., ~rN(t),k,l[t]}. For

each initial wave function, ϕk,N(t), all the above microstates with l = l1,i,N(t),k, ..., ls,i,N(t),k

(where the value of s depends, at the same time, on the subindexes i, N(t), and k), give

rise to the same outcome ai. Expression (3.2) can then be written for quantum open

systems in terms of bohmian trajectories as

〈A (t)〉 =
∞∑
i=1

∞∑

N(t)=1

∞∑

k=1

∑ls,i,N(t),k

l=l1,i,N(t),k

f ′A(~r1,k,l[t], ..., ~rN(t),k,l[t])·

· P (
ϕN(t),k, t

) ·
∣∣ϕN(t),k

(
~r1,k,l, ..., ~rN(t),k,l, t0

)∣∣2 . (C.16)

Now, comparing from (C.16) and (3.2), we can identify

P (ai, t) = P (~rp,i[t]) =
∞∑

N(t)=1

∞∑

k=1

∑ls,i,N(t),k

l=l1,i,N(t),k

P
(
ϕN(t),k, t

) ·
∣∣ϕN(t),k

(
~r1, ..., ~rN(t), t0

)∣∣2 ,

(C.17)

as the probability of finding the outcome ai when measuring the observable A at time t

in terms of the bohmian trajectories explicitly simulated in our open system.

Let me now compare expression (C.16) with its classical counterpart, expression

(C.3). It can be seen that they are very similar in structure. Indeed, the only dif-

ference between them is the additional summation over quantum trajectories in (C.16)

(referred with the subindex l) weighted by the square modulus of the initial wave function∣∣ϕN(t),k

(
~r1,k,l, ..., ~rN(t),k,l, t0

)∣∣2.
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C14: G. Albareda, J. Suñé and X. Oriols, “Semi-classical study of the limitations of the

mean-field aproximation”. 6th Conferencia de dispositivos electrnicos, S. Lorenzo

del Escorial. Madrid (Spain). Jan/2007.

Book chapters

B1: Book Title: “Applied Bohmian Mechanics: From Nanoscale Systems to Cosmol-

ogy”. Chapter: “Nanoelectronics Physics: Quantum Electron Transport”. Edito-

rial: Pan Stanford Estimated Date of Publication: at the end of 2010. Authors: A.

Alarcón, G. Albareda, F. L. Traversa, and X. Oriols

B2: Book Title: “Theory and Applications of Monte Carlo Simulations”. Chapter:

“Monte Carlo simulations beyond the mean-field approximation: Application to

Electron transport at the nanoscale”. Editorial: InTech Estimated Date of Pub-

lication: January 2011. Authors: G. Albareda, F. L. Traversa, A. Benali, and X.

Oriols



 



PROOF COPY [BQ11438] 061024PRB

PRO
O

F CO
PY [BQ

11438] 061024PRB
Time-dependent boundary conditions with lead-sample Coulomb correlations:

Application to classical and quantum nanoscale electron device simulators
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Standard boundary conditions �BCs� for electron-transport simulators are based on specifying the value of
the scalar potential �or the electric field� and the charge density at the borders of the simulation box. Due to the
computational burden associated to quantum or atomistic descriptions, the use of small simulation boxes that
exclude the leads is a mandatory requirement in modern nanoscale simulators. However, if the leads �where
screening takes place� are excluded, standard BCs become inaccurate. In this work, we develop analytical
expressions for the charge density, the electric field, and the scalar potential along the leads and reservoirs.
From these expressions, we present a �time-dependent� BCs algorithm that transfers the specification of the
BCs at the boundaries of the simulation box to a deeper position inside the reservoirs. Numerical solutions of
the time-dependent Boltzmann equation with our algorithm using a large �reservoir, leads, and sample� and a
small �sample alone� simulation boxes are compared, showing an excellent agreement even at �far from
equilibrium� high bias conditions. Numerical results demonstrating the limitations of standard BCs for small
simulation boxes are presented. Finally, time-dependent simulations of a resonant tunneling diode �using a
quantum trajectory-based simulator� are presented, emphasizing the ability of this BCs algorithm to ensure
overall charge neutrality in simulation boxes much smaller than the total lead-sample-lead length. This BCs
algorithm requires a minimum computational effort and it can be applied to study dc, ac, and current or voltage
fluctuations in nanoscale devices.

DOI: XXXX PACS number�s�: 85.30.�z, 41.20.Cv, 02.70.�c, 73.40.�c

I. INTRODUCTION

In order to correctly model the dc and/or ac conductance
of nanoscale systems, one has to ensure “overall charge neu-
trality” and “current conservation.”1,2 The implementation of
such requirements into modern nanoscale electron simulators
demands some kind of reasonable approximation for the
Coulomb interaction.

On one hand, the importance of overall charge neutrality
�i.e., that the total charge in the whole device is zero� in
nanoscale ballistic devices was clarified by the work of Lan-
dauer, Büttiker, and co-workers3 on the “two-terminal” and
the “four-terminal” conductance of ballistic devices. The
well-known standard textbook expression of the dc �zero-
temperature� conductance through a tunneling obstacle is
known as the two-terminal equation because it is defined as
the current divided by the voltage drop sufficiently far from
the obstacle. However, the original formulation of the con-
ductance proposed by Landauer4,5 in 1957 was known as the
four-terminal conductance because its experimental valida-
tion needs two additional voltage probes to measure the volt-
age drop close to the tunneling obstacle. The presence of
resistances in the leads6 explains the difference between both
expressions. The ultimate origin of such resistances is the
requirement of overall charge neutrality that transforms un-
balanced charges in the leads into a voltage drop there, via
the Poisson �Gauss� equation. See Appendix A for a qualita-
tive discussion of such lead resistances.

On the other hand, the “current conservation” �i.e., the
total current computed on a surface in the simulation box is
equal to the total current measured on a surface of an amme-
ter located far from the sample� is a necessary requirement
for the prediction of ac conductances. The displacement cur-

rent, i.e., the time-dependent variations in the electric field,
assures that the total �conduction plus displacement� current
density is a divergenceless vector. Important theoretical con-
tributions were done by Büttiker and co-workers for predict-
ing ac properties of mesoscopic systems within a frequency-
dependent scattering matrix formalism, in weakly nonlinear
regimes taking into account overall charge neutrality and
current conservation.1,7–12

In general, modern electron-transport simulators do in-
clude reasonable approximations for the Coulomb interac-
tions that can guarantee the accomplishment of the overall-
charge-neutrality requirement. In addition, those simulators
that are developed within a time-dependent or frequency-
dependent framework can also assure the current conserva-
tion requirement. However, the powerful treatment of quan-
tum and atomistic effects can only be applied to a very
limited number of degrees of freedom.13 In fact, due to com-
putational restrictions, a small simulation box is a mandatory
requirement in many modern simulators. Here, the adjective
small means that the leads are directly excluded from the
simulation box. Neglecting the leads implies serious difficul-
ties for the achievement of overall charge neutrality in the
simulation box because the unbalanced charge in the leads is
not considered. In addition, a possible inaccuracy in the com-
putation of the overall charge neutrality affects our ability to
treat the time-dependent Coulomb correlation among elec-
trons and, therefore, the requirement of current conservation.
In conclusion, due to computational difficulties, modern
electron-transport simulators have to be implemented in
small simulation boxes that imply important difficulties for
providing dc or ac conductances of nanoscale devices be-
cause they neglect the lead-sample Coulomb correlation. An
exception to this conclusion appears in nanoscale devices
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with metallic leads that imply screening lengths of few
Angstroms.14,15 However, many other scenarios with highly
doped polysilicon leads or modern junctionless devices16

have screening length on the order of few nanometers. In
addition, in all scenarios with far-from equilibrium condi-
tions �with high bias�, the screening length in the leads have
to be complemented by the presence of a depletion length
there.

In principle, the problem of excluding the leads from the
simulation box, while retaining the lead-sample Coulomb
correlation, could be solvable by providing adequate bound-
ary conditions �BCs� on each of the “open” borders of the
simulation box.17 In the literature, there are many different
and successful BCs �Refs. 18–39� for describing nanoscale
electron devices with simulation boxes large enough to in-
clude the leads. However, BCs found in the literature are not
directly applicable for small simulation boxes. This is the
main motivation of this work. Before presenting our BCs
proposal, let us describe the standard BCs found in the lit-
erature for nanoscale electron device simulators. They are
based on specifying two conditions at each of the borders of
the simulation box:

(i) “Border_charge_BCs.” The charge density inside the
simulation box depends on the electrons injected from its
borders. Therefore, any BCs algorithm for electron devices
has to include information on the charge density at the bor-
ders as an additional BCs assumption.

(ii) “Border_potential_BCs.” The value of the scalar po-
tential �or electric field� on the borders of the simulation box
has to be specified. This condition is a direct consequence of
the uniqueness theorem for the Poisson equation17 which en-
sures that these values are enough to completely determine
the solution of Poisson equation, when the charge inside the
simulation domain is perfectly determined.

In many cases, the electrons injected through the bound-
aries depend, somehow, on the scalar potential determined by
the “border_potential_BCs” �and a fixed electrochemical
potential�. Therefore, a coupled system of the two BCs ap-
pears.

Elaborated semiclassical electron-transport simulators
solve the time-dependent Boltzmann equation by means
of the Monte Carlo �MC� technique. In particular, most of
them fix the potential at the borders of the box equal to the
external bias an assume ad hoc modification of the injection
rate to achieve local charge neutrality.18–26 Some works do
also include analytically the series resistances of a large
reservoir27 which can be considered an improvement over
the previous “border_potential_BCs.” Other MC simulators
consider Neumann BCs �i.e., a fixed zero electric field for
“border_potential_BCs”�.28 In principle, there are no com-
putational difficulties in applying the semiclassical MC tech-
nique in large ��50–100 nm� simulation boxes. Neverthe-
less, the possibility of using smaller boxes will be very
welcomed for some intensive time-consuming simulations.
For example, to repeat multiple ��100 000� simulations to
obtain statistical information about the macroscopic role of
some uncertain microscopic parameter �such as impurity
positions�;29 to simulate real three-dimensional �3D� solu-
tions of the Poisson equation �involving matrix inversions of
�2–3000 nodes�,30 to compute �not only average values,

but� current or voltage fluctuations that need very large simu-
lation times �with �105 and 106 time steps� to obtain reason-
able estimators,21–23 to go beyond mean-field
approximations,30 etc.

The development of electron-transport simulators with the
explicit consideration of the wave nature of electrons implies
an important increase in the computational burden. The use
of the external bias as the Dirichlet BCs �“border_potential-
_BCs”� was quite usual31,32 in the simulation of ballistic
electron devices such as the resonant tunneling diode �RTD�.
The “border_charge_BCs” was directly specified from the
energy difference between the fixed scalar potential and the
fixed electrochemical potential. In 1989, Pötz33 was one of
the first in emphasizing the importance of flexible BCs at the
borders of the simulation boxes of RTD to ensure local
charge neutrality. Recently, more elaborated quantum-
mechanical simulators are being used based on the self-
consistent solution of the nonequilibrium Green’s functions
and Poisson equation pioneered by Datta.34–39 They use ei-
ther Dirichlet-type BCs �Refs. 34 and 35� or Newmann BCs
�Refs. 36–39� for the “border_potential_BCs.” Again, the
“border_charge_BCs” condition was indirectly determined
from a fixed electrochemical potential and a fixed or floating
scalar potential. All these BCs algorithms are very successful
because they are implemented into simulation boxes large
enough to explicitly include the leads. However, such algo-
rithms are basically developed for static scenarios within a
mean-field treatment of the Coulomb interaction. Its exten-
sion to time-dependent scenarios or the inclusion of correla-
tions beyond the mean-field approximation has many com-
putational difficulties that will certainly benefit from the
possibility of using smaller simulation boxes.

As mentioned in the initial paragraphs, the extension of
such quantum-transport to time-dependent scenarios is a
complicated issue that requires not only overall charge neu-
trality but also current conservation. Büttiker and co-workers
were the first to study quantum ac conductances with both
requirements. They applied different many-body approxima-
tions �a simple one potential per conductor,7 a Thomas-Fermi
screening potential,8 Hartree-type approximations,9 a treat-
ment of the electron-electron interactions on the level of a
Hartree-Fock approach,10 and also a generalization of the
scattering matrix to deal with a Coulomb blockade system11�
to provide self-consistent theories for the ac conductance of
mesoscopic systems. As a relevant example of their deep
understanding of time-dependent mesoscopic scenarios, they
predicted the value of the resistance in a quantum RC �single
electronic mode� circuit,12 which has been recently experi-
mentally confirmed.40 However, the practical implementation
of the Büttiker theory for ac conductance in real RTD �with
two-dimensional �2D� or 3D treatments� has many computa-
tional difficulties because of the use of large simulation
boxes that have to include the leads explicitly �see Refs. 41
and 42�.

Finally, there are even more computational difficulties in
using large simulation boxes to include the leads in the so-
called “first-principles” electron-transport simulators because
of its huge demand of computational resources for their ato-
mistic description. One strategy of such first-principles
simulators14,15 is based on dividing the whole system in three
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regions �left lead, sample,6 and right lead� and solving them
separately. Once the �Hartree� potentials at the leads are
known, the solution of the potentials in the sample is ob-
tained by imposing that the Hartree potential in the simula-
tion box matches those in the leads at equilibrium. If an
external bias is applied, they shift the scalar �Hartree� poten-
tial between each lead exactly equal to this applied bias con-
sidering a negligible voltage drop in the leads. This specifies
“border_potential_BCs” assuming that the screening effects
are shorter than few tens of Angstroms. However, as dis-
cussed in the introduction, such small screening lengths are
only applicable for metallic leads close to equilibrium but
invalid in most practical scenarios of electron devices. In
addition, although it is not explicitly explained, the “border-
_charge_BCs” is determined from standard Fermi �zero-
temperature� statistics that depend on the energetic separa-
tion between a fixed electrochemical potential and the
bottom of the conduction band. Whether or not such condi-
tion implies local or overall charge neutrality in the whole
structure is not considered. Another approach is the one de-
veloped by Di Ventra, Lang, and co-workers43–47 where a
specific discussion of the “border_charge_BCs” to ensure
overall charge neutrality inside the simulation box is consid-
ered. Assuming a jellium model for the leads and letting the
bottom of the conduction band to move relative to the elec-
trochemical potential, they are able to assure overall charge
neutrality in their lead-sample-lead simulation box. Their al-
gorithm imposes an energy separation between a fixed elec-
trochemical potential and a floating bottom of the conduction
band �i.e., “border_potential_BCs”� that provides local
charge neutrality deep inside the leads. In addition, an ad hoc
�delta� charge density has to be included into the sample-lead
interface �without any clear physical justification�, in order to
make compatible their local and global charge-neutrality re-
quirements. Once more, the algorithm is numerically applied
to systems with leads and small screening length. The modi-
fication of the previous BCs toward explicit time-dependent
density-functional models, where the requirement of current
conservation will be necessary, is starting to be
developed.46–49

In summary, the strategies mentioned above for specify-
ing the BCs at the borders of the simulation box are similar
for classical or quantum simulators. However, as we will
show numerically in Sec. IV B, none of these BCs can be
applied in simulation boxes that explicitly exclude the leads.
The successful educated guesses applied in large simulation
boxes become inapplicable in small simulation boxes. Nei-
ther the charge density, nor the electric field nor the scalar
potential has easily predictable values at the borders of the
sample. In addition, the energy distribution of electrons close
to the active region can be very different from its thermal
energy distribution deep inside the reservoirs. Therefore, the
value of the electrochemical potential deep inside has no
direct relevance close to the sample. The key point of our
BCs is that we will not impose any of the previous require-
ments at the borders of the sample. We will obtain analytical
expressions for the charge density, electric field, and scalar
potential in the leads. Such analytical expression will allow
us to transfer the BC deep inside the reservoirs into informa-
tion of charge density, electric field, and scalar potential at

the sample borders. This BCs algorithm requires a minimum
computational effort and it can be implemented into either
quantum or classical time-dependent simulators with large or
small simulation boxes, for dc and ac conditions, and even
for the study of current �or voltage� fluctuations.

The structure of this paper is as follow. After this intro-
duction, in Sec. II, we discuss some preliminary issues that
will be used for the description of the BCs. In particular, we
first discuss the time-dependent overall charge neutrality re-
quirements, modeled through the dielectric relaxation time.
Later, we present a simple parametric analytical expression
of the impedance of the leads. Finally, we present a time-
dependent degenerate injection model to control the charge
density at the borders of the simulation box. In Sec. III, we
develop our original time-dependent BCs algorithm taking
into account all the ingredients discussed in Sec. II. In Sec.
IV, we test our BCs algorithm with semiclassical MC simu-
lations of a nanoscale silicon resistor with large and small
simulation boxes. The excellent agreement between both sets
of simulations �without any fitting parameter� confirms the
merit and accuracy of our BCs algorithm. We also present a
numerical simulation for a �quantum� double barrier RTD to
show the importance of the BCs discussed here. The conclu-
sions are presented in Sec. V. There are two additional ap-
pendixes. First, we summarize the enlightening work of Lan-
dauer and Büttiker about the role of the lead resistances in
the overall charge neutrality. Second, we discuss the limits of
the quasistatic electromagnetic approximation to justify the
exclusive use of a scalar potential.

II. PRELIMINARY ISSUES

The original motivation of this work was the development
of a BCs algorithm with an appropriate treatment of the lead-
sample correlation for a general-purpose many-particle
quantum-trajectory electron-transport simulator, previously
developed by one of the authors.50 From a computational
point of view, such a quantum-trajectory algorithm �with
Coulomb and exchange interactions� can only be imple-
mented in small simulation boxes. Before presenting our al-
gorithm, we develop some preliminary expressions that will
be later used in Sec. III.

A. Time-dependent overall charge neutrality
in nanoscale electron devices

We are interested in developing our BCs algorithm in a
time-dependent framework because of the following two rea-
sons. First, because it will be applicable not only to obtain dc
�zero-frequency� result, but also to ac �high-frequency� ones.
Second, because it is known that the lead-sample correlations
are better treated with time-dependent BCs conditions that
allow the exchange of energy between the leads and the
sample.

In order to impose a time-dependent condition for the
solutions of the charge density ��r� , t�, the electric field
E� �r� , t�, and the scalar potential V�r� , t�, we start by integrating
the local continuity equation �i.e., the charge conservation
implicit in Maxwell’s Eq. �B2�� in a large volume �, that

TIME-DEPENDENT BOUNDARY CONDITIONS WITH LEAD-… PHYSICAL REVIEW B 81, 1 �2010�
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includes the sample, the leads and the reservoirs

�

�t
�

�

��r�,t� · dv + �
S

J�C�r�,t� · ds� = 0. �1�

The volume � is limited by the surface S. We assume that
the particle current J�C�r� , t� in Eq. �1� is parallel to all the
subsurfaces of S, except in those open surfaces17 �r�S�AS in
the source and r�D�AD in the drain reservoirs�, which are
perpendicular to the transport direction

�

�t
�

�

��r�,t� · dv + �
AS

J�C�r�S,t� · ds�S + �
AD

J�C�r�D,t� · ds�D = 0.

�2�

Next, we assume that the current density and the electric
field at the surfaces r�S�AS and r�D�AD, deep inside the res-
ervoirs, are related by the Ohm law51 �no Ohmic assumption
is imposed in this volume ��. Thus

�
AS/D

J�C�r�,t� · ds� = ��
AS/D

E� �r�,t� · ds� �3�

being � the reservoir �frequency-independent� conductivity.
The use of expression �3� imposes an important limitation on
the frequency validity of our BCs algorithm. For example,
the Drude’s deduction of Ohm’s law requires times which are
larger than the inelastic scattering time. We can rewrite Eqs.
�2� and �3� as

�

�t
�

�

��r�,t� · dv + ��ES
C�t� + ED

C�t�� = 0, �4�

where we have defined ES
C�t�=−�AS

E� �r�S , t� ·ds�S and ED
C�t�

=�AD
E� �r�D , t� ·ds�D. See Fig. 1 for the explicit location of ES

C�t�
and ED

C�t�, deep inside the reservoir. The next step is the
integration of the Gauss equation �Eq. �B4� in Appendix B�
in the same volume

�
�

��r�,t� · dv − �
S

D� �r�,t� · ds� = 0, �5�

where D� �r� , t�=��r�� ·E� �r� , t� is the electric displacement field
and ��r�� the �frequency-independent� dielectric constant.
Again, we assume that D� �r� , t� is very small at all surfaces
except at those at the source and drain. Therefore

�
�

��r�,t� · dv − ��ES
C�t� + ED

C�t�� = 0 �6�

with �=��r�d�=��r�s�. Combining expressions �4� and �6�, we
obtain

�

�t
�

�

��r�,t� · dv = −
�

�
�

�

��r�,t� · dv . �7�

Expression �7� provides the time evolution of the total charge
Q�t�=����r� , t� ·dv in the whole system. Its solution is

Q�t� = Q�t0� · exp	−
t − t0

�c

 �8�

with the dielectric relaxation time �sometimes called Max-
well relaxation time� being defined as

�c = �/� . �9�

As expected, the meaning of expression �8� is that the total
charge inside the system tends to zero in periods of time
related to the dielectric relaxation time. Identically, from
Eqs. �4� and �6�, we see that

ES
C�t� − ED

C�t� = �ES
C�t0� − ED

C�t0�� · exp	−
t − t0

�c

 �10�

this meaning that the electric field tends to be the same deep
inside both reservoirs. Finally, we know that the time-
averaged electric field deep inside the reservoir tends to the
Drude value ES/D

drift�t�. Therefore, one possible solution of Eq.
�10� with the additional requirement ES/D

C �t�→ES/D
drift�t� when

t��c is

( )C
SV t

( )C
SE t

( )SV t

( )DV t

( )C
DE t

( )C
DV t

LC LC

Source region Drain region
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Numerical
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( )DE t
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FIG. 1. �Color online� Definition of the variables used in the
BCs algorithm and schematic representation of the �a� scalar poten-
tial, �b� electric field, �c� total charge density, and �d� doping den-
sity. An analytical parametric 1D solution is deduced in the �blue�
dashed region while a numerical 3D solution is obtained in the
�yellow� solid central region that we define as the simulation box. A
part �Lx of the highly doping leads is included into the simulation
box in order to account for complex phenomena that can appear at
the interface.
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ES

C�t� − ES
drift�t� = �ES

C�t0� − ES
drift�to�� · exp	−

t − t0

�c



�11�

and

ED
drift�t� − ED

C�t� = �ED
drift�t��t0� − ED

C�t0�� · exp	−
t − t0

�c

 .

�12�

When imposing ES
drift�t�=ED

drift�t�, we recover Eq. �10� by
summing Eqs. �11� and �12�. The frequency limitation of
expressions �11� and �12� is ultimately determined by the
assumption that the parameters � and � are constant �time
independent and frequency independent�. Therefore, the di-
electric relaxation time used in expressions �11� and �12�
cannot be shorter than the interval of time needed for making
reasonable the assumption that � and � are constants.

B. Analytical spatial-dependent charge density, electric field,
and scalar potential in the leads

In order to evaluate the total charge in expression �8� or to
apply expressions �11� and �12�, we need to know the charge
densities or the electric fields deep inside the leads. Since we
are interested in not simulation explicitly the leads, we look
for analytical expressions. Nonlinear screening theory is im-
portant but a general analytical solution to the Poisson equa-
tion does not exist. Therefore, we will have to make some
simplifying assumptions. We will use the schemes depicted
in Fig. 1 to explain our analytical solution in the leads and
the assumed simplifications. Throughout this paper, we will
assume a two-terminal device, source and drain, to explain
our BCs algorithm. In any case, it can be straightforwardly
adapted to multiterminal systems with an arbitrary number of
open boundaries.52

First, we assume that all expressions in the leads depend
only on the variable x along the transport direction but are
independent on the lateral directions y and z so that a one-
dimensional �1D� scheme in the leads and reservoirs is ap-
propriate. In order to develop simpler analytical expressions
we consider one specific negative x axis, �−	 ,0�, for the
source and another positive, �0,+	�, for the drain with dif-
ferent origins. The point x=0 is located at the interface be-
tween the numerical solution in the simulation box and the
analytical solution in the lead �see Fig. 1�. Let us notice that
a small part of the lead is explicitly included into the simu-
lation box �see the length �Lx in Fig. 1�. The exact length
�Lx depends on a trade-off between computational limita-
tions and accuracy to treat complex effects in the interfaces
�such as the presence of quasibound states in the accumula-
tion well53 or the Friedel oscillations54�.

Second, we assume that the electron charge distribution in
the leads can be reasonably described by standard textbook51

expressions and that charge density due to ionized impurities
is uniformly distributed in the leads and reservoirs. There-
fore, we write the Poisson equation as

�

q

�2�Ec�x,t�
�x2 = ��x,t� = qND�1 − exp��Ec�x,t�

kB · 


� ,

�13�

where ND is the uniform doping density, �Ec�x , t�=Ec�x , t�
−Ec is the offset of the bottom of the conduction band mea-
sured from its average value deep inside the reservoir Ec
=Ec�xS/D , t�, 
 the absolute temperature, and kB the Boltz-
mann constant. The bottom of the conduction band Ec�x , t�
and the scalar potential are related by Ec�x , t�=−qV�x , t�
�more complex screening theories can also be adapted to our
BCs algorithm as far as they provide analytical solutions
in the leads54,55�. We assume the standard Debye
approximation51 ��Ec�x , t���kB ·
 to solve the Poisson Eq.
�13�. Then, under a first-order Taylor expansions, we obtain
��x , t��

qND·�Ec�x,t�
kB·
 . Then, the solution of Eq. �13� in the

source lead −LC�x�0 is

��x,t� = �S�t� exp	 x + LS
p

l

 , �14�

where we have assumed ��x , t�=0 when x→−	 because of
the screening. We have defined �S�t�=��−LS

p , t� as the
�surface-averaged� electron density at x=−LS

p �see Fig. 1�.
We can identify the parameter l as the Debye length51

l =�� · kB · 


q2ND
. �15�

Identically, the solution in the drain lead 0�x�LC is

��x,t� = �D�t� exp	−
x − LD

p

l

 . �16�

For simplicity, we assume equal doping densities and
screening lengths in the drain and source leads. Expressions
�14� and �16� are only valid for small applied bias, i.e., close
to equilibrium conditions. However, large bias can drive the
device far from equilibrium. For such conditions, it is quite
usual that one lead suffers accumulation of electrons while
the other suffers depletion. In the depleted regions, there are
no electrons that can participate on the screening of positive
charge, therefore, the screening length has to be comple-
mented with an additional depletion length. See a schematic
plot in Fig. 1�c�. Then, a reasonable expression for the charge
density at the source is

��x,t� = ��S�t� exp	 x + LS
p

l

 − LC � x � − LS

p

�S�t� − LS
p � x � 0,

� �17�

where LS
p is the depletion length of the source lead indicated

in Fig. 1. Identically, the charge density in the drain lead is

��x,t� = ��D�t� exp	−
x − LD

p

l

 LD

p � x � LC

�D�t� 0 � x � LD
p .
� �18�

By applying the gauss Eq. �B4�, from Eq. �17� we can deter-
mine the electric field along the source lead and the source
reservoir
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E�x,t� = �ES

C�t� +
�S�t�l

�
exp	 x + LS

p

l

 − LC � x � − LS

p

ES
C�t� +

�S�t��l + LS
p�

�
+

�S�t�x
�

− LS
p � x � 0. �

�19�

We use the field flux ES
C�t� as a boundary condition at

x=−LC that reflects the expected series resistance of the
reservoir. The other term in the right-hand side of Eq. �19�
is due to the nonhomogeneity of the charge distribution in

the lead-sample region. Identically, in the drain lead, we
obtain

E�x,t� = �ED
C�t� −

�D�t�l
�

exp	− x + LD
p

l

 LD

p � x � LC

ED
C�t� −

�D�t��l + LD
p �

�
+

�D�t�x
�

0 � x � LD
p .�

�20�

Finally, the definition of the scalar potential in the source
leads is given by the spatial integration of expression �19� as

V�x,t� = �VS
C�t� − ES

C�t��x + LC� −
�S�t�l2

�
exp	 x + LS

p

l

 − LC � x � − LS

p

VS
C�t� − ES

C�t��x + LC� −
�S�t��x + LS

p�2

2 · �
−

�S�t�l�l + LS
p + x�

�
− LS

p � x � 0 � �21�

and integration of Eq. �20� in the drain

V�x,t� = �VD
C�t� + ED

C�t��− x + LC� −
�D�t�l2

�
exp	− x + LD

p

l

 LD

p � x � LC

VD
C�t� + ED

C�t��− x + LC� −
�D�t��− x + LS

p�2

2 · �
−

�D�t�l�l + LS
p − x�

�
0 � x � LD

p .� �22�

Apart from the frequency restrictions mentioned in Sec. II A,
the validity of expressions �17�–�22� is limited to frequencies
lower than the plasma frequency in the leads. In addition,
when large bias conditions are considered, the presence of
hot carriers �with high velocities� in the leads will modify the
�quasiequilibrium� screening length found in Eq. �15�. This
effect will provide a limitation of our BCs model for very
high bias.

C. Electron injection model for a zero-external
impedance system

As discussed above, the previous expressions depend on
the charge density at the source �S�t�=��0, t� and drain
�D�t�=��0, t� borders. Electrons leaving the sample affect
these charge densities but they cannot be controlled. On the
contrary, we can model electrons entering into the simulation
boxes through the injection of electrons from its borders. Let
us discuss how to define such injection of electrons.

A time-dependent degenerate �i.e., taking into account the
Pauli exclusion principle� injection model for electron de-
vices has been presented by one of the authors in Ref. 56
under the assumption that the sample is part of a circuit with
zero-external impedance. In this simplified scenario, the volt-
age drop in the sample can be viewed as a fixed nonfluctu-
ating quantity equal to the external bias. In this section, we
will present a brief summary of such injection model and its
ability to determine either the average value of the current or

its time-dependent fluctuations. Then, in Sec. III, we will
discus how this injection model can be adapted to situations
with arbitrary external impedance.

The rate and randomness of the injection of electrons into
the sample can be modeled through the following binomial
probability P�kx ,N ,�� defined in Ref. 56

P�kx,N,�� =
M�!

N! · �M� − N�!
fS/D�E�N�1 − fS/D�E��M�−N.

�23�

This expression defines the probability that N electrons with
wave vectors in the range kx� �kox ,kox+�kx� are injected
into the sample during the time interval �. The parameter M�

is the number of attempts of injecting electrons during the
previous time interval �, defined as a number that rounds the
quotient � / to to the nearest natural number toward zero. The
number of injected electrons can be N=1,2 , . . . , �M�. The
time t0 is the minimum temporal separation between the in-
jection of two electrons into the particular cell phase-space
cell kx� �kox ,kox+�kx� and x� �xo ,xo+�x�. For a 1D sys-
tem, the value of t0 can be easily estimated. The number of
electrons n1D in the particular phase space cell �kx ·�x is
n1D=2·�kx ·�x / �2�� where we consider a factor 2 for spin
degeneracy.57 These electrons have been injected into �x
during the time interval �t defined as the time needed for
electrons with velocity vx=�x /�t=
kx /mt to travel a dis-
tance �x. Therefore, the minimum temporal separation, t0,
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between the injection of two electrons into the previous par-
ticular cell is �t divided by the maximum number n1D of
electrons

t0�kx��1D =
�t

n1D
= 	 1

�


kx

mt
�kx
−1

. �24A�

The practical application of such definition of t0 requires a
mesh with a small step �kx on all possible values of kx.
Identically, for a 2D and 3D system, we obtain

t0�y,kx,ky��2D =
�t

n2D
= 	 1

2�2


kx

mt
�y�kx�ky
−1

, �24B�

t0�y,z,kx,ky,kz��3D =
�t

n3D
= 	 1

4�3


kx

mt
�y�z�kx�ky�kz
−1

.

�24C�

On the other hand, the function fS�E� that appears in Eq. �23�
determines the probability that a state with kinetic energy E
measured from the bottom of the conduction band −qVS�t� is
occupied by an electron that will effectively enter into the
simulation box. In particular, we assume that such probabil-
ity is determined by half of the Fermi distribution �E
=E�k�� with kx�0,� as:

fS�E� =
1

1 + exp�E − FS
inj�t� + qVS�t�

kB · 


 �25�

where the electron wave vector k� is related to the kinetic
energy by the appropriate energy-dispersion relationship
E�k��. The term FS

inj�t� is defined here as the source injecting
energy level and it determines how to increase the rate of
injection of electrons while respecting the Pauli restriction.
This restriction implies that two electrons with identical ve-
locity have to be injected with a temporal separation equal or
larger than t0. We avoid the name electrochemical potential
for such energy FS

inj�t� because Eq. �25� does not refer to all
�source� electrons but only to those with kx�0. In addition,
close to the active region, the electron distribution for kx
�0 will be quite unpredictable �see insets in Fig. 18 in Ap-
pendix A�. We reserve the name electrochemical potential to
the thermalized energy distribution deep inside the reser-
voirs, at x= �LC. Here, FS

inj�t� is just a parameter that con-
trols the rate of injection of electrons at the border of the
simulation box to ensure overall charge neutrality. Equiva-
lently, the electrons injected from the drain have an energy
distribution determined by �E=E�k�� with kx�0� as:

f0�E� =
1

1 + exp�E − FD
inj�t� + qVD�t�

kB · 


 �26�

with FD
inj�t� the drain injecting energy level. We will later use

the parameters FS
inj�t� and FD

inj�t� to indirectly increase/
decrease the charge density �S/D�t� at the lead-sample inter-
face, at each time step of the simulation.

It is very instructive to understand the Binomial distribu-
tion of the injection process, expression �23�, as a conse-
quence of the discreteness of the electron charge. For a par-
ticular cell, at zero temperature, we inject an electron every
interval of time t0. The average current per cell is −q / to. At
room temperature, the average current is lower, −q · f�E� / to,
because of the uncertainty in the occupation. However, it is
not possible to inject a fractional charge −qf�E� into the
system at each interval of time t0 �i.e., the electron charge is
indivisible�. Therefore, at each interval of time t0, either we
inject the full charge, −q �if the state is occupied�, or we do
not inject charge �if the state is empty� according to the prob-
ability f�E�.

As a simple test of our injection model in zero-external
impedance circuits, we compute analytically the current and
its fluctuations �i.e., the noise� for a one-subband ballistic 1D
system. According to the zero-external impedance, we as-
sume that VS�t� and VD�t� in Eqs. �25� and �26� are fixed by
the time-independent external bias. We assume a transmit-
tance equal to unity. For such conditions, all injected elec-
trons are finally transmitted �i.e., injection probability and
the transmitting probability are identical� and there are well-
known analytical results in the literature for both, average
current and noise.1,58,59

The average current �I� is an experimental measure of the
charged transmitted through the system during a long time
interval. For our ballistic system, the charge transmitted
through the source is just the charge injected. Therefore

�I� = − lim�→	 q�
kx

EN��,kx�
�

. �27�

The average number EN�� ,kx� of injected particles during
the time interval � is computed from the probability
P�kx ,N ,��

EN��,kx� = �
N=0

N=	

P�kx,N,��N . �28�

As we mentioned before, we divide the whole phase space
into cells with a small �kx so that all electrons in the cell
have roughly the same energy. The average number of in-
jected particles with wave vector kx during the time � can be
computed from Eq. �28� as EN�� ,kx�= fS�E� ·� / to�kx� for each
cell of the source injection. Previous expression is just the
mean value of the Binomial distribution in Eq. �23�, where
fS�E� is defined by expression �25�. From Eq. �27�, the aver-
age current of each kx-phase space cell can be computed as
�I�kx =−qfS�E� / to�kx�. The sum over all phase-space cells
with kx�0, �I�=�kx

�I�kx, does exactly reproduce the Land-
auer average current. The drain current is computed equiva-
lently. The total current is the source component minus the
drain component
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�I� = −

2q

h
�

0

	

�fS�E� − fD�E��dE , �29�

where we have used dE�
2kx ·�kx /mt and 1 / t0�kx�
=
kx ·dkx / �� ·mt�. This is just expressions �39� and �40� of
Ref. 1 for a transmission coefficient equal to one. For low
temperature �i.e., f�E�=1 for all injected electrons�, we ob-
tain the well-known Landauer conductance G=2q2 /h.

For ballistic devices, the one-side power spectral density
of the current fluctuations at zero �low� frequency can be also
obtained from probability in Eq. �23� as

SI�0� = lim�→	2q2�
kx

EN2��,kx� − �EN��,kx��2

�
, �30�

where we defined EN2�� ,kx� as

EN2��,kx� = �
N=0

N=	

P�kx,N,��N2. �31�

For the binomial distribution of expression �23�, we obtain
EN2�� ,kx�− �EN�� ,kx��2= fS�E��1− fS�E�� ·� / to�kx�. Then, us-
ing Eq. �30�, we found SI

kx�0�=2q2fS�E��1− fS�E�� / to�kx� for
the source injection. Identical results are obtained for the
drain injection. Since there is no drain-source correlation in
our simple ballistic model, the total power is the sum of both.
After integration over all energies, we obtain

SI�0� =
4q2

h
�

0

	

�fS�E��1 − fS�E�� + fD�E��1 − fD�E���dE .

�32�

This expression does exactly reproduce Büttiker results for a
system with transmission coefficient equal to one �see ex-
pression �61� in Ref. 58�. Expression �32� includes the ther-
mal and the shot noise �i.e., it is valid both at equilibrium and
far from equilibrium�. Under equilibrium conditions, the
previous result reproduces the Nyquist-Johnson thermal
noise, as can be shown by introducing the identity
−kB
 ·�f�E� /�E= f�E��1− f�E�� into the previous result.

In conclusion, the �time-dependent� injection model dis-
cussed here correctly accounts for the Pauli correlations
among electrons under the assumption that the active region
is part of a circuit with zero-external impedance. In this case,
the voltages applied to the sample can be viewed as a fixed
nonfluctuating quantity and the noise properties are deter-
mined only by the Pauli correlations discussed above. In
general, the sample is a part of a larger circuit �with nonzero-
external impedances�. Then, the current fluctuations in the
sample imply voltage fluctuations in the leads �through the
time dependence of VS�t� and VD�t� in Eqs. �25� and �26��
that, in turn, imply fluctuations on the injecting probabilities
into the sample �through expression �23�� and the current in
the sample �see expression �63� in Ref. 1�. These compli-
cated correlations between sample and leads highlight the
importance of the BCs algorithm mentioned here.

III. TIME-DEPENDENT BOUNDARY-CONDITIONS AT
THE BORDERS OF THE SAMPLE FOR OVERALL

CHARGE NEUTRALITY

A. General consideration

According to Fig. 1, we have to specify the values VS�t�
and VD�t� for the “border_potential_BCs,” and �S�t� and
�D�t� for the “border_charge_BCs.” In addition, in Sec. II B,
we have derived analytical relationships between scalar po-
tentials, electric fields, and charge densities at the borders of
the simulation box, at x=0, and those values deep inside the
reservoirs, at x= �LC. We have to add the four additional
unknowns VS

C�t�, VD
C�t�, ED

C�t�, and ES
C�t�. In total, for two-

terminal models, we have eight unknowns. Hence, we need
eight conditions to specify the BCs.

As we have explained in the introduction, and it will be
numerically confirmed in Sec. IV, it is very difficult to pro-
vide an educated guess of the scalar potential, the electric
field or the charge density at the borders of a small simula-
tion box where leads are excluded. In addition, the electro-
chemical potential for thermal distributions becomes an ill-
defined parameter for small simulation boxes. One can
assume a well-known value of the electrochemical potential
deep inside the reservoir. However, close to the active re-
gion, where the �far from equilibrium� momentum distribu-
tion can be quite arbitrary, the prediction of any value of the
electrochemical potential for injected and reflected electrons
is quite inappropriate.

Fortunately, the analytical results of Sec. II for the leads
and reservoirs can be used to transfer the unknown “border-
_potential_BCs” and “border_charge_BCs” at the borders
of the simulation box into simpler BCs deep inside the res-
ervoirs. This is the key point of our BCs algorithm.
In particular, the two new BCs that we will impose at
x= �LC are:

(i) “Deep_drift_BCs.” We assume that the inelastic scat-
tering mechanisms at, both, the source x�−LC and the drain
x�LC reservoirs provides a quasiequilibrium position-
independent thermal distribution of electrons �it is implicitly
assumed that the contact length LC is large enough so that
inelastic scattering is relevant there�. Such position-
independent electron distribution is consistent with charge
neutrality deduced in expressions �17� and �18�, deep inside
the reservoir, that implies a uniform electric field there. Then,
according to the Ohm’s law mentioned in expression �3�, we
known that the electric fields tend to ES/D

C �t�→ES/D
drift�t� at the

source and drain reservoir.
(ii) “Deep_potential_BCs.” We assume that electrochemi-

cal potentials can be defined for the position-independent
thermal distribution deep inside both reservoirs. We known
that the applied bias coincides with the energy separation of
the electrochemical potentials between the source and drain
reservoirs. In addition, due to the position-independent elec-
tron distribution deep inside the reservoirs, we assume that
the energy separation between the electrochemical potential
and the bottom of the conduction band is perfectly known in
the drain and source reservoirs. When equal doping is used
in both contacts �as done in the numerical examples of this
work�, the energy separation between the bottoms of the

ALBAREDA et al. PHYSICAL REVIEW B 81, 1 �2010�
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conduction bands at both reservoirs is equal to the difference
of the external voltages. Hence, VS

C�t�=0 and VD
C�t�

=Vexternal�t�.
These two conditions, “deep_drift_BCs” and “deep_po-

tential_BCs” are quite reasonable for any electron device
deep inside the reservoirs. In fact, we will show in Sec. III B
that the numerical MC solution of the nonequilibrium Bolt-
zmann equation in a large simulation box confirms the ad-
equacy of these conditions in the reservoirs. Therefore, from
the initial eight unknowns, we have the “deep_drift_BCs”
and “deep_potential_BCs” considerations that provide four
conditions �two for each border�. However, we do still need
four additional conditions in order to completely specify our
BCs unknowns. Such conditions come from imposing, at the
borders of the simulation box, the continuity between the
analytical expression of the electric field �and the scalar po-
tential� in the leads and the numerical values obtained inside
the simulation box. Therefore, we will be able to determine
the initial unknowns VS�t�, VD�t�, �S�t�, and �D�t� in the bor-
ders of the simulation box, by imposing four conditions deep
inside the reservoir and imposing continuous profiles. The
value of the ES/D

drift�t� is not a parameter because it is imposed
by the conduction current, via the Ohm’s law. As discussed
in Sec. II A, imposing equal electric fields deep inside the
reservoirs guaranties the overall-charge-neutrality require-
ment.

Finally, we have to comment on the time dependence of
our algorithm. On one hand, most of the expressions devel-
oped in Sec. II have some frequency restrictions. In Appen-
dix B, we have also discussed the frequency limitations re-
lated to assuming that only the scalar potential is necessary
to describe time-dependent nanoscale scenarios. Our BCs al-
gorithm is valid for frequencies lower or equal than the
lowest-frequency restriction mentioned above. We will refer
to such frequency limit as the, fqs, which will be considered
in next section.

B. Practical implementation of the boundary conditions
in classical or quantum time-dependent simulators

In Fig. 2, we represent schematically the flux diagram of
the BCs algorithm presented in this paper. After initializing
all variables and functions to predetermined values and mov-
ing particles �or solving wave-equation time evolution�, we
arrive at the specific BCs algorithm. We know the old values
of VS�t�, VD�t�, �S�t�, and �D�t� at time t. The BCs algorithm
will provide their new values at time t= t+�t. We have di-
vided the algorithm into five different steps that we will de-
scribe in detail below:

Step-(1) evaluation of the charge density at the sample
(inside) boundary. The first step is the evaluation of the
charge density at the boundaries of the sample at time t. This
will be computed in the spatial cell closer to the border but
still inside the simulation box �see �Lx in Fig. 1�. Since we
describe a one-dimensional version of the BCs algorithm, we
will need a surface integration of such magnitudes that we
refer to as the instantaneous charge densities �S/D

ins �t��. As
mentioned before, due to frequency restrictions of the algo-
rithm, what we will finally compute is a running average

�S/D�t� =
1

Tqs · �
t−Tqs

t

�S/D
ins �t�� · dt� �33�

with the temporal interval Tqs equal to the integer Nqs mul-
tiplied by the simulation time step, Tqs=Nqs ·�t�1 / fqs. Let
us notice that we just calculate the charge density at time t,
not at time t+�t.

Step �2�—imposing continuity of the electric field and the
scalar potential at the sample-lead interface by means of a
Newton-Raphson method. As mentioned in the previous sec-
tion, the electric field and the scalar potential have to be
continuous at both lead-sample interfaces. In one hand, the
electric field, at the x=0 and the electric field at x=−LC, of
the source lead, are related from expression �19� as

ES
C�t + �t� = ES�t + �t� −

�S�t��l + LS
p�t��

�
, �34�

where we have defined ES�t+�t�=E�0, t+�t�. Here, we as-
sume �S/D�t+�t���S/D�t� and LS/D

p �t+�t��LS/D
p �t�. We will

later relax these assumptions. Identically, from Eq. �20�, we
define in the drain

FIG. 2. �Color online� Schematic representation of our �time-
dependent� BCs algorithm coupled to a particle-based electron
�classic and quantum� transport simulator.
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ED

C�t + �t� = ED�t + �t� +
�D�t��l + LD

p �t��
�

. �35�

In addition, from Eq. �21�, we obtain

VS�t + �t� = VS
C�t + �t� − ES

C�t + �t�LC

−
�S�t��l + LS

p�t��2

2�
−

�S�t�l2

2�
�36�

and from Eq. �22�

VD�t + �t� = VD
C�t + �t� + ED

C�t + �t�LC

−
�D�t��l + LD

p �t��2

2�
−

�D�t�l2

2�
. �37�

As mentioned before, we fix the value VS
C�t+�t�=0 and

VD
C�t+�t�=Vexternal�t+�t�. We also know the charge density

�S�t� and �D�t� from “step 1.” We will use ES
C�t+�t� and

ED
C�t+�t� to find the continuous solution of the electric field

according to the procedure explained in the next paragraph.
Later, in “step 4,” we will relate the new parameters of
ES

C�t+�t� and ED
C�t+�t� to new values of �S�t+�t� and

�D�t+�t�.
We will follow a Newton-Raphson method to find the best

parameters ES
C�t+�t� and ED

C�t+�t� that provide continuity
of the electric field at the borders of the simulation box. We
use expressions �34� and �35� to determine ES�t+�t� and
ED�t+�t�, and Eqs. �36� and �37� for VS�t+�t� and VD�t
+�t�. Then, we apply these new voltages on the source and
drain surfaces of the 3D simulation box and solve the 3D
Poisson equation there. Next, we compute the electric field at
the spatial step closer to the borders but still inside the 3D
simulation box. We made a surface integral to transform the
electric field in the surface of the simulation box into a 1D
parameter. In order to obtain a continuous shape of the elec-
tric field in the whole system we repeat the previous se-
quence by slightly modifying the values of ES

C�t+�t���E
and/or ED

C�t+�t���E until we find new values VS�t+�t� in
Eq. �36� and VD�t+�t� in Eq. �37� so that the analytical and
numerical electric fields at the borders of the simulation
boxes coincide. Such a loop will provide a continuous
analytical-numerical coupling for the electric field and, as a
consequence, will also assure the continuity of the scalar
potential. In summary, in this step 2, we determine the new
values VS�t+�t� and VD�t+�t�.

Step-(3) calculation of the drift electric field at x= �LC.
The JS/D

drift�t� is computed inside the sample from the number
of electrons crossing the source �or drain� surfaces. In addi-
tion, the value Jdrift�t� is time averaged as described in ex-
pression �33�.

JS/D
drift�t� =

1

Tbc · �
t−Tbc

t

JS/D
drift_ins�t��dt�, �38�

where JS/D
drift_ins�t�� is the value computed at each time step.

Finally, from the Ohm’s law of expression �3� we will com-
pute the average drift electric fields deep inside the reservoirs
at x= �LC. Let us notice that we just calculate the drift elec-
tric field at time t, not at t+�t.

Step 4—modification of the injecting energy levels and
the depletion lengths. In step 2 we have already computed
ES

C�t+�t� and ED
C�t+�t� as fitting parameters instead of

�S�t+�t� and �D�t+�t�. In this step, we will relate the modi-
fication of the electric fields deep inside the reservoir to the
charge density at the borders of the simulation box. This
two-step procedure is justified because we deal with a very
small time step, which implies very small variations of all
these parameters. From Eqs. �11� and �19�, we can state a
direct relationship that gives the value of the charge density
required at the borders of the active region in the next time
step

�S�t + �t� = �S�t� + �ES
C�t� − ES

drift�t��
� · �T

�l + LS
p�t�� · �c

�39�

and from Eqs. �12� and �20�

�D�t + �t� = �D�t� − �ED
C�t� − ES

drift�t��
� · �T

�l + LD
p �t�� · �c

.

�40�

We have assumed the following simplification,
exp�−�t− t0� /�c��1−�t /�c with �t= t− t0 which is much
smaller than �c, in expressions �11� and �12�. Since we are
only interested on relating ES/D

C �t� with �S/D�t+�t�, we have
assumed that ES/D�t� and LS/D

p �t� in expressions �19� and �20�
does not change with time.

Although Eqs. �39� and �40� together with the values
�S�t� and �D�t� clearly define �S�t+�t� and �D�t+�t�, we do
not have a complete control on how to increase/decrease
these values in our simulator. On the contrary, we only have
the possibility of increasing/decreasing the injecting prob-
ability in Eq. �23� through the parameters FS

inj�t+�t� and
FD

inj�t+�t� that appear in Eqs. �25� and �26�. The exact rela-
tionship between the displacement of the injecting energy
levels and the variation in the injected charge density in the
simulation box boundaries is not trivial. We perform a pre-
processing computation of the function �inj�FS,D

inj +qVS,D� ac-
cording to the injection model described in Sec. II C. Once
such a relation has been established, we can determine ex-
actly in which way the injecting energy levels have to be
displaced.

As mentioned several times along this paper, there is a
particular scenario that cannot be managed just by modifying
the injecting energy levels. Far from equilibrium, at high
applied bias, we can accumulate electrons as much as needed
to decrease �S�t� in order to achieve overall charge neutrality.
However, we cannot deplete electrons as much as possible in
the sample-lead interface. Once we arrive at zero injected
electrons, we cannot decree this number any more. In such
situations, the only way to decrease the negative charge is to
enlarge the depleted �positive charge� region in the drain �see
Fig. 1�c��. The same depletion procedure could be needed
in the source for a negative bias. From Eqs. �11� and �19�, if
we consider �S�t� fixed but LS

p�t� variable, we obtain in the
source

ALBAREDA et al. PHYSICAL REVIEW B 81, 1 �2010�
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LS
p�t + �t� = LS

p�t� + �ES
C�t� − ES

drift�t��
� · �t

�S�t� · �c
�41�

and, identically from Eqs. �12� and �20�, we obtain in the
drain

LD
p �t + �t� = LD

p �t� − �ED
C�t� − ED

drift�t��
� · �t

�D�t� · �c
. �42�

At this point, we have determined the evolution of the injec-
tion energy levels FS/D

inj �t+�t� and the depletion lengths
LS/D

p �t+�t�.
Step 5-electron injection. Finally, according to the new

values of the scalar potential VS/D�t+�t� �step 2� and the
injecting energy levels FS/D

inj �t+�t� �step 4� at the boundaries
of the simulation box, a new injecting process is performed
according to expressions developed in Sec. II C. This is the
last step of the BCs algorithm before the simulator can go
back to moving the particles �and waves� as shown in the
flux diagram of Fig. 2.

These five steps of the BCs algorithm are repeated for
each time step. The time step is so small, �t� fs, so that
very small variations in all magnitudes are obtained. In turn,
these very small variations justify the approximations devel-
oped in the procedure explained above.

IV. NUMERICAL RESULTS

Now, we report the numerical results obtained by apply-
ing the previous BCs to classical and quantum �time-
dependent� electron-transport simulators. All simulations are
carried out at room temperature.

A. Testing of our boundary condition algorithm: Comparison
between large and small simulation boxes

In this section, we consider the N+NN+ resistor depicted in
Fig. 3 with two different simulation boxes. First, a large
simulation box �LB�, Lx�LB�=42 nm, that includes the
leads and reservoirs �N+ region� plus the sample �N region�.
Second, a smaller simulation box �SB�, Lx�SB�=8 nm, that
only includes the sample �N region� plus a small part,
�Lx�SB�, of the leads. See Fig. 3 and Table I. We will use the
semiclassical MC simulator60 of Ref. 30 that provides a de-
tailed treatment of the Coulomb correlations among electrons
inside the device. The use of the smaller simulation box cer-
tainly implies a considerable reduction in the computational
burden. In particular, while the computational times related
with the LB simulations imply approximately 1 day per bias

point in our computing tools because of the large number of
particles simulated, its simulation with the SB decreases
down to only 3 h.

Before comparing the SB and LB results, let us mention
some details commons to both sets of MC simulations.60 We
assume an effective-mass approximation.61,62 Electron trans-
port in the “x” direction �from source to drain� takes place
along a silicon �100� orientation channel, at room tempera-
ture. In particular, the electron mass is taken according to the
six equivalent ellipsoidal constant energy valleys of the sili-
con band structure.63,64 The effective masses of the ellipsoids
are ml

�=0.9163m0 and mt
�=0.1905m0 with m0 the free elec-

tron mass. Finally, all simulations use a 3D finite-difference
Poisson solver. Hence, the volumes �SB �for the small box
simulations� and �LB �for the large box simulations� are di-
vided into cells of spatial dimensions �X=1 nm, �Y
=60 nm, and �Z=60 nm. See Table I for more details.

In Fig. 4, we have plotted �in dashed lines� the �time-
averaged� self-consistent scalar potential for the LB. The re-
sults are obtained by applying our BCs algorithm explained
in Sec. III for the large simulation box. In particular, we have
used Lc�LB�=3 nm so that, according to Fig. 1, the total
length of the resistor is 2Lc�LB�+Lx�LB�=48 nm. Interest-
ingly, the simulations reproduce a net charge equal to zero
deep inside the reservoirs �see dashed line in Fig. 5� and a
small uniform electric field proportional to the current,
i.e., the drift value. The deep region of the reservoir can
be modeled by a simpler series resistance confirming that
our BCs algorithm can be perfectly used in large simulation
boxes that include the leads. Then, our model provides the
voltage drop due to a simpler �reservoir� series resistance.
Another relevant issue of these LB results is that they pro-
vide a numerical justification of our “deep_drift_BCs” that

N+

N+ z

y
xDrain

Lz

Ly

Lx(LB)

Source N

Lx(SB)
LC(SB)

LC(LB)

FIG. 3. �Color online� Schematic representation of the N+NN+

structure.

TABLE I. Parameters for the N+NN+ structure depicted on
Fig. 3.

Units Symbol Value

Lengths �nm� Lx�LB� 42

Lx�SB� 8

Ly 60

Lz 60

LC�LB� 3

LC�SB� 20

Spatial step �nm� �x 1

�y 60

�z 60

Relative permittivity Air 1.0005

Silicon 11.7514

Dielectric relaxation time �sec.� �c 1�10−13

Silicon conductivity �� m�−1 � 2.5�105

Screening length �nm� l 0.95

Doping �cm−3� Channel N Intrinsic

Contact N+ 2�1019

Simulation time �sec.� T 2�10−10

Temporal step �sec.� �t 2�10−16

TIME-DEPENDENT BOUNDARY CONDITIONS WITH LEAD-… PHYSICAL REVIEW B 81, 1 �2010�
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we impose on our BCs algorithm deep inside the reservoir,
i.e., ES/D

C �t�→ES/D
drift�t�.

In Fig. 4, we have also plotted �in solid line� the �time-
averaged� self-consistent scalar potential profiles obtained
for the SB. In particular, we have used Lc�SB�=20 nm so
that, according to Fig. 1, the total length of the resistor in this
second set of simulations, 2Lc�SB�+Lx�SB�=48 nm, is
identical to the first ones. The agreement between both sets
of simulations is excellent, even for large external bias. This
highlights the accuracy of our BCs algorithm for simulation
boxes of few nanometers and its ability for incorporating the
Coulomb correlations among the electrons inside the sample
�N region� and those located in the leads �N+ region�.

Figure 5 shows the charge density distribution along the
N+NN+ structure for both sets of simulations. The agreement
among the LB and SB curves is quite acceptable. Let us
notice that charge density is the second derivative of the
scalar potential distribution, and hence, the imperceptible
discrepancies encountered in Fig. 4 are now magnified. The
depletion region in the drain for large bias merits some spe-
cial attention. An exponential shape describes reasonably
well the charge density in the source lead, however, due to

the formation of a depletion region in the drain side, the
charge there does not tend to zero within the five Debye
lengths ��5l�. Due to the important voltage drop there, elec-
trons coming from the drain reservoir are not able to reach
the sample-lead interface and, therefore, they cannot screen
the positive doping charge and a depletion region appears.
The ability of dealing with depletion regions appearing in far
from equilibrium scenarios represents an important landmark
of our model.

There is an interesting explanation for the slight differ-
ences between the charge density in the LB and SB results.
The semiclassical MC method60 used in both sets of simula-
tions only takes into account the Pauli exclusion principle in
the electron injection process as described in Sec. II C. For
example, in the source, it will not be possible to inject two
electrons with identical positive velocity �wave vector� si-
multaneously. Our injecting process waits, at least, an inter-
val of time t0 before sending the second identical electron.
However, once the electrons are inside the simulation box,
the semiclassical MC technique does not impose any Pauli
restriction on their dynamics so that, after a large enough
time from their injection, two electrons can occupy the same
position with the same velocity. In this sense, the momentum
distribution at the boundaries �close to the active region� will
be different when large or small simulation boxes are con-
sidered. When using small simulation boxes, the addition of
electrons into the active region implies an increase in its
energy because lower states are already occupied �i.e., the
quantum capacitance�. On the contrary, when using a large
simulation box, the addition of electrons into the active re-
gion can come from identical energies. Interestingly, we can
argue that �in the MC simulations� the small simulation box
provides a better electron momentum close to the sample
than that obtained with a large simulation box. The slight
differences appearing in Fig. 5 might partially be explained
by this effect.

Finally, Fig. 6 shows the contact plus lead pseudoresis-
tances as a function of bias. They are defined directly as the
voltage drop in the lead region divided by the �average� cur-
rent flowing through the whole structure. From our defini-
tion, a negative value of the source resistance means that the
potential energy deep inside the reservoir is lower than that

FIG. 4. �Color online� Potential-energy profile computed with
our BCs algorithm for a large simulation box �dashed line� and for
a small simulation box �solid lines�.

FIG. 5. �Color online� Charge-density profile computed with our
BCs algorithm from a large simulation box �dashed line� and from
a small simulation box �solid lines�.

FIG. 6. Pseudoresistance of the reservoir plus lead computed
from our BCs algorithm with a large simulation box �dashed lines�
and with a small simulation box �solid lines�.
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at the lead-sample interface �see, for example, the 0.0 V
potential profile in Fig. 4�. Obviously, the total �reservoir,
leads plus sample� resistance in the whole electron device
will be positive. We use the word “pseudo” to emphasize that
such resistances cannot be directly associated to energy dis-
sipation. As it can be observed, although the contact series
resistances �related to the drift electric field deep inside the
reservoir� are constant, the bias dependence of the resistance
in the lead is far from trivial because it takes into account the
complex electrostatic coupling of the leads and the sample
described by expressions �36� and �37�. This result shows
that a constant resistance cannot account accurately for the
Coulomb correlations between electrons in the active region
and those in the leads.

In conclusion, in this section we have shown that our BCs
provides an excellent description of the coulomb coupling
between the sample and the leads. The �reservoir plus lead�
resistance obtained from a LB simulation box is practically
identical to that obtained from a SB simulation. The com-
parison of the current-voltage characteristic will be discussed
in next section. Let us emphasize that our BCs algorithm is a
parameter free algorithm. Only the external bias is necessary.
Even the electric drift field is obtained from the numerical
computation of the average conduction current. In next sec-
tion, we show numerically the enormous difficulties that the
standard BCs, applied to small simulation boxes that exclude
the leads, have when trying to reproduce the previous set of
results obtained with our algorithm.

B. Limitations of standard boundary condition algorithms
for (small) simulation boxes that exclude the leads

In the present section, we simulate the same N+NN+ struc-
ture with the same MC technique and the same small simu-
lation box �that excludes the leads� considered in the previ-
ous section. The only difference will be the consideration of
two different BCs algorithms.

The first type of BCs, that we named Dirichlet external
bias, uses the external bias as the BCs for the Poisson equa-
tion �“border_potential_BCs”� and the injection model de-

scribed in Sec. II C with a fixed FS/D
inj �t� equal to the equilib-

rium electrochemical value �“border_charge_BCs”�. Since
such Dirichlet BCs consider zero-external impedance so that
it can only be acceptable for large simulation boxes. Here,
we explicitly demonstrate its limitations for small simulation
boxes.

The second type of BCs, that we named local charge
neutrality, is based on ensuring that the total charge is zero at
the borders �“border_charge_BCs”�. The local charge neu-
trality is achieved by moving the bottom of the conduction
�border_scalar_BCs�, while fixing FS/D

inj �t� equal to the equi-
librium electrochemical value, to increase/decrease the
charge at the border. This second type can be used in simu-
lation boxes slightly smaller than the ones required by the
previous BCs algorithm. In any case, although the assump-
tion of local charge neutrality inside the leads �i.e., a few
Debye lengths away from the lead-sample interface� is cor-
rect, it is not valid close to the active region as shown below.

The LB results depicted in Figs. 7–10 are the ones ob-
tained in the previous subsection. The first type of BCs, the
Dirichlet external bias implies a very restrictive constriction

FIG. 7. �Color online� Scalar potential-energy profile computed
in the large simulation box with our BCs algorithm �dashed lines�
and that corresponding to the implementation of the Dirichlet ex-
ternal bias BCs in the small simulation box �solid lines�.

FIG. 8. �Color online� Charge-density profile computed in the
large simulation box with our BCs algorithm �dashed lines� and that
corresponding to the implementation of the Dirichlet external bias
BCs in the small simulation box �solid lines�.

FIG. 9. �Color online� Scalar potential-energy profile computed
in the large simulation box with our BCs algorithm �dashed lines�
and that corresponding to the implementation of the local charge
neutrality BCs model in the small simulation box �solid lines�.
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that neglects any correlation among the electrons inside and
outside the active region. The scalar potential at the borders
does not depend on the charge �accumulated or depleted� in
the leads. As seen in Figs. 7 and 8, these limitations are
obviously translated into a bad description of the conduction
band and the charge density.

The second type of BCs in small simulation boxes, local
charge neutrality, is plotted in Figs. 9 and 10. It cannot prop-
erly describe the �accumulated or depleted� charge at the
N+-N and N-N+ interfaces. The charge density at those inter-
faces is always zero with these BCs �see Fig. 10�. The con-
dition of charge neutrality is reasonable deep inside the
leads, but not close to the sample, where the excess/deficit of
charge has not yet been screened. This second type of BCs is
unable to properly describe the bottom of the conduction
band depicted in Fig. 9.

The ultimate reason why none of the two previous BCs
types are able to produce reasonable results is because they
do not achieve the overall-charge-neutrality requirement dis-
cussed in the introduction. In Fig. 11, we demonstrate that a
nonaccurate description of the lead-sample Coulomb corre-

lations cannot provides an accurate description of the �lead
plus reservoir� pseudoresistance. The first type of BCs, Di-
richlet external bias, gives a trivial and incorrect zero resis-
tance. The second type, local charge neutrality, accounts for
a nonlinear dependence of the resistances on the applied
voltage that assumes some kind of electrostatic correlations
between sample and leads. However, Fig. 11 shows that such
correlations are clearly unphysical when small simulation
boxes are considered.

Finally, in Fig. 12, we plot the characteristic current-
voltage curves for the large and small simulation boxes com-
puted by means of our BCs algorithm and those computed
through the Dirichlet external bias and the local charge neu-
trality algorithms with small boxes. For very small voltages
�close to equilibrium�, all BCs gives similar results. How-
ever, for large voltages �far from equilibrium�, the discrep-
ancies among the different models are more than notable.

The Dirichlet external bias �open triangles� fixes not only
the potential at the borders of the simulation box but also the
electrochemical potentials there. This means that the injec-
tion of electrons in each side is independent of the rest of the
system �and neglects the Coulomb correlations between elec-
trons in the sample and the leads�. Therefore, when the ap-
plied bias is enough to avoid that electrons coming from the
drain contact reach the source, the current saturates. The lo-
cal charge neutrality �open diamonds� wants to preserve
charge neutrality, locally, in the lead border. As we increase
the voltage, in the source border, the number of electrons
reflected by the sample �with negative momentum� tends to
decrease because most of source electrons are finally trans-
mitted. In addition, the mean velocity of the carriers tends to
increase in the active region implying a reduction in negative
charge in the sample �while the positive charge remains con-
stant�. Therefore, when we increase the voltage, the source
electron density at the source border tends to decrease and,
consequently, the injection rate must increase to ensure local
charge neutrality in the source border. This explains why the
current saturates at a much larger voltage �not plotted in Fig.
12� than that obtained for the Dirichlet external voltage. A

FIG. 11. �Color online� Pseudoresistance of the reservoir plus
lead computed from our BCs model for the large simulation box
�dashed lines� and from the Dirichlet external bias and local charge
neutrality for the small simulation box �symbols�.

FIG. 10. �Color online� Charge-density profile computed in the
large simulation box with our BCs algorithm �dashed lines� and
with the local charge neutrality BCs model in the small simulation
box �solid lines�.

FIG. 12. �Color online� Current-voltage characteristics for the
N+NN+ structure. The solid line corresponds to our BCs algorithm
applied in the small box region. Open triangles correspond to Di-
richlet external bias and open diamonds to local charge neutrality
BCs. In dotted line we have plotted the I-V characteristic correspon-
dent to our BCs applied in the large box including the leads.
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similar explanation can be applied to understand the current-
voltage obtained with our BCs model for a SB �solid lines�.
Again, the solution to obtain overall charge neutrality is to
incorporate more and more electrons from the source but at
slower rate. Certainly, our BCs model with a small box �solid
line� is the one that provides currents closer to the LB results
�dashed lines�.

The small differences between the two curves obtained
with our BCs for small and large boxes can be explained
with the same arguments used to explain the differences in
the charge density of Fig. 5. The MC method60 used in both
sets of simulations only takes into account the Pauli exclu-
sion principle in the electron injection process at the bound-
aries of the simulation box, as described in Sec. II C. How-
ever, once the electrons are inside the simulation box, the
semiclassical MC technique does not impose any �Pauli� re-
striction on their dynamics. When using small simulation
boxes, the addition of electrons at the borders of the active
region implies an increase in their �kinetic� energy because
lower states are already occupied �this is not true for the LB
because the injection is far from the borders of the active
region�. This means that the average velocity in the borders
is slightly higher with the small simulation box than with the
large one. Hence, as depicted in Fig. 12, the current com-
puted with the SB is slightly higher than the LB current.

C. Application of our boundary condition algorithm for
(time-dependent) quantum electron transport simulators

In this section, we provide an example of the implemen-
tation of our BCs algorithm into a time-dependent quantum
simulator, where the need for small simulation boxes is still a
more relevant computational requirement. In fact, it is not
strange to find in the literature, atomistic structures with
simulation boxes of few tens of Angstrom.14,15,45 In order to
emphasize the relevance of taking into account the Coulomb
correlations among the active region and the leads, we will
compare the results obtained with our BCs model and those
obtained through standard Dirichlet external bias at the bor-
ders of the simulation box. Contrarily to Sec. IV A, no com-
parison with a large simulation box �including the leads and
reservoirs� is done because such simulation would be com-
putationally inaccessible. This computational difficulty was,
precisely, the initial motivation for this work.

As described in Fig. 13 and Table II, we consider an RTD
consisting on two highly doped drain-source GaAs regions
�the leads�, two AlGaAs barriers, and a quantum well �the
active region�. Such structure is simulated with a quantum
electron-transport simulator based on the algorithm dis-

cussed in Ref. 50, where it is demonstrated that the many-
particle Schrödinger equation can be efficiently solved using
quantum �Bohmian� trajectories computed from �time-
dependent� single-particle Schrödinger equations. In this pa-
per, we assume a constant effective mass m=0.067mo, with
mo the electron free mass, along the whole structure that
accounts for the interaction of free electrons with the peri-
odic atomic structure under the Born-Oppenheimer
approximation.62 In any case, the BCs algorithm presented in
this paper can be straightforwardly adapted to a discrete de-
scription of the atom structure. Then, the analytical expres-
sions of Sec. II B have to be matched to the Hartree potential
of the simulation box. Transport takes place from source to
drain direction. The lateral dimensions are Ly =Lz=48.6 nm.
The practical quantum algorithm for the RTD implies solving
numerically N�t� time-dependent single-particle 1D
Schrödinger equations50 for the transport direction x. All
Schrödinger equations are coupled to the Poisson equations
with the BCs given by our algorithm. The number of elec-
trons, N�t�, around 20–30, implies a computational time on
the order of 1–2 days per bias point. In order to take into
account the Friedel oscillations54 and the formation of qua-
sibound states53 in the leads, we extend the simulation box
inside the leads a distance �Lx. More technical details about
the computation of Bohmian trajectories can be found in
Refs. 30 and 50 and Table II.

Lwell

N+

N+
z

y
x

Drain

Source

Lz

Ly

Lx
Wbarrier

N

Lc

Lc

�Lx

FIG. 13. �Color online� Schematic representation of the
RTD.

TABLE II. Parameters for the RTD depicted on Fig. 13.

Units Symbol Value

Lengths �nm� Lx 17.1

Ly 48.6

Lz 48.6

�Lx 4.5

LC 6

Equilibrium screening
lengths �nm� l 1.8

Barrier dimensions �eV� High 0.6

Relative permittivity �nm� Lwell 5.7

�nm� Wbarrier 1.2

Air 1.0005

Spatial step
�Poisson equation�

GaAs 13.1800

AlGaAs 11.7760

�nm� �x 0.30

Spatial step
�Schrödinger equation�

�nm� �y 8.1

�z 8.1

�xS 0.3

Doping �cm−3� Channel N Intrinsic

Contact N+ 4.8�1018

GaAs conductivity �� m�−1 � 1.5�105

Dielectric relaxation time �sec.� �c 5�10−14

Simulation time �sec.� T 4�10−11

Temporal step
�Poisson equation� �sec.� �t 8�10−16

Temporal step
�Schrödinger equation� �sec.� �tS 2�10−17

TIME-DEPENDENT BOUNDARY CONDITIONS WITH LEAD-… PHYSICAL REVIEW B 81, 1 �2010�

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

1175
1176

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

1-15

PROOF COPY [BQ11438] 061024PRB

galbareda
A



PROOF COPY [BQ11438] 061024PRB

PRO
O

F CO
PY [BQ

11438] 061024PRB

In Fig. 14, we present the current-voltage curves of the
simulated RTD using our BCs algorithm �solid circles� and
standard Dirichlet external bias BCs �open circles�. As it can
be observed, the differences between these two approaches
appear not only in the magnitude of the current but also in
the position of the resonant voltage. These differences are
fully compatible with previous current-voltage simulations
done with/without explicitly including the leads in the self-
consistent simulation scheme.33 The differences in Fig. 14
can be easily explained from the information depicted in Fig.
15.

In Fig. 15, we represent the �time-averaged� voltage drop
�VS/D of the scalar potential outside the simulation box de-
fined as, �VS=VS

C−VS in the source and �VD=VD−VD
C in the

drain regions. While Dirichlet BCs assume a zero-voltage
drop outside the simulation box, our BCs algorithm predicts
a nonlinear drop of the bottom of the conduction band at the
borders of the simulation box. In particular, �VD is higher
than �VS in magnitude and it is the main responsible of the
displacement of the resonant voltage. As seen in the insets
�a� and �b� of Fig. 15, our model predicts a drop of the scalar
potential in the drain lead that maintains the resonant energy

level significantly above the bottom of the source conduction
band at that particular 0.2 V bias �i.e., the resonant voltage
for the Dirichlet external bias�. As explained in Sec. III, the
behavior of �VD and �VS is also coupled to the value of �D
and �S. The latter, in turn, are the responsible of a higher
source injection that explains the higher current when our
BCs algorithm is used.

In Fig. 16, we discuss in detail the coupling between
�VS/D and �S/D. First, let us notice that the BCs with a stan-
dard Dirichlet conditions equal to the external bias always
injects electrons at the same rate because it does not allow
neither a displacement of the bottom of the conduction band
VS/D nor a movement of the injecting energy levels FS,D

inj .
Thus, the injecting probabilities of Eqs. �25� and �26� remain
bias independent. On the contrary, our BCs algorithm does
not fix any of the two parameters. We have only an indirect
control on the values of �S/D because we can only increase/
decrees the rate of injection into the simulation box by modi-
fying the values FS/D

inj and VS/D �see expressions �25� and
�26��. As seen in Fig. 16, for bias below 0.15 V, the charge
injected from the source border decreases while the charge
injected from the drain increases with the bias. These in-
jected charges and the potential profiles are consistent with
the requirement of overall charge neutrality. In particular, the
increase of the electrons injected from the source is the main
reason why our algorithm predicts a larger current than the
results obtained from a Dirichlet external bias. The situations
changes when the external bias approaches 0.2 V. The prob-
ability of injecting electrons from the drain is very low so
that any further decrease in the injecting energy level does
not cause any variation in the charge density there. There-
fore, the only way to decrease an excess of negative charge
in the whole system, in order to achieve overall charge neu-
trality, is creating a depletion region at the drain side �see
expression �42��. For larger values of �VD, the most relevant
effect in the drain lead is not the screening of positive charge
by electrons but the appearance of a depletion region. As
discussed in Sec. IV A, this is an important contribution of

FIG. 14. �Color online� RTD Current-voltage characteristic tak-
ing according to our BCs algorithm �solid circles� and to a Dirichlet
external bias BCs �open circles�.
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,D
(e
V
)

Bias (V)
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a) b)

FIG. 15. �Color online� Potential-energy drop in the highly
doped drain lead, −q�VD �red circles�, and in the source lead,
−q�VS �black squares�. The insets represent a schematic represen-
tation of the potential energy profile at V=0.2 V using �a� our BCs
algorithm and �b� the Dirichlet external bias approach.

FIG. 16. �Color online� On the left axis: injecting charge density
at the borders of the simulation box as a function of the applied
bias. On the right axis: depletion lengths as a function of the applied
bias. The dashed line represents the constant injected charge density
obtained with external bias Dirichlet BCs.

ALBAREDA et al. PHYSICAL REVIEW B 81, 1 �2010�

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

1-16

PROOF COPY [BQ11438] 061024PRB

galbareda
A



PROOF COPY [BQ11438] 061024PRB

PRO
O

F CO
PY [BQ

11438] 061024PRB

our BCs algorithm that allows us to satisfactory simulate far
from equilibrium conditions in small simulation boxes of
electron devices.

Finally, in Fig. 17, we discuss the resulting pseudo- �res-
ervoir plus lead� resistances. The external bias Dirichlet BCs
predicts a zero effective resistance and our BCs algorithm
describes a highly asymmetric and nonlinear behavior. Even
more, the source pseudoresistance takes negative values up
to very high applied bias �the negative sign in the pseu-
doresistance means a positive spatial derivative of the poten-
tial energy�. In any case, obviously, the total �source, sample
plus drain� resistance is positive. Importantly, the practical
results of such lead resistances are quite different from the
expressions �A1� and �A2� deduced in Appendix A, where a
constant value of both resistances is predicted. In Appendix
A, zero temperature is assumed while, here, we consider a
room temperature and an energy-dependent density of states.
In addition, in Appendix A, Poisson equation is substituted
by some kind of linear “capacitor” that can be justified for
small variations around equilibrium. However, here, we
solve explicitly the Poisson equation and the charge is re-
lated not only to the number of electrons but also to its
dynamics �fast electrons provide less charge than slow elec-
trons�.

In conclusion, in the results of the RTD with our BCs
algorithm, we can guarantee that the profile of the charge
density along the whole device �the reservoirs, the leads, and
the sample� is compatible with the requirement of overall
charge neutrality discussed in the introduction. In addition,
we can also guarantee that the profiles of the electric field
and scalar potential are self-consistent with the previous pro-
file of the charge density. Even more, the requirement of
overall charge neutrality is achieved in time intervals related
with the relaxation dielectric time.

V. CONCLUSIONS

The Coulomb interaction among electrons introduces two
fundamental requirements for the accurate simulation of
electron devices. First, the screening of electrons implies that
the total charge in the whole �reservoirs, leads plus sample6�
device region is zero, i.e., overall charge neutrality. Second,

the total time-dependent current computed in a surface of the
simulation box is equal to that measured by an ammeter far
from the sample, i.e., current conservation.

Due to the computational burden associated to quantum
and atomistic description of nanoscale structures, the explicit
and accurate simulation of the lead-sample-lead region6 is
not always possible. Therefore, quite often, a small simula-
tion box that excludes the leads6 is a mandatory requirement
in modern electron-transport simulators. This restriction on
the box length is a serious problem for the requirement of
overall charge neutrality because the total charge has to in-
clude the �accumulated/depleted� charge in the leads. In ad-
dition, the inaccuracy in achieving the overall-charge-
neutrality requirement affects the computation of the time-
dependent variations in the scalar potential �i.e., the electric
field� and, thus, the requirement of current conservation.

As explained in the introduction, all BCs used in electron
transport simulators are based on specifying the value of the
scalar potential, or the electric field, at the borders of the
simulation box �“border_potential_BCs”� and the charge
density there �“border_charge_BCs”�. However, it is very
difficult to anticipate an educated guess for these magnitudes
at the boundaries of a small simulation box that excludes the
leads �see Sec. IV B�. Alternatively, in Sec. II, we have de-
veloped analytical and time-dependent expressions for the
charge density, the electric field, and the scalar potential
along the leads and reservoirs. These analytical expressions
take into account electron screening leading to accumulation
and depletion regions in the leads. From these analytical ex-
pressions, we can transfer the assumptions about the BCs at
the borders of a small simulation box into the simpler speci-
fications of the BCs deep inside the reservoirs. This is the
key point of our BCs algorithm. In particular, the two new
BCs that we impose deep inside the reservoirs are, first, the
electric field tends to a drift value ES/D

C �t�→ES/D
drift�t� �that we

refer as “deep_drift_BCs”� and, second, the scalar potentials
deep inside the reservoir is fixed by the external bias VS

C�t�
=0 and VD

C�t�=Vexternal�t�. In Sec. IV A, we have shown that
these two new BCs conditions are perfectly supported from a
numerical MC solution of the nonequilibrium Boltzmann
equation in a large simulation box that includes the leads and
reservoirs.

Our BCs algorithm requires a minimum computational
effort and it can be implemented into either quantum or clas-
sical time-dependent simulators, for dc, ac, and current �or
voltage� fluctuations. We have tested our BCs algorithm with
semiclassical MC simulations of a nanoscale silicon resistor
with large and small simulation boxes. As seen in Fig. 4, the
excellent agreement between both sets of simulations con-
firms the accuracy of our BCs algorithm. Let us emphasize
that no fitting parameter is used and that our BCs algorithm
includes the trivial series resistance plus the complicated
lead resistance �see Appendix A�. We have also presented a
numerical simulation for a �quantum� double barrier RTD to
show the importance of the BCs discussed here. In particular,
we have highlighted that our BCs algorithm is able to discuss
far from equilibrium situations where depletion lengths in
the leads have to be added to standard screening. Our BCs
algorithm guarantees that the profile of the charge density
along the whole device �not only along the simulation box

FIG. 17. �Color online� Pseudoresistance of the RTD in the
drain and source regions.
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but the reservoirs, the leads, and the sample� is compatible
with the requirement of overall charge neutrality and that the
profiles of the electric field and scalar potential are self-
consistent with the charge density along the whole device.

The numerical results presented in this paper deal with
classical and quantum dc scenarios. However, our BCs algo-
rithm can be equivalently applied to ac �time-dependent�
scenarios up to a frequency fqs �defined from the lowest-
frequency restriction for the validity of expressions devel-
oped in Sec. II�. The requirement of overall charge neutrality
is achieved in time intervals related with the relaxation di-
electric time of the device. Therefore, for time intervals
lower than the inverse of fqs, the temporal variations in the
scalar potential �and the electric field� at the borders of the
simulation box are physically meaningful because they are
the reaction of the Coulomb interaction in the whole electron
device system to temporal perturbation that deviates the de-
vice from its “state” compatible with overall charge neutral-
ity. Such frequency-dependent correlations allows us to con-
fidently compute the displacement current �i.e., time-
dependent variations in the electric field inside� in the
simulation box and assume that the total current computed
there is equal to the value measured in an ammeter far from
the simulation box, i.e., current conservation.

Identically, the frequency-dependent correlations included
into our BCs algorithm, due to sample-lead Coulomb inter-
action, allow us to investigate the computation of �zero-
frequency or high-frequency� current fluctuations beyond the
standard external zero impedance assumption �i.e., most of
the computations of current fluctuations in electron devices
assume that the voltage applied in the simulation box is a
nonfluctuating quantity�. As discussed at the end of Sec.
IV C, the intrinsic charge fluctuations are coupled to voltages
fluctuations at the borders of the simulation boxes that, in
turn, induce additional fluctuations of the injected charge
�i.e., current� in a quite complicated self-consistent loop.
Studies of these two directions are in progress.
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APPENDIX A: QUALITATIVE ESTIMATION OF LEAD
RESISTANCE IN PURE BALLISTIC DEVICES

As mentioned in the introduction, the importance of the
resistance in the leads when dealing with electric transport
through ballistic devices was well understood some time ago
due to the enlightening work of Landauer, Büttiker, and
co-workers1–5 on the “two-terminal” G2t and “four-terminal”
G4t conductances. We will use here an argument to obtain the
same lead resistances but emphasizing the role of the overall-
charge-neutrality requirement mentioned along this paper.
The effect of these lead resistances on the measured charac-
teristics of the electron device is, somehow, rediscovered for

each new generation of electron-transport simulator �see, for
example, Ref. 33 for a discussion of this issue on the self-
consistent scattering-states algorithm for a RTD or Ref. 45
for a DFT electron-transport simulator�.

As depicted in Fig. 18, we define the sample �or the active
region6� as an obstacle that is tunneled by electrons. We do
also consider two ideal reservoirs acting as a perfect
�absorbing/emitting� black bodies with a source �S and drain
�D well-defined electrochemical potentials. We defined the
leads as the region that connects the obstacle �i.e., sample�
with the ideal reservoirs. Electrons leaving the sample, either
by transmission or reflection, are effectively screened and
they suffer inelastic scattering, so that their energy distribu-
tion becomes a �quasi-� equilibrium distribution at the reser-
voir. The “two terminals” conductance G2t= I /V2t=2q2T /h is
defined as the total average �dc� current I divided by the
voltage drop V2t=VD

C −VS
C between the reservoirs.1–3 The pa-

rameter T is the transmission coefficient of a tunneling ob-
stacle, h the Plank constant. The original formulation of the
“four terminals” conductance proposed by Landauer4,5 was
G4t= I /V4t=2q2 /h�T /R�, when V4t=VD−VS. The difference
between both expressions is due to the resistance �i.e., volt-
age drop� in the leads.

Now, we deduce the value of such lead resistances in
the source and drain by imposing �a simplified version of�
the overall-charge-neutrality requirement mentioned in the
paper. As seen in Fig. 18, we apply a bias V2t=VD

C −VS
C

= ��S−�D� /q with net flux of electrons from source to drain.
The energies −qVS

C and −qVD
C are the conduction band bot-

tom at the source and drain reservoir, respectively. Deep in-
side the source reservoirs, the total particle density is equal
to the doping density ND. Thus, nS

C=n�S
C+n�S

C=ND, where n�S
C

and n�S
C refer to the particle density of electrons with positive

�from left to right� and negative velocities, respectively. If
the series resistances of the reservoirs are negligible, we can
assume n�S

C=g��S+qVS
C�=ND /2 and n�S

C=g��S+qVS
C�=ND /2

-q· SV -q· DV
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�

Reservoir ReservoirLead LeadSample

-q· C
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-q· C
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�D
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g·T
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�
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�

FIG. 18. �Color online� Schematic representation of the bottom
of the conduction band and the electrochemical potential as a func-
tion of position for a tunneling obstacle with transmission T and
reflection R coefficients. Left/right insets: particle density on the
source/drain lead as a function of the kinetic energy �with sign
defined by their velocity direction� of electrons. The total particle
density n�S/D �n�S/D� of electrons in the source/drain lead is equal to
the area above of the negative �positive� axis. Solid green �dashed
red� indicates electrons initially injected from the drain �source�
reservoir.
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where g is the density of states that we assume constant in
order to avoid irrelevant energy integrals in our qualitative
argumentation. In addition, zero temperature is assumed to
simplify arguments. Identical charge distribution can be de-
fined in the drain reservoir.

However, close to the barrier, in the leads, the electron
charge density depends on the barrier transmittance. The
number of electrons arriving at one lead depends on the
number of electrons injected from the reservoir of the other
side and the transmission of the barrier. For example, elec-
trons with negative velocity in the source lead are those in-
cident from the drain region and effectively transmitted, plus
those incident from the source that have been reflected by the
barrier, n�S=Tg��D+qVS�+Rg��S+qVS�. On the other hand,
electrons with positive velocity in the source lead are n�S
=g��S+qVS�. In particular, in a simple treatment of the Cou-
lomb interaction, we define −qVS and −qVD as the energies
of the conduction band bottom at the source and drain leads,
respectively. See left inset in source region of Fig. 18.

In order to accomplish the overall-charge-neutrality con-
dition, assuming that the reservoirs are already neutral and
that the charge in the barrier regions is negligible, then, the
total charge in each lead must be neutral �i.e., electron charge
equal to the doping� to assure overall charge neutrality in the
whole device. This is the crucial point of our argumentation
in this appendix. Therefore, for the degenerate system con-
sidered here �where the Pauli principle implies that any in-
crease in charge must come from higher energies� the voltage
close to the barrier must vary to accommodate the previous
charge-neutrality restriction. Thus, the charge neutrality at
the leads, n�S+n�S=ND with n�S=Tg��D+qVS�+Rg��S+qVS�
and n�S=g��S+qVS�, implies the following relationship
between the reservoir and lead voltages, VS=VS

C+T��S
−�D� / �2q�, with a source lead “pseudoresistance” equal to

RSL =
VS − VS

C

I
=

T��S − �D�/�2q�
2q2T/hV2t =

1

2

h

2q2 . �A1�

The bottom of the conduction band decreases in the source
lead because the number of electrons with negative velocity
is less than expected in the energy range �S−�D �i.e., only
electrons reflected by the barrier in the source will contribute
to n�S�. Identically, electrons with positive velocity in the
drain lead are transmitted electrons from the source or re-
flected electrons from the drain, n�D=Tg��S+qVD�+Rg��D
+qVD� and n�D=g��D+qVD� Then, from the charge neutrality
condition, n�D+n�D=ND, we obtain the relation VD=VD

C

−T��S−�D� / �2·q� that implies the drain lead pseudoresis-
tance

RDL =
VD

C − VD

I
=

T��S − �D�/�2q�
2q2T/hV2t =

1

2

h

2q2 . �A2�

Again, we realize that the bottom of the conduction band in
the drain lead have to be a bit higher than that deep in the
reservoir because the number of electrons with positive ve-
locity is more than expected in the energy range �S−�D.

In many textbooks,65 there is an even simpler develop-
ment of the expression of the source in Eq. �A1� and drain in
Eq. �A2� lead expressions of the pseudoresistances. If we

assume a zero-series resistance in the reservoir, the total con-
ductance G2t= I /V2t=2q2T /h can be decomposed as follows:

1

G2t =
h

2q2T
=

h

2q2	1 +
1 − T

T

 =

h

2q2 +
h

2q2

R

T

= RSL + RDL +
h

2q2

R

T
, �A3�

where RSL=h /4q2 is the source lead resistance, RDL=h /4q2

is the drain lead resistance and hR / �2q2T� the intrinsic
sample resistance deduced by Landauer, originally.

This simple example does show the inevitable presence of
lead resistances in ballistic systems. The accurate computa-
tion of such resistances needs a more appropriate treatment
of the Coulomb interaction among electrons than the capaci-
tive linear relation between charge and voltage that we have
assumed above. Therefore, a better treatment of coulomb in-
teraction in the leads needs a self-consistent solution of the
charge density and scalar potential, as we did in the paper.

Finally, let us emphasize the different origins of the
standard-series resistance present in any electron device and
the lead resistances discussed here. The former is due to the
presence of a small and homogenous electric field deep in-
side the reservoir, which provides a net current. The voltage
drop in the reservoir is only due to this homogenous electric
field deep inside the reservoir where local charge neutrality
is guaranteed. However, the voltage drop in the leads is im-
posed by the Poisson �Gauss� equation that relates the shape
of the charge density to the voltage drop in the conduction
band close to the tunneling obstacle with a complicated non-
homogenous electric field. As seen in Sec. II B, the first term
of the right-hand side of expressions �21� and �22� account
for the reservoir series resistance while the rest account for
the complicated lead resistance.

APPENDIX B: THE QUASISTATIC ELECTROMAGNETIC
APPROXIMATION FOR THE TIME-DEPENDENT

SIMULATION OF NANOSCALE ELECTRON DEVICES

Along this paper, we have assumed that the dynamics of
electrons is controlled only by the scalar potential. We have
argued that our algorithm is valid even for terahertz frequen-
cies. However, in principle, any time-dependent variation in
the scalar potential must imply a time-dependent vector po-
tential. We discuss here the validity of our assumption of
neglecting the vector potential.

In principle, electron dynamics in nanoscale electron de-
vices are determined by, both, the �time-dependent� electric
field intensity, E� �r� , t�, and the magnetic flux density, B� �r� , t�.
The electric field intensity is computed from the scalar po-
tential, V�r� , t�, and the vector potential, A� �r� , t�

E� �r�,t� = − �� V�r�,t� −
�A� �r�,t�

�t
�B1�

while B� �r� , t� depends only on the vector potential B� �r� , t�
=�� �A� �r� , t�. These electromagnetic fields can be computed
from the four well-known Maxwell17 equations
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�� · D� �r�,t� = ��r�,t� , �B2a�

�� · B� �r�,t� = 0, �B2b�

�� ∧ E� �r�,t� = −
�B� �r�,t�

�t
, �B2c�

�� ∧ H� �r�,t� = J��r�,t� +
�D� �r�,t�

�t
, �B2d�

where H� �r� , t�=B� �r� , t� /� and D� �r� , t�=�E� �r� , t� are the mag-
netic and electric flux intensities, and J�c�r� , t� and ��r� , t� are
the �particle� current and charge densities, respectively.

However, when no external magnetic field is applied to a
nanoscale electron device, the electron dynamic in nanoscale
systems can be computed only from the scalar potential. This
quasistatic electromagnetic approximation assumes that the
time-dependent magnetic induction in the definition of the
electric field in Eq. �B2c� can be neglected. Then, the electric

field is essentially an irrotational vector, �� ∧E� �r� , t�=0 There-
fore, the electric field, decoupled from the magnetic counter-
part, can be computed from

E� �r�,t� � − �� V�r�,t� . �B3�

Equations �B3� leads to the time-dependent Poisson equation
used in our paper

�� ���� V�r�,t�� = − ��r�,t� . �B4�

The �time-dependent� boundaries conditions of the scalar po-
tential imposed on the open52 borders of the simulation box
are the central issue of this paper.

Let us discuss the limits of applicability of the quasistatic
approximation in nanoscale electron devices. For a simple
estimations, we assume only one typical length scale L so
that we can approximate spatial derivatives that make up the
curl and divergence operators by � /�x�1 /L. Identically, we
assume that time derivatives are roughly equal to a multiply-
ing factor f related to the frequency of the signal, � /�t� f .
Then, from the gauss law in Eq. �B1� we obtain for the

charge density ��r� , t��� ·E /L with E�max�E� �r� , t��. Identi-
cally, from the continuity equation

���r�,t�
�t

+ �� J��r�,t� = 0, �B5�

we obtain for the current density J��r� , t��� ·E · f . From the
knowledge of the current and charge density, we can estimate
the magnetic flux, using Eq. �B1�, as B� �r� , t��� ·� · fLE �we
neglect numerical factors such as 2�. Then, the vector poten-
tial is A� �r� , t��� ·� · fL2E and its time derivative is
�A� �r� , t� /�t�� ·� · f2L2E. On the other hand, the gradient of
the scalar potential can be written as �� V�r� , t��E. Finally, we
obtain that the electric field in Eq. �B1� can be written as
expression �B3� under the quasistatic assumption � ·� � f2L2

�1. This inequality can be interpreted as the condition that
the length L of the system is much smaller than the wave-
length �=c / f of the electromagnetic signal of frequency
f �with c=1 /��� the speed of the electromagnetic signal�.
For the dimensions used in this work, never longer than few
hundreds of nanometers, the contribution of the electromag-
netic vector potential can be reasonably neglected at frequen-
cies lower than about 10 THz.66,67 If one is interested in
using larger reservoirs �with L on the order of microns� this
approximation is not valid and a whole electromagnetic so-
lution is needed to treat electromagnetic transport, as dis-
cussed in Ref. 68.

Let us clarify that one can arrive to the time-dependent
Poisson Eq. �B4� directly from the Coulomb gauge. We have
not followed this path here because we are not only inter-
ested in arriving to Eq. �B4� but also in showing that the
electric field is much more important than the magnetic field
when describing electron dynamics. In particular, with the
approximations discussed above we realize that the Lorentz
force F� �r� , t�=q ·E� �r� , t�+q ·v��r� , t��B� �r� , t� can be written as
�F� �r� , t���q ·E+q� ·� · f2L2E, where we have assumed that
the electron velocity �v��r� , t���Lf . Then, from the previous
scenarios that satisfy the quasistatic condition � ·� · f2L2�1,
we realize identically that the magnetic field can be ne-
glected in front of the electric field when describing electron
dynamics.
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One of the most reported causes of variations in electron devices characteristics �coming from the
atomistic nature of matter� are discrete doping induced fluctuations. In this work we highlight the
importance of accurately accounting for �time-dependent� coulomb correlations among �transport�
electrons in the analysis of such fluctuations. In particular, we study the effect of single ionized
dopants on the performance of a quantum wire double-gate metal-oxide-semiconductor field-effect
transistor, mainly when its lateral dimensions approach the effective cross section of the charged
impurities. In this regard, we use a recently developed many-particle semiclassical simulation
approach by Albareda et al. �Phys. Rev. B 79, 075315 �2009�� which provides an accurate treatment
of electron–electron and electron–impurity interactions �avoiding the mean-field approximation�.
We reveal the significant impact of the sign and position of the impurity along the transistor channel
on the on-current, the threshold voltage, the distribution of the current in the channel cross-section,
the transmission probabilities, and the distribution of transit times. We find that neglecting the
�time-dependent� coulomb correlations among �transport� electrons can lead to misleading
predictions of the previous results. © 2010 American Institute of Physics. �doi:10.1063/1.3455878�

I. INTRODUCTION

At deep nanometer scale, the number of dopants con-
tained in sub-10 nm channel devices will decrease to a few
tens.1 In addition, this number and the position of dopant
atoms, introduced either deliberately to improve device
characteristics or accidentally from contamination sources,
will vary among electron devices. Such differences will pro-
duce important variations on the devices’ microscopic
behavior,2–10 and consequently, the variability of macro-
scopic parameters such as drive current or threshold voltage
will increase.11–28 This particular phenomenon, known as
discrete dopant induced fluctuation �DDIF�, represents a
little fraction of the whole set of nondesirable effects arising
from the atomistic nature of matter, but is considered as one
of the main drawbacks in downscaling complementary
metal-oxide semiconductor �CMOS� technology. In order
to predict the impact of such phenomena in future
decananotransistors, during the last decade, several works,
both experimental and theoretical, have been carried
out.2–31 In particular, many simulations have been done using
drift-diffusion approaches,2,11–25 Monte Carlo �MC� solu-
tion of the Boltzmann equation,3–6,25–28 and quantum
approaches.7–10,25

The aim of the drift-diffusion simulations of DDIF, in-
stead of predicting the characteristics of a single device, is
focused on obtaining quantitative estimations of the variance
of basic design parameters, such as threshold voltage, sub-
threshold slope, or drive current for a whole ensemble of
microscopically different devices. Since such a statistical job
has to manage with a large ensemble of electron devices, a
fast simulation technique is required. Drift-diffusion simula-
tions have limitations due to their inability of capturing non-

equilibrium quasiballistic transport effects.12–14,23 They uti-
lize bulk mobilities that are not able to describe the complex
effects associated with the variations in the discrete configu-
ration of ionized dopants within the channel. Therefore, the
variation in the drive current obtained from drift-diffusion
simulations underestimate the real magnitude of the intrinsic
parameter variations.4,25,26 On the other hand, the “atomistic”
resolution of individual charges in drift-diffusion simulations
using fine meshes generate some problems.15,19,32 Due to the
classical time-independent nature of the drift-diffusion ap-
proach, a significant amount of mobile charge can become
trapped in the sharply resolved coulomb potential wells cre-
ated by discrete dopant �donors� charges assigned to a very
fine mesh.32 Such an artificial charge trapping in drift-
diffusion simulations give rise to several detrimental effects.
Attempts to correct these problems in “atomistic” simula-
tions have been made by charge smearing,33 incorporating
density gradient corrections15,19 or by splitting of the cou-
lomb potential into short- and long-range components.32

Due to its particle-based nature, the MC technique for
solving the Boltzamnn equation can easily account for time-
dependent nonequilibrium phenomena. However, this advan-
tage over the drift-diffusion approach entails an increment of
the computational time required to perform numerical simu-
lations. In this regard, although the MC method cannot man-
age with large statistical analysis, it is an excellent tool for
accurately studying electron transport phenomena related
with time-dependent coulomb correlations. In the last de-
cade, several works have remarked the electrostatic origin of
the DDIF phenomena and thus the necessity of paying maxi-
mum attention to electron–electron �e–e� and the electron–
impurity �e–i� coulomb interactions.34–38 Historically, e–i
�and also part of the e–e� interactions have been introduced
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perturbatively as an “instantaneous” and “local” transitions
of electrons between different regions of the k-space. How-
ever, such approach is clearly inappropriate34–38 for studying
DDIF because it assumes a homogenous distribution of im-
purities, so that the effects of “scattering” of electrons with
impurities become independent of the position of the impu-
rity. In addition, the expressions for the e–i scattering rates in
k-space are based on a two-body model which accounts for
many-particle �MP� contributions only through an assumed
screening function for the effective potentials,35 and it does
not take into account the electrostatic effects of the gate,
drain, and source terminals on the interaction. The standard
solution to avoid such important limitations, without signifi-
cantly increasing the computational cost of the simulations,
is defining an ad hoc division of the spatial range of the e–e
and e–i interactions into two parts. The long-range part is
enclosed in the solution of the scalar potential from the
mesh-dependent mean-field Poisson equation, and the short-
range part is introduced, either as an analytical expression of
the scalar potential4,34,36 �the so-called MC molecular dy-
namics approach, MCMD�, or sometimes perturbativelly.38

The MCMD approach, however, shows up several inconve-
nient. The first reported limitation was the so-called “double
counting” of the electrostatic force in the short-range inter-
action term.6,36 Since the e–e and e–i interactions is already
included, in a smoothed way, in the self-consistent potential
computed through the Poisson equation, the addition of a
separate analytical force �the molecular dynamics term� in
the MC transport kernel leads to the overestimation of both
the e–e and the e–i interactions.36 Such a problem can be
avoided by properly identifying the spatial region where
short-range coulomb interactions have to be included. Then,
the Molecular dynamics routine6,36,37 uses a “corrected”
short-range coulomb interaction there, that excludes the
long-range contribution from the Poisson equation. However,
then, the problem is the analytical nature of the corrections
incorporated in the short-range region that can lead to un-
physically large forces that cause artificial heating and cool-
ing �for acceptors and donors, respectively� of the
carriers.37,39 This problem can be corrected by introducing
modifications for the analytical expressions of the coulomb
interaction inside the short-range zones4,26 or by introducing
density gradient quantum corrections that accounts for the
formation of bound states in the donor induced wells.25,28

Nevertheless, the MCMD continues suffering from its intrin-
sic analytical description of the short-range interaction. Stan-
dard analytic short-range coulomb corrections cannot ac-
count for the electrostatic influence of the �gate, source, and
drain� boundaries.

During the last years, also some works have been de-
voted to study electron transport in presence of atomistic
impurities with full-scale quantum transport simulators.7–9,25

A common limitation of quantum simulations dealing with
such systems is the high time-consumption related with the
self-consistent solution of the Schrödinger and Poisson equa-
tions. In order to reduce the degrees of freedom of the sys-
tem, a common practice consists on assuming and effective
mass approximation for the description of the electronic
band structure and on suppressing the time-dependence of

the transport problem.7–9,25 Such approximations neglect an
important part of the coulomb correlations among electrons
and dopants. Finally, more sophisticated quantum approaches
can avoid the effective mass approximation by describing the
whole atomic structure from first-principles.10 Then, those
simulators provide a rigorous treatment of the effect of elec-
tron correlation on the description of the band structure, but
fail in providing a reasonable description of the correlation
among transport electrons. The reason is that electron de-
vices work under nonequilibrium conditions, while band-
structure improvements are generally computed from
�ground-state� equilibrium conditions.10 In other words, elec-
tron dynamic properties �such as charge distribution or cor-
relations among electrons� far from equilibrium can be quite
different from that computed at equilibrium.

Finally, let us notice that, when device dimensions are
drastically reduced to a few nanometers in both the lateral
and the longitudinal directions, the separation between long-
�screened� and short-�unscreened� range contributions of the
coulomb interaction becomes quite misleading. Then, the
fact that all electrons share the same solution of the Poisson
equation, at least for the long-range of the scalar potential
profile, implies important drawbacks for the correct treat-
ment of the e–e and e–i interactions. The charge of the whole
system is included in the kernel of the Poisson equation �in a
mean-field approximation� that provides an unphysical
self-interaction,40 i.e., an electron interacts with itself. This
effect becomes more relevant in small than in large meshed.
In particular, it can become quite dramatic when the reso-
lution of the mesh is increased up to cell spacing below
�2 nm.40

In the present work we describe the coulomb correla-
tions by means of a semiclassical particle-based electron
transport formalism �MC like� that goes beyond the standard
mean-field approximation40,41 by considering a particular
scalar potential profile for each electron on the device active
region �computed as a solution of a Poisson equation where
the own charge of electron is excluded�. This procedure al-
lows us to include, semiclassically, the effect of the e–e and
the e–i coulomb interactions with an exact procedure, i.e.,
without setting any arbitrary division between long- and
short-range,40 even in far from equilibrium conditions. On
the contrary, the effect of the e–e and electron–atom correla-
tions in the description of the band structure is considered
within the simple effective-mass approximation. Although
our approach fails to capture the energy levels and density of
states close to the impurity, it is sufficient for our purpose
and allows us to capture the effects of e–e and e–i correla-
tions among �transport� electrons in far from equilibrium �re-
alistic� scenarios.

Here we will employ the approach mentioned above40 to
study DDIF effects within a particular example of deep
nanoscale few-electron device, i.e., the silicon quantum wire
double-gate metal-oxide-semiconductor field-effect transistor
�MOSFET� �Refs. 2, 22, 24, and 42� �QWDG-FET�. Such
device is now-a-days accepted as one of the most promising
candidates to fulfil near future CMOS technology scaling
requirements. The addition of multiple-gate structures to the
near vicinity of the extremely thin nanowire channels, offers
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an exceptional electrostatic robustness that prevents from the
jeopardizing short-channel effects and makes their operation
without channel doping feasible. In one hand, the undoped
nature of the channel region dictates that the threshold volt-
age is determined by the work function difference between
the gate material and the intrinsic silicon body. On the other
hand, it makes such devices inherently more resistant to ran-
dom dopant fluctuation effects than conventional single-gate
MOSFETs. Nevertheless, with regard to this second point,
even “undoped” channels can contain ionized doping atoms
arising from contamination or from source/drain implanta-
tion processes. Due to the random nature of such processes,
the number, sign, and position of doping atoms are subject to
stochastic variations. Furthermore, at deep nanometer scale,
the effective cross section of such impurities dangerously
approaches the lateral dimensions of the channel, thus having
a much more stronger impact on carrier transport.

This paper is organized as follows: after this introduc-
tion, in Sec. II, we discuss the details of our MP approach. In
Sec. III we describe how DDIF affect the main characteris-
tics of the QWDG-FET and we highlight the importance of
accurately account for the dynamic MP effects. Finally, in
Sec. IV we summarize the main results of the work.

II. COMPUTATION OF MANY-ELECTRON COULOMB
CORRELATIONS IN OPEN SYSTEMS INCLUDING
E–I INTERACTION

This section is devoted to describe the semiclassical
many-electron MC used to simulate DDIF. We discuss the
expression of the MP Hamiltonian, under standard effective
mass approximation,43,44 that describes a system of spinless
electrons in a solid-state semiconductor open system40 in-
cluding charged impurities. As discussed in the introduction,
due to the fundamental electrostatic origin of DDIF effects,
this approach is focused in accurately describing the e–e and
e–i coulomb interactions.

We start the discussion with the description of a system
consisting of M �valence� electrons and P ionized atoms.45,46

Because we are interested only on electron dynamics �with a
Born–Oppenheimer approximation�, the corresponding
Hamiltonian contains only the e–e and e–i coulomb interac-
tion terms and the kinetic energies of the M electron system,
i.e.,

H�r�1, . . . ,r�M,p�1, . . . ,p�M� = �
k=1

M

�K�p�k� +
1

2 �
j=1

j�k

M

q · V�r�k,r� j�

+ �
j=1

P

q · V�r�k,R� j�� , �1�

where q represents the charge of the k-th electron and the
condition j�k takes into account the obvious restriction that
a particle cannot interact with itself. We refer to r�k or p�k as
the k-th electron position and momentum, respectively. No-
tice that the right hand side of Eq. �1� contains also the
positions of the charged impurities, R� j. The kinetic energy
term K�p�k� is defined as

K�p�k� =
1

2mk
�p�k�2, �2�

where mk is the particle effective mass. On the other hand,
the coulomb interaction potentials in Eq. �1� are defined as

V�r�k,r� j� =
q

4��	r�k − r� j	
, �3�

for e–e interaction and

V�r�k,R� j� =
qj

4��	r�k − R� j	
, �4�

for e–i interaction. The parameter qj is the charge of the j-th
ionized atom and � is the electric permittivity. As mentioned
above, the contribution of the atomic structure is accounted
for by considering a dielectric medium and using an effective
mass.

A complete electronic circuit �including the devices, the
wires and the batteries� behaves as a closed system with a
large number �M , P→�� of electrons and dopants. However,
since we can only deal with a finite number of degrees of
freedom, we restrict our system to a small part of the circuit,
for example, the channel of a transistor. Therefore, we divide
the previous ensemble of M electrons and P dopants into a
subensemble of electrons, 
1,2 ,3 , . . . ,N�t��, and dopants

1,2 ,3 , . . . ,D�, with positions inside the volume � and a
second subensemble, 
N�t�+1, . . . ,M� and 
D+1, . . . , P�,
which are outside it. As drawn in Fig. 1, we assume a paral-
lelepiped with six rectangular surfaces S= 
S1 ,S2 , . . . ,S6�
which are the boundaries of �. Since we are only interested
in the dynamics of the N�t� particles, the kinetic energy and
the coulomb interaction between the carriers of the second
subensemble does not appear in the new Hamiltonian of the
open system. Thus, according to the detailed procedure de-
scribed in Ref. 40, the MP Hamiltonian describing the dy-
namics of the N�t� particles can be written as

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t� = �
k=1

N�t�


K�p�k� + q · W̄k�r�k,t�� .

�5�

Each i-term of the electrostatic potential, W̄k�r�k , t�, is a solu-
tion of one particular three-dimensional �3D� Poisson equa-
tion

S1(Drain)

z

y
x

� �N tr
�

Mr
�

jr
�

S2 S6

�
S3 S5

Lx Ly

Lz

S4(Source)

jR
�

FIG. 1. �Color online� Schematic representation of the volume �
=Lx ·Ly ·Lz and its limiting surface S= 
S1 ,S2 , . . . ,S6�. There are N�t� elec-
trons inside and M −N�t� outside this volume.
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�r�i

2 ���r�i� · W̄i�r�i,t�� = �̄i�r�i,t� , �6�

Notice that the use of the Poisson Eq. �6� for the scalar
potential, instead of expressions �3� and �4�, has the addi-
tional advantage of using position dependent electric permit-
tivity ��r�i�. The charge density depends on the position of the
N�t� electrons and the D ions

�̄i�r�i,t� = �
j=1

j�i

N�t�

q · ��r�i − r� j�t�� + �
j=1

D

qj · ��r�i − R� j� , �7�

where r� j�t� is the classical trajectory of the j-th electron.
Now Eq. �5� is independent of the position of the exter-

nal particles because they only affect the boundary condi-
tions of Eq. �6� in the six rectangular surfaces S.

The classical description of the electron dynamics sub-
jected to the MP Hamiltonian of Eq. �5� will be computed
using the well-known Hamilton equations. In particular, we
can obtain the �Newton-type� description of the classical tra-
jectory r�i�t� in the real space through

dp� i�t�

dt
= �− �r�i

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t��r�1=r�1�t�,. . .,p�N�t�=p�N�t��t�

�8�

and

dr�i�t�

dt
= ��p� i

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t��r�1=r�1�t�,. . .,p�N�t�=p�N�t��t�
.

�9�

For the MP Hamiltonian of Eq. �5�, Eq. �9� gives the trivial
result

m · v� i�t� = p� i�t� , �10�

while Eq. �8� can be expressed as

dp� i�t�
dt

= �r�i
W̄i�r�i,t� . �11�

Let us therefore keep the important idea that expressions
�5�–�7�, together with a set of appropriate boundary condi-
tions, provide an exact treatment of the MP coulomb corre-
lations in semiclassical scenarios. Let us emphasize that the

subindex “k” in W̄k�r�k , t� implies that there are N�t� scalar
potential, one for each electron. This implies a coupled sys-
tem of Newton equations that will be used to describe DDIF
effects in Sec. III.

III. NUMERICAL SIMULATION OF ELECTRON
TRANSPORT WITH SINGLE DOPANTS IN THE
CHANNEL OF A NANOWIRE DOUBLE-GATE MOSFET

As mentioned in the introduction, although silicon nano-
wire multiple-gate MOSFETs are semiconductor devices
with a great acceptance due to its relevant electrostatic im-
provement with respect to other structures, DDIF effects can
significantly degrade their expected performance. In order to
qualitatively evaluate the importance of such limitation, in
this work we study the effects of DDIF in a silicon QWDG-
FET. We are especially interested in analyzing the impact of

the sign of the dopant charge and its position along the chan-
nel. After exposing some relevant details of the simulated
device and some technical remarks, we will evaluate the im-
portance of random doping fluctuation effects on the main
characteristics of the QWDG-FET.

A. Device characteristics and simulation details

1. Description of the simulated device: QWDG-FET

The structure of the simulated QWDG-FET �see Fig. 2�
is described in Table I. Two highly N doped Si contacts
�N+=2�1019 cm−3� are connected to an intrinsic Si channel
with lateral dimensions Ly =5 nm and Lz=2 nm. Such di-
mensions originate quantum confinement in the lateral direc-
tions �a quantum wire�, not only reducing the degrees of
freedom of the system but also inducing volume inversion
within the channel47 �see Sec. III A 2 for a detailed explana-
tion on how is quantum confinement taken into account in
our semiclassical approach�. In this sense, the electrostatic
blockade generated by the ionized dopants is expected to be
favored when impurities are distributed mainly in the center
of the channel cross section. At the same time, the length of
the quantum wire is 10 nm. This results in a volume of only
100 nm3, so that the number of interacting channel electrons
is of the order of 10. Under such special conditions, the
importance of the interaction among electrons is particularly
relevant.

Gate

Ly

Lz

e-
v

N+

N+
N

z

y
x

Tox

Tox

Lx

Source

Drain

Gate

Source-channel
interface, Sx Channel-drain

interface, Dx

FIG. 2. �Color online� Schematic representation of the QWDG-FET.

TABLE I. Simulation parameters for the DG-FET depicted on Fig. 9.

Units Symbol Value

Lengths �nm� Lx 10
Ly 5
Lz 2
Tox 2

Spatial step �nm� DX 0.85
DY 0.5
DZ 0.2

Relative permittivity ¯ Air 1.0005
¯ Oxide 3.8000
¯ Silicon 11.7514

Doping �cm−3� Channel N Intrinsic
Contact N+ 2�1019

Simulation time �s� T 1�10−9

Temporal step �s� Dt 2�10−16
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2. Simulation details

We use the classical solution of the MP system described
in Eq. �5� to simulate the electron transport in the quantum
wire DG-FET depicted in Fig. 2. Electron transport in the
“x” direction �from source to drain� takes place along a Sili-
con �100� oriented channel, at room temperature. In particu-
lar, the electron mass is taken according to the six equivalent
ellipsoidal constant energy valleys of the silicon band
structure.48,49 The effective masses of the ellipsoids are ml

�

=0.9163m0 and mt
�=0.1905m0 with m0 being the free elec-

tron mass.48 As commented above, the lateral dimensions of
the Si channel Lz and Ly are both small enough �see Table I�,
so that the active region behaves as a one-dimensional �1D�
system and the energy of an electron in one particular
valley is E=�2kx / �2mt�+E1D

q , where E1D
q =�2�2 / �2mtLy

2�
+�2�2 / �2mlLz

2� represents the minimum energy of the first
subband, whose value is E1D

q =0.182 eV for Lz=2 nm and
Ly =5 nm. The energies of the next lowest subbands �E1D

q

=0.418 eV or E1D
q =0.489 eV� are assumed to be high

enough to keep a single band simulation. Therefore, we use a
3D Poisson solver to deal with the device electrostatics, but a
1D algorithm to describe the velocity of each electron in the
“x” direction. Due to the lateral electron confinement, the
velocities in the “y” and “z” directions are zero.50,51 This is
an exact result for describing electron confinement in the
rectangular structure of Fig. 2 when the e–e and e–i are not
considered. The explicit consideration of the effect of e–e
and e–i correlations on the electron confinement �energy lev-
els� is an extremely complicated issue within the MP strategy
developed here �which considers one different scalar poten-
tial for each electron� and it is far from the scope of this
work.

All the simulations carried out in the present work use a
3D finite-difference Poisson solver scheme. The whole vol-
ume � of the active region drawn in Fig. 1 is divided
into Nx ·Ny ·Nz cells. Each 3D cell has spatial dimensions
DX, DY, and DZ �see Table I�. Thus, the active region
of our simulated device has a volume equal to
�Nx ·DX� · �Ny ·DY� · �Nz ·DZ�=Lx ·Ly ·Lz. The boundary con-
ditions of the Poisson equation on the six rectangular sur-
faces of Fig. 1 are defined using either Dirichlet or Neumann
criteria. On the closed “nonmetallic” surfaces, Neumann
boundary conditions are used with the educated guess that
the component of the electric field normal to that surfaces is
zero. The continuity of the displacement vector normal to
surfaces justifies this assumption at the boundaries when the
relative permittivity inside � is much higher than the corre-
sponding value outside. On the other hand, in the contact
surfaces of Fig. 1 we use the Dirichlet boundary conditions
reported in Ref. 40.

B. Effects of single ionized impurities in a QWDG-ET

In this section we evaluate the impact of single ionized
impurities on the previously defined QWDG-FET, consider-
ing three different positions along the transistor channel.
Since the lateral confinement induces volume inversion in
the channel of the QWDG-FET, in order to maximise the
DDIF effects, we place the impurities centered in the lateral

directions. Most of the carriers are hence forced to cross the
channel in the very vicinity of the impurity positions. We
will analyze three different scenarios corresponding to three
different positions of the impurities along the channel, i.e.,
the source–channel interface, the center of the channel, and
the channel–drain interface �see Fig. 2�.

We will start by discussing a series of microscopic char-
acteristics of the QWDG-FET. First we will consider the
spatial distribution of the current density, Jx. After that we
will discuss the transmission characteristics of the device.
We will also study the variations in the transit time, the pa-
rameter that ultimately defines the intrinsic switching speed
of the technology. Finally, we will compute the macroscopic
current-voltage characteristics and the threshold voltage
variations.

The importance of accurately treating the coulomb cor-
relations in the study of DDIF in such nanoscale devices has
been advanced in the introduction. Here, in order to highlight
the importance of taking into account the time-dependent e–e
and e–i correlations, we compare some results with those
obtained with a single-particle �SP� mean-field approach dis-
cussed in Appendix A. In this regard, we will refer to MP
results to describe the simulation performed with the algo-
rithms that require solving N�t� Poisson equations with N�t�
charge densities �expressions �5�–�7�� at each time step. Al-
ternatively, we refer to the time-independent SP approxima-
tion to the more simplistic �though usual� approach that con-
sists in solving a single time-independent Poisson equation
�expressions �A1� and �A2� in Appendix A� for all electrons
at each time step of the simulation.

1. Spatial distribution of the current density

In this section we analyze how dopants placed in the
channel of a QWDG-FET induce significant changes in the
spatial distribution of the current density across the channel
section. We consider the steady state current corresponding
to a fixed bias point �VGate=0 V; VDrain=0.5 V� and ana-
lyze the spatial distribution of the current in the channel
cross section. Since we deal with a confined electron system
under stationary conditions, the continuity equation reduces
to �� Jx=0 and consequently the spatial distribution of Jx is
the same in any section along the transistor channel. Before
discussing some interesting results, it is important to recall
that, due to the lateral confinement, the injection of carriers
obeys a sinusoidal spatial distribution centered on the y and z
directions that causes volume inversion along the channel. In
Fig. 3 we present the current density distribution when a
negative impurity is located at the source–channel interface.
As it can be observed, for zero applied gate voltage �Fig.
3�a��, its presence produces an important deformation of its
spatial distribution, pushing carriers away from its location.
As shown in Fig. 6 such a result can be justified through the
potential barrier induced by the presence of the negative im-
purity. Figure 4�a� represents the same information but now
placing the dopant in the center of the channel. Even though
the height of the potential barriers corresponding to these
two previous cases are quite similar �see Fig. 6�, the magni-
tude of the current density is importantly reduced in the sec-
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ond case with respect to the former. Notice that from a SP
point of view �see Appendix A� such a situation cannot be
accepted. Due to the one-by-one electron energy conserva-
tion, two identical potential barriers �despite its position
along the channel� would result in an identical current distri-
bution. From a MP point of view, the time-dependent e–e
interaction implies a much looser restriction on the energy of
the carriers. This result will be discussed later. On the con-
trary, as shown in Figs. 3�b� and 4�b�, a SP treatment of the
electron transport gives quite similar current density distri-
butions for these two cases. Finally, in Fig. 5, the impurity
has been placed at the channel-drain interface. In this a case,
the applied bias reduces drastically the influence of the po-
tential deformation induced by the ionized dopant atom �see
Fig. 6�. Under such conditions, the electron transport is
roughly ballistic, the e–e interaction effects are masked, and

the predictions of the current density distribution arising
from a MP simulation are practically equivalent to those cor-
responding to a SP simulation.

2. Fluctuations of the transmission coefficient

Another important magnitude that can contribute to the
understanding of the influence of single charged impurities
within the channel of a QWDG-FET is the transmission co-
efficient. The probability of an electron injected from the
source contact to reach the drain contact �i.e., transmission
probability� is presented in Fig. 7 as a function of the inject-
ing energy �i.e., the kinetic energy of the carrier when it
enters the channel through the source–channel interface�,
again for VGate=0 V and VDrain=0.5 V. The transmission is
computed in the presence of an ionized acceptor at the three
predefined positions along the channel. Once more, in order
to highlight the relevance of the coulomb correlations among
the electrons, we also present the same type of results though
obtained with a SP treatment �see Appendix A�.

FIG. 3. �Color online� Current density across the channel section when the
negative impurity is placed at the source–channel interface. In �a� the results
correspond to a MP treatment of the system �see Sec. II�. In �b� the results
have been computed within a SP mean-field approach discussed in Appendix
A.

FIG. 4. �Color online� Current density across the channel section when the
negative impurity is placed at the center of the channel length. In �a� the
results correspond to a MP treatment of the system �see Sec. II�. In �b� the
results have been computed within a SP mean-field approach discussed in
Appendix A.

FIG. 5. �Color online� Current density across the channel section when the
negative impurity is placed at the channel-drain interface. In �a� the results
correspond to a MP treatment of the system �see Sec. II�. In �b� the results
have been computed within a SP mean-field approach discussed in Appendix
A.

FIG. 6. �Color online� Mean potential energy profiles along the channel
�centered in lateral directions� for the three different positions of the nega-
tively charged impurity. This curves are identical independently of the used
treatment �SP or MP�.
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As evidenced in Fig. 7, the transmission probabilities for
low-energy electrons decrease as the impurity is moved from
the channel–drain to the source–channel interface. While the
important difference between the channel-drain case and the
other two can be easily understood through the potential en-
ergy profiles depicted in Fig. 6, the differences between the
centered and the source-channel cases at low energy require
a more detailed explanation. Since the height of the potential
barriers is very similar in both cases, a SP treatment of the
electron transport gives identical results �see Fig. 7�. Hence,
as already discussed for the spatial distribution of Jx, major
differences can only be attributed to coulomb correlations.
Even more, when the impurity is located at the channel-drain
interface, the SP approach results in a constant transmission
value equal to the unity. Therefore, the e–e interaction also
explains why, even in the absence of a potential barrier, there
is no total transmission. At higher energies �from 0.05 eV
and above�, the order of the transmission curves at low en-
ergies �higher transmission when the dopant is moved from
source to drain� is lost as a consequence of a different slope
of the transmission curves in their linear region �dotted lines
in Fig. 7�. This effect is a particular feature of the MP sys-
tem. As the ionized impurity is moved from source to drain,
the time required for any electron to reach the position of the
impurity increases. Thus, when the ionized impurity is
placed toward the drain, the electrons will have more time to
interact with the rest of the carriers before reaching the po-
sition of the ion and hence, the probability of conserving
their initial energy decreases. From Figs. 6 and 7, it can be
inferred that, despite the similarity of the potential profiles
corresponding to the impurities located at the source and the
channel center, a displacement of the ionized dopant toward
the drain induces a reduction in the slope of the transmission
curve in its linear region. Let us remark that such a particular
behavior cannot be described by a SP approach of electron
transport, which forces every electron to conserve its total
energy �see the empty squares and circles in Fig. 7�.

Recently, a study of the transmission coefficient in ultra-
thin Si nanowires in the presence of charged impurities has
been addressed with a density functional theory approach.10

In that work, a boron ionized atom was placed in a �100
 Si

nanowire with a diameter of approximately 2 nm. Under
these particular conditions, the results showed transmission
coefficients of the order of 1�10−3 for minority carriers
�electrons�. The origin of the divergence between these dras-
tically reduced transmission values and those presented in
Fig. 7 can be ascribed to several differences related to both,
the simulated device and to the underlying assumptions of
both simulation procedures. First of all, the nanowire consid-
ered in Ref. 10 is quite thinner than the one considered in
this paper. This means that the impact of an impurity on the
electron transmission is expected to be stronger because the
nanowire cross-section is similar to the effective cross-
section of the impurity. On the other hand, the 1D description
of the channel of the nanowire reported in Ref. 10 certainly
overestimates the electrostatic blockade induced by the im-
purities even if tunnelling is naturally included in the calcu-
lations. In the semiclassical 3D approach considered in our
work, the current density is found to flow �as shown in Figs.
3 and 5� far from the ionized dopants, where the potential
barrier is substantially lower. Such a spatial distribution can-
not be reproduced by a 1D approach as that of Ref. 10,
which would only allow the current to flow above a potential
barrier which is homogeneous in the nanowire cross-section.

3. Fluctuations of the transit time

Let us discuss how single ionized impurities influence
the transit time, 	, of the carriers traversing the QWDG-FET.
The relevance of studying this particular characteristic comes
from the fact that the switching speed of any FET technology
depends ultimately on the transit time. As far as we know,
this is the first time that the effects of single ionized dopants
on the carrier transit time are analyzed. Within the �frozen�
time-independent SP approach, the time spent by the k-th
electron �injected in a particular y0k and z0k positions at the
source contact with an injecting energy Ek0� to achieve the
drain contact, can be analytically calculated as

	k�Ek0,yk0,zk0� = �
xS

xD dxk

�Ek0 + qW̄�xk,y0k,z0k�
, �12�

where xS and xD refer to the position of the source–channel
and channel–drain interfaces in the transport direction, and

W̄�xk ,yk0 ,zk0� is the mean-field potential profile �see expres-
sion �A2� in Appendix A�.

When using the time-dependent MP approach described
in Sec. II, Ek0 in Eq. �12� is no longer a constant because the
total energy of each carrier is no longer a constant of move-
ment. Moreover, each electron is affected by its own poten-
tial profile, which is different from that affecting the other
carriers. The transit time corresponding to the k-th electron is
hence,

	k�Ek0,yk0,zk0� = �
xS

xD dxk�t�
�Ek�xk�t�� + qWk�xk�t�,yk0,zk0,t�

,

�13�

where Wk�xk ,yk0 ,zk0� is the MP potential profile described in
Sec. II, the injecting energy is now Ek0=Ek�xS�, and xk�t� is
the classical trajectory of the k-th electron.

FIG. 7. �Color online� Transmission coefficients as a function of the injec-
tion energy for three different positions of a negatively charged impurity.
Results are presented for the MP framework presented in Sec. II and for the
SP one developed in the Appendix A. MP refers to the MP �solid symbols�
and SP to SP �empty symbols�.
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In Fig. 8 we present the transit time, averaged over y and
z directions, for the carriers traversing the QWDG-FET from
source to drain as a function of the injecting energy, Ek0. The

symmetry of the potential profiles W̄�xk ,yk0 ,zk0� when the
ionized dopant is placed at source and drain contact-channel
interfaces lead to identical transit times for the SP treatment
�see Eq. �12� and open symbols in Fig. 8�. Moreover, since
the variations in the potential profiles introduced by the MP
interaction effects are minimized when the dopant is placed
at the borders of the active region, we find a roughly identi-
cal result for these two situations in the MP approach �solid
symbols�. The highest transit times correspond to the cen-
tered impurity, which largely exceed those corresponding to
the previous two cases. The differences between the SP re-
sults and those coming from the MP approach are maximized
in this case, and thus, the switching speed predictions from
these methods would notably differ in this particular case.
While the differences among the SP results come exclusively
from the differences in the shape of the potential profiles, in
the MP approach such differences are added to those coming
from the MP correlations. In this regard, as we will further
discuss below �in relation to Figs. 9 and 10�, the physical
origin of the differences between the SP and the MP results

corresponding to the centered impurity are found to be re-
lated to a transfer of energy between the electrons crossing
the channel and those that are reflected back to the source.

From Fig. 8 two important results can be extracted. First,
that the transit time variations related to random impurity
fluctuations are not negligible in QWDG-FETs. Second, that
considering e–e coulomb interactions is crucial to correctly
simulate the time-dependent response of such nanoscale de-
vices in the presence of atomistic impurities.

Finally, let us discuss the spatial distribution of transit
times in the cross-section of the device averaged over the
injecting energies. Figures 9 and 10 represent the distribution
of the transit times along the y �centered in z� and z �centered
in y� directions, respectively. If all the traversing carriers had
the same total energy, according to Eq. �12� one would ex-
pect to find the largest times concentrated around the impu-
rity location, where the potential barrier is higher �see Fig.
6�. Nevertheless, since the injected carriers are energetically
spread according to Fermi statistics, only the fastest electrons
�the most energetic ones� are able to achieve the drain con-
tact across the top of the barrier. Consequently, a minimum
of the transit time is found at the location of the impurity
atom. When the dopant is placed at the source–channel in-
terface, the largest transit times appear away from the impu-
rity and the minimum above the dopant becomes absolute.
Although both, SP and MP simulations give similar overall
results in this case, some discrepancies can be appreciated
due to an energy exchange among the different regions of the
channel. On the other hand, when the impurity is placed in
the center of the channel, the transit times increase drasti-
cally up to 60 fs. Although the shape of the scalar potential
has to do with the important increment both in the SP and the
MP results, e–e interactions play a crucial role in the varia-
tion in transit times. While the SP and the MP results show
again a very similar pattern in this particular case, the mag-
nitude of the transit time differs enormously between these
two approaches. Since the spatial integral of the MP aver-
aged transit times along the y and z directions diverges sig-
nificantly from its SP counterpart, it can be inferred that the
exchange of energy is produced not only among the electrons
crossing the channel but also between them and those being
backscattered. If the energy transfer would only involve elec-

FIG. 8. Transit times as a function of the injection energy for the three
different positions of the negatively charged impurity. Results are presented
for the MP approach �solid symbols� presented in Sec. II and for the SP
treatment of Appendix A �empty symbols�. Here, MP refers to the MP and
SP to SP.

FIG. 9. �Color online� Spatial distribution of the transit times along the y
direction �centered in z� when a negatively charged impurity is placed at
different places of the channel.

FIG. 10. �Color online� Spatial distribution of the transit times along the z
direction �centered in y� when a negatively charged impurity is placed at
different places of the channel.

1-8 Albareda et al. J. Appl. Phys. 108, 1 �2010�

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

galbareda
B



trons crossing the device, their total energy would remain
unchanged, and thus their averaged transit time would be
identical to that found for the SP approach. On the contrary,
the mixture of energy exchange among the traversing elec-
trons and among traversing and backscattered electrons give
rise to a nonconserving averaged transit time. In fact such an
energy transfer is at the origin of the big transit times differ-
ences found in Fig. 7. Finally, when the impurity is placed at
the channel-drain position, the system becomes basically bal-
listic, and divergences between expressions �12� and �13�
become negligible.

4. Fluctuations of the threshold voltage

In order to avoid an excessive increase in the length of
this paper, these results will be presented only for our novel
algorithm that includes e–e and e–i coulomb correlations.
Threshold voltage �VT� fluctuations are a well known effect
related to DDIF in MOSFETs.11–28 In this section we analyze
this phenomenon in the QWDG-FET from both positive and
negative impurities. Figure 11 shows the value of the mean
current as a function of the applied gate voltage �transfer
characteristic� in the saturation region �VDrain=1 V�. As
shown in Fig. 12, while negative ions induce a shift of the
threshold voltage toward higher values, positively charged
impurities shift it down to lower values. The explanation of

such a behavior is quite simple. Since the majority carriers
are electrons, positive charged impurities introduce a poten-
tial well that favors the flow of the current, while negative
impurities appear as potential barriers which tend to block
the transmission of electrons. A dependence of the saturation
threshold voltage on the position of the impurities along the
channel can also be observed �see Fig. 12�. As a negative
�positive� dopant is displaced from drain to source, the
threshold voltage is increased �decreased� in a nonlinear way
due to an increment of the height �depth� of the induced
potential deformation that is less and less masked by the
applied drain voltage. As shown in Fig. 12, positive impuri-
ties generate less variation in the threshold voltage than
negative ones in NFET devices �the opposite is expected to
occur in PFETs�.

IV. CONCLUSIONS

The atomistic nature of matter is an important source of
random variations on the performance of electron devices
scaled to the nanometer scale. In this work, we have focused
on one of the most promising device structures to reach the
limit of CMOS with sufficient electrostatic control, the quan-
tum wire DG-FET. This device is very robust from the point
of view of the control of short-channel effects. Nevertheless,
since its dimensions are very small, its performance is
strongly influenced by fluctuations in the number, sign, and
position of impurities. To avoid the use of the mean-field
approximation and the arbitrary separation of the e–i inter-
action into short-range and long-range terms, we have stud-
ied the impact of single impurities using an exact treatment
of the e–e and e–i interactions in the framework of MP MC
simulation. We have revealed the significant impact of the
sign and position of the impurity along the transistor channel
not only on the threshold voltage but also on hidden aspects
of electron transport such as the distribution of the current in
the channel cross-section, the transmission probabilities and
the distribution of transit times, which finally determine the
intrinsic speed of the device. Comparison with more standard
simulations which assume a time-independent mean-field ap-
proximation has allowed us to reveal the importance of an
accurate treatment of the e–e interactions in the study of
DDIF in nanometer scale devices. The correlations between
electrons in these ultrascaled systems are very strong and
have significant impact on the electron transport, in general,
and on the DDIF, in particular. Finally, let us emphasize that
many efforts are being done in the literature to improve the
treatment of electron �and electron–atom� correlations on the
description of the band structure for electron devices in
�ground-state� equilibrium conditions. On the contrary, in
this work we open a new path to study the effects of e–e �and
e–i� correlations in the current measured in nanoscale elec-
tron device under �applied bias� far from equilibrium condi-
tions. Future work will improve the treatment of confinement
and exchange interactions51 in the many particle strategy pre-
sented here.

FIG. 11. Average drain current at VDrain=1 V as a function of the gate
voltage for positive/negative impurities located at different places along the
channel.

FIG. 12. �Color online� Saturation threshold voltage, VT, as a function of the
position of the p- and n-type impurities along the channel.

1-9 Albareda et al. J. Appl. Phys. 108, 1 �2010�

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

AQ:
#4AQ:
#5

galbareda
B



APPENDIX A

1. SP HAMILTONIAN FOR AN OPEN SYSTEM

In order to highlight the importance of accurately ac-
count for the e–e time-dependent coulomb correlations,
throughout the discussion of the results we compare our MP
approach with a particular mean-field approach. In this ap-
pendix we want to describe such a mean-field approach.

The SP approach consists on a mean-field treatment of
the e–e interaction described by the next Hamiltonian

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t� = �
k=1

N�t�


K�p�k� + qk · W̄�r�k�� .

�A1�

Comparing Eqs. �5� and �A1�, let us notice that the potential

W̄�r�k� has no longer a subscript k, neither a time dependence.

The potential profile, W̄�r�k�, describing the electrostatics of
the problem is now time-independent and equal to the aver-
age �over time and particles� value of the MP potential pro-
file, i.e.,

W̄�r�k� =
1

T · NT�T��0

T

�
k=1

N�t�

W̄k�r�k,t� · dt , �A2�

where T→� and NT�T� is the total number of electrons that

have been involved in the QWDG-FET during T. W̄k�r�k , t� is
defined as in Eqs. �6� and �7�. The static potential profile
appearing in Eq. �A2� is only capable of capturing the mean
behavior of the system electrostatics.

Once the electrostatic potential is defined, the time-
dependent 3D electron dynamics are computed using the
Hamilton equations in Eqs. �8� and �9�. In particular, we can
obtain the �Newton-type� description of the SP classical tra-
jectory r�i�t� in the real space through

m · v� i�t� = p� i�t� �A3�

and

dp� i�t�
dt

= �r�i
W̄�r�i� , �A4�

exactly in the same way as in the MP case �see Sec. II�.
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50We assume that the electron velocity is equal to zero in the lateral direc-
tions where there is energy confinement. This is a reasonable assumption
that can be formally justified for Ref. 51 when the probability presence in
that direction does not change with time. The main approximation here is

assuming that the time dependence of the wave function involves only one
quantized energy in the mentioned direction. We define the geometry of
the QWDG-FET to support these approximations.
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1-11 Albareda et al. J. Appl. Phys. 108, 1 �2010�

865

866
867
868

869

870
871
872

http://dx.doi.org/10.1103/PhysRevLett.98.066803
galbareda
B



 



INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS

Int. J. Numer. Model. (2010)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jnm.748

Electric power in nanoscale devices with full Coulomb
interaction

G. Albareda�,y, A. Alarcón and X. Oriols
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SUMMARY

An accurate reformulation of the electric power in quasi-ballistic (classical or quantum) scenarios is
deduced within an explicit many-particle treatment of the Coulomb interaction. The traditional definition
of the electric power is compared with the new formulation presented here for classical bulk, quantum well
and quantum wire double-gate MOSFETs by means of 3D many-electron Monte Carlo simulations. The
accurate results with the many-electron approach show not-negligible discrepancies when compared with
the conventional definition. Such small discrepancies become very important when the single-transistor
power is multiplied by the huge number of transistors present in the state-of-the-art integrated circuits.
Copyright r 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Power consumption is one of the main drawbacks when scaling down any new technology [1, 2].
In the last few years, the electronic development is being driven not only by the desire of
improving circuit density and speed but also of reducing power consumption. The ITRS has
identified this last constraint as one of the top three overall challenges for the next 15 years [3].
In this sense, accuracy is a mandatory requirement when predicting electric power in the active
region of a MOS transistor because the results of the single transistor are then extrapolated to
the large number of transistors in present-day CPUs.

For any set of electrons (for example, a nanotransistor), the dynamic of one particular
electron is coupled to all other electrons because of their mutual Coulomb interactions. This
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indicates that the electrostatic force made over each particular electron depends on the
instantaneous position of the rest of charges. In other words, and hence that the trajectory
followed by a particular electron depends on the trajectories followed by the rest of the electrons.

From a computational point of view, the direct solution of such a many-electron Coulomb-
interacting system is usually inaccessible. In most electron transport models, the standard
solution to overcome this computational barrier is based on assuming that electrons move
according to a unique ‘average’ potential profile (the so-called mean field approximation). This
is the strategy used in the traditional Monte Carlo method applied to study electron transport in
semiconductor electron devices, where the Coulomb interaction is separated into two parts
[4–7]. The first part is the long-range Coulomb interaction that is included in a mean-field
solution of Poisson equation in the real space. The second part is the short-range Coulomb
interaction that is usually taken into account perturbatively (i.e. approximately) in the
reciprocal space via the consideration of electron-electron scattering rates.

Nowadays, in state-of-the-art nanometric electron devices, the output current is carried by
very few electrons inside very small (nanometric) regions. One can expect that the simulation
of electron devices using the mean-field approximation is not accurate enough for power
estimations. Many works are being devoted to deeply understand the energy consumption in
both, on/off and switching states. However, to our knowledge, the energy consumption problem
from a perspective beyond the mean-field approach has not been addressed in the literature.
This is the goal of this seminal manuscript.

After this introduction, in the second section of this work, we present an accurate
reformulation of the electric power in ballistic (classical or quantum) nanoscale devices based on
a direct solution of the many-particle equation of motion of the system by solving a particular
Poisson equation for each electron. A third section is devoted to a numerical comparison
between the standard expression for the electric power and the new reformulation. In particular,
we use a numerical simulation of a double-gate quantum-wire FET (1D DG-FET), a double-
gate quantum-well FET (2D DG-FET), and a double-gate bulk FET (3D DG-FET). The final
part is dedicated to summarize the most important conclusions of this work.

2. ELECTRIC POWER IN CLASSICAL AND QUANTUM ELECTRON DEVICES

We consider a system of N(t) electrons inside a volume O. Here we are especially interested on
the application of our results to nanoscale electron devices and, hence, we consider the volume O
as the active region of a DG-FET (see Figure 1). Each electron is defined by a particular
trajectory ~ri½t� and velocity ~viðtÞ ¼ ~við~ri½t�Þ. When dealing with pure quantum systems, the
previous definitions are ascribed to a quantum (Bohm) trajectory [8, 9].

In order to treat Coulomb interaction among electrons exactly, we have to avoid the electron
self-interaction that arises from the resolution of a common Poisson equation for all electrons.
Hence, we solve a particular Poisson equation for each electron:

H2ðEVið~r; tÞÞ ¼ rið~r; tÞ ð1Þ

where Við~r; tÞ represents the electrostatic potential ‘seen’ by the i-th electron and rið~r; tÞ accounts
for all charges except the i-th electron [10] (in the present work the assignation of charge will
follow a cloud-in-cell scheme) The parameter e is the permittivity. From expression (1), it can be

G. ALBAREDA, A. ALARCÓN AND X. ORIOLS
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easily inferred that the force over each electron is qi � ~Eið~r; tÞ, which does not account for the self-
interaction because each electron has its own electric field.

Now, the work done to ‘move’ the i-th electron from the initial position, ~ri½0�, to a final
position, ~ri½t�, is

WiðtÞ ¼
Z t

0

qi �~við~ri½t0�Þ � ~Eið~ri½t0�; t0Þ � dt0 ð2Þ

Then, our original reformulation of the many-electron electric power, computed as the time-
derivative of this work, can be written as

Pm�e;iðtÞ ¼ qi �~við~ri½t�Þ � ~Eið~ri½t�; tÞ ð3Þ

where jiðtÞ ¼ qi �~viðtÞ can be understood as the current density associated to the i-th charge.
Note the subindex m-e indicating that we are using a many-electron formulation. A simple
integration over the whole volume O gives the total electric power for this particular region
of space

Pm�eðtÞ ¼
XNðtÞ
i¼1

qi �~við~ri½t�Þ � ~Eið~ri½t�; tÞ ð4Þ

where N(t) is the number of electrons in the volume O at time t. Let us notice the use of N(t)
different electric fields in (4). On the contrary, the standard definition of electric power assumes
the following mean-field approximation, ~Eið~r; tÞ � ~Eð~r; tÞ; a common electric field for all
electrons. For the particular mean-field model we are considering, ~Eð~r; tÞ is defined from the
solution of a single Poisson equation,

H2ðEVð~r; tÞÞ ¼ rð~r; tÞ ð5Þ

where rð~r; tÞ accounts for all charges (the charge assignment follows a cloud-in-cell scheme in the
same way as in the exact treatment).

Using (4) and the previous approximation, (5), one obtains the standard definition of the
power

Pm�f ðtÞ ¼
Z
O

~Eð~r; tÞ �~jð~r; tÞ � d~r ¼
XNðtÞ
i¼1

qi �~viðtÞ � ~Eð~ri½t�; tÞ; ð6Þ

T
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Figure 1. Schematic representation of the DG-FET geometry from source to drain.
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where ~jð~r; tÞ ¼
PNðtÞ

i¼1 qi �~við~r; tÞ � dð~r�~riðtÞÞ is the total conduction current density in the volume
O. To compare these different expressions (4) and (6) for the electric power it is convenient to
define the error between the mean-field approximation and the exact many-electron i-th electric
field as:

D~Eið~r; tÞ ¼ ~Eið~r; tÞ � ~Eð~r; tÞ ð7Þ

Hence, the error DPðtÞ ¼ Pm�e � Pm�f when defining (6) as the time-derivative of the work
done over a set of N(t) charges in O is:

DPðtÞ ¼
XNðtÞ
i¼1

qi �~viðtÞ � D~Eið~ri½t�; tÞ ð8Þ

Notice the dependence of the error on the number of electrons, N(t), the electron velocity,
~viðtÞ, and the value of D~Eið~ri½t�; tÞ.

3. NUMERICAL COMPUTATION OF THE ELECTRIC POWER

In this section, we evaluate the differences on the electric DC power obtained from the accurate
many-electrons (m-e) method, (4), and the approximate mean-field (m-f) method, (6), within an
electron device Monte Carlo simulation of a 1D DG-FET, a 2D DG-FET and a 3D DG-FET.

3.1. Device description

We consider a Monte Carlo simulation for a DG-FET electron device (see Figure 1), where
electron transport (from source to drain) takes place along a Silicon (100) orientation channel,
at room temperature. In particular, the electron mass is taken according to the six equivalent
ellipsoidal constant energy valleys of the silicon band structure [11, 12]. The effective masses of
the ellipsoid are m�l ¼ 0:9163m0 and m�t ¼ 0:1905m0 with m0 the free electron mass. For details
on the particular effective mass taken by the electrons in each direction and valley, see reference
[13, 14]. The dimension of the channel of the device depicted in Figure 1 are L, W, and T.

We consider three different geometries with different degrees of electron confinement in order
to be able to deal with a bulk device (3D), a quantum well (2D), and a quantum wire (1D).
When W and T are much larger than the electron de Broglie wave length, the active region is a
three-dimensional (3D) system (bulk) and there is no restriction in the possible values of the
energies of an electron in each of the six valley. The total electron energy for a particular
valley is E ¼ Ex1E?, where the energies Ex and E? are defined in the parabolic approach as
Ex ¼ �h

2ky=ð2mtÞ and E? ¼ �h
2ky=ð2mtÞ1�h

2kz=ð2mlÞ. On the other hand, for a small enough value
of T, the system becomes a two-dimensional 2D (quantum well) and the total electron energy for
one particular valley of the first sub-band is E ¼ �h2kx=ð2mtÞ1E?, where E? ¼ �h

2ky=ð2mtÞ1E
q
2D.

The energy E
q
2D ¼ �h

2p2=ð2mlT
2Þ is the minimum quantized energy level of the first sub-band,

whose value is E
q
2D ¼ 0:103 eV for T5 2 nm. The energy of the second sub-band is

E
q
2D ¼ 0:410 eV. Under this conditions only two identical valleys become relevant, and

although energies above the first level can be reached at high drain bias, in this particular
work we assume that only the first energy sub-band is available. In this sense, our numerical
results would be slightly modified for supplied drain voltages beyond 0.5 eV. We assume, in
addition, that the electron velocity in the z-direction is zero due to the electron confinement.
This last statement can be formally justified, for example using Bohm trajectories, when the
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probability presence in the z-direction does not change with time. The main approximation here
is assuming that the single-particle wave-function is separable in the 3D space and that only one
subband is relevant for electron transport. Finally, when T and W are both small enough, the
active region becomes a 1D system (a quantum wire) and the energy of an electron in one
particular valley is E ¼ �h2kx=ð2mtÞ1E

q
1D, where E

q
1D ¼ �h

2p2=ð2mtW
2Þ1�h2p2=ð2mlT

2Þ represents
the minimum energy of the first sub-band, whose value is E

q
1D ¼ 0:182 eV for T5 2 nm and

W5 5 nm. The energies of the next lowest sub-bands are E
q
1D ¼ 0:418 eV or E

q
1D ¼ 0:489 eV. As

in the previous case (2D system), although energies above the first level can be reached at high
drain bias, we assume that only this first energy sub-band is available. Again only two valleys
become relevant.

The details of the geometries, doping, and simulating parameters of the three simulated
devices can be found in Table I.

3.2. Numerical simulation algorithm

All simulations use a 3D finite-difference Poison solver scheme. The whole volume O mentioned
in Section 2 is now understood as the active region drawn in Figure 1 and is divided into
Nx �Ny �Nz cells. Each 3D cell has spatial dimensions DX, DY, and DZ. Thus, the active region
of our simulating device has a volume equal to ðNx �DXÞ � ðNy �DYÞ � ðNz �DZÞ ¼ L �W � T .
A total number of cells, Nx �Ny �Nz, in the order of 100 and a number of electrons, N(t), about
20–50, implies a simulation time on the order of 3–4 h for each bias point within our many-
electron algorithm, while it takes 20–30min within the mean field approximation.

The boundary conditions of the Poisson equation on the six rectangular surfaces of the
volume O of Figure 1 are defined using either Dirichlet or Neumann arguments. In general, on
the interfaces air-silicon, Neumann boundary conditions are used with the educated guess that
the component of the electric field normal to the surface is zero there. The continuity of the
displacement vector normal to the surfaces justifies this assumption at the boundaries when the
relative permittivity inside O is much higher than the corresponding value outside. On the other
hand, at the four metal interfaces (drain, source, and two gates) we use Dirichlet boundary
conditions. In order to avoid charge imbalance on the source and drain contacts, at each
simulation time, we slightly modify the value of the conduction band in order to increase/
decrease the electron injecting probability [15].

Table I. Main parameters of the Monte Carlo simulation for the 1D, 2D, and 3D DG-MOSFET.

Magnitude 3D bulk 2D quantum well 1D quantum wire

Channel dimensions (nm) L 15 15 15
W 10 10 5
T 8 2 2

Spatial step (nm) DX 1.5 1.5 1.5
DY 2.5 2.5 1.6
DZ 2 1 1

Doping (cm�3) Channel 2� 1019 2� 1019 2� 1019

Contact 2� 1019 2� 1019 2� 1019

Simulation time (s) T 3� 10�10 4� 10�10 5� 10�10

Temporal step (s) Dt 2� 10�16 2� 10�16 2� 10�16
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When dealing with our many-particle model, the numerical algorithm for solving the
dynamics of an ensemble of interacting electrons is quite close, but not identical, to the standard
Monte Carlo method applied to semiconductor electron devices. In the later, a unique Poisson
equation is solved at each time step of the simulation, while in our many-electron method we
solve N(t) Poisson equations with N(t) different boundary conditions and charge densities [10].
In addition, our numerical algorithm includes electron confinement. We also use an injection
model applicable to systems with arbitrary electron confinement, valid for degenerate and non-
degenerate systems [13].

3.3. Main results

Our reformulation of the electric power can be applied to switching or maintenance logic states
in a CMOS circuit. In this work we deal with a simple ON state of a DG-FET, focusing on the
computation of the DC electric power consumption.

Figure 2 shows this characteristic curves computed by means of the exact many-electron
method, for the 1D, 2D, and 3D DG-FETs mentioned in the Section 3.2 (schematically
represented in Figure 1). The computation of the electric power has been carried out within the
saturation region of this I–V characteristic. Power results are presented in Figures 3 and 4.

(a)

(b)

(c)

Figure 2. Current–voltage characteristic for the simulated 1D DG-FET (a), 2D DG-FET (b), and 3D DG-
FET (c), computed by means of the exact method (m-e). For a fixed drain voltage (1V), five different gate
voltages have been considered in (a) and (b) (�0.25, �0.10, 0.05, 0.20, and 0.35V), and other five different

gate voltages have been considered in (c) (0.0, 0.15, 0.30, 0.45, and 0.60V).

G. ALBAREDA, A. ALARCÓN AND X. ORIOLS
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Figure 3 presents a zoom of the instantaneous time-dependent electric power defined as (4)
and (6) for the three geometries mentioned in Table I at low-gate voltages. Even when decreasing
the supplied voltage at the gates, differences between both methods remain instantaneously
appreciable. The disagreement between the many-particle and the mean-field method become
larger when the lateral area of the DG-FET is increased. The explanation of this divergence lies
on the presence of a higher number of electron in the active region (see expression 8).

Figure 4 presents time averaged DC values of the power consumption per transistor on the
saturation region (Vdrain5 1V) as a function of the gate voltage. At the same time, we represent the
differences between the exact (m-e) method and the approximated (m-f) method defined
in (8). Roughly speaking, for higher gate voltages we find higher longitudinal electric fields and,
consequently, electron velocities rise. This is why differences become larger in magnitude (there is an
irrelevant negative sign in Figure 4) when the applied gate voltage is increased. Again, the increment
on the number of electrons in the channel region due to an enlargement of the lateral area makes the
upper limit of the sum in (8) grow. Hence, we find the largest discrepancies for the 3D system.

Differences on a single transistor are in the order of 0.12, 0.24, and 0.55 mW for the 1D, 2D,
and 3D systems respectively. Nevertheless, when we multiply these errors per transistor by the
number of transistors present in a CPU (approximately 109 transistors), the global error in the
estimation of the consumption is dramatic. In particular, the computation of the electric power

(a)

(b)

(c)

Figure 3. Time evolution of the power consumption in the 1D DG-FET (a), 2D DG-FET (b), and 3D DG-
FET (c), for the two computational methods at Vdrain 5 1V and Vgate 5 0.05V in (a) and (b), and Vgate 5 0V
in (c). Dashed line refers to the many-electrons method and solid line refers to the mean-field method.

ELECTRIC POWER IN NANOSCALE DEVICES

Copyright r 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)

DOI: 10.1002/jnm

Guille
C



consumption by means of the mean-field approach leads an erroneous prediction per CPU
around 150, 240, and 550W for 1D DG-FETs, 2D DG-FETs, and 3D DG-FETs respectively.
At the same time, not only the prediction of the electric power grows (in magnitude) as the gate
voltage rises, but also the difference between both methods. This non-linearity of the error is
quite relevant because it implies that extrapolations carried out with mean-field approximations
can lead to erroneous predictions.

4. CONCLUSIONS

Although power consumption is an extremely important parameter in scaling down electronic
technology, its standard predictions are based on approximate expressions that can become
inaccurate in some scenarios. A reformulation of the electric power is presented for (classical or
quantum) electron devices within a many-particle formulation of the Coulomb interaction [10].
When many-electron and mean-field simulations are carried out, results show subtle differences
per transistor for the simulated 1D, 2D, and 3D DG-FET. Nevertheless, the multiplication of
the error-per-transistor by the huge number of them present in a CPU makes estimation of
power consumption within a mean-field framework quite inaccurate.

(a)

(b)

(c)

Figure 4. Time averaged (DC) values for the electric power computed from the many-electron method and
the mean-field approach in a single 1D DG-FET (a), 2D DG-FET (b), and 3D DG-FET (c). Differences
between time averaged powers, oP4mean-field and oP4many-electrons, are also presented in absolute values.
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Copyright r 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)

DOI: 10.1002/jnm

Guille
C



ACKNOWLEDGEMENTS

This work has been partially supported by the Ministerio de Ciencia e Innovación through project N.
MICINN TEC2009-06986.

5. REFERENCES

1. Frank DJ. Power-constrained CMOS scaling limits. IBM Journal of Research and Development 2002; 46(2/3):235.
2. Horowitz M et al. Scaling, power, and the future of CMOS. In Electron Devices Meeting, 2005. IEDM Technical

Digest. IEEE International, Washington, DC, December 2005.
3. International Technology Roadmap for Semiconductors, 2008 Update.
4. Jacoboni C, Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with

applications to covalent materials. Reviews of Modern Physics 1983; 55:645–700.
5. Anil KG, Mahapatra S, Esiele I. Electron-electron interaction signature peak in the substrate current versus gate

characteristic of n-channel silicon MOSFETs. IEEE Transactions on Electron Devices 2003; 49(7):1283–1288.
6. Gross WJ, Vasileska D, Ferry DK. A novel approach for introducing the electron-electron and electron-impurity

interaction in particle-based simulations. IEEE Electron Device Letters 1999; 20(9):463–465.
7. Wordelman CJ, Ravaioli U. Integration of a particle- particle-mesh algorithm with the ensemble Monte Carlo

method for the simulation of ultra-small semicondcutor devices. IEEE Transactions on Electron Devices 2000;
47(2):410–416.

8. Oriols X . Quantum-trajectory approach to time-dependent transport in mesoscopic systems with electron-electron
interactions. Physical Review Letters 2007; 98:066803.

9. Kobe DH. Quantum power in de Broglie-Bohm theory. Journal of Physics A: Mathematical and General 2007;
40:5155.
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Many-particle Hamiltonian for open systems with full Coulomb interaction: Application to
classical and quantum time-dependent simulations of nanoscale electron devices
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A many-particle Hamiltonian for a set of particles with Coulomb interaction inside an open system is
described without any perturbative or mean-field approximation. The boundary conditions of the Hamiltonian
on the borders of the open system �in the real three-dimensional �3D� space representation� are discussed in
detail to include the Coulomb interaction between particles inside and outside of the open system. The many-
particle Hamiltonian provides the same electrostatic description obtained from the image-charge method, but it
has the fundamental advantage that it can be directly implemented into realistic �classical or quantum� electron
device simulators via a 3D Poisson solver. Classically, the solution of this many-particle Hamiltonian is
obtained via a coupled system of Newton-type equations with a different electric field for each particle. The
quantum-mechanical solution of this many-particle Hamiltonian is achieved using the quantum �Bohm� trajec-
tory algorithm �X. Oriols, Phys. Rev. Lett. 98, 066803 �2007��. The computational viability of the many-
particle algorithms to build powerful nanoscale device simulators is explicitly demonstrated for a �classical�
double-gate field-effect transistor and a �quantum� resonant tunneling diode. The numerical results are com-
pared with those computed from time-dependent mean-field algorithms showing important quantitative
differences.

DOI: 10.1103/PhysRevB.79.075315 PACS number�s�: 73.23.�b, 71.10.�w, 02.70.�c, 41.20.Cv

I. INTRODUCTION

The exact computation of a system of interacting elec-
trons is extremely complicated1,2 because the motion of one
electron depends on the positions of all others �i.e., electrons
are correlated3�. Thus, the prediction of the collective behav-
ior of many electrons is still a very active field of research in
nanoelectronics, quantum chemistry, nanobiology, quantum
computing, materials science, etc. Several theoretical ap-
proximations have been proposed to improve the treatment
of electron-electron correlations.

In quantum systems in equilibrium, the time-independent
mean-field approximation appears as a successful solution to
treat a set of interacting electrons. It simplifies the exact
many-particle potential by an average or mean potential2 that
transforms the many-body Schrödinger equation into a much
more simple set of time-independent single-particle
Schrödinger equations. The Hartree-Fock method4,5 is a suc-
cessful example of such approximation. However, by con-
struction, the correlations among electrons can only be
treated approximately. In principle, the density-functional
theory6,7 provides an exact path to deal with full electron
correlations using single-particle potentials. However, since
the exact form of the single-particle potentials6–9 is un-
known, an educated guess for these average single-particle
potentials is needed in all practical algorithms. Therefore,
again, the electron-electron correlations are treated
approximately.9,10

The accurate treatment of the electron-electron correla-
tions in electric circuits is even a more difficult issue11–26

because we deal with nonequilibrium open systems11–13

�where the system interchanges energy and particles with its
environment�. In fact, the Coulomb interaction among elec-
trons is directly not considered in many quantum transport
formalisms11,12 under the assumption that the open system

behaves as a Fermi liquid.14 The well-known Landauer
approach15,16 is a very successful example of the applicabil-
ity of this assumption. Nevertheless, the Fermi-liquid para-
digm has difficulties dealing with high-frequency,11,17

low-dimensionality,1,2 or Coulomb blockade regimes.11,18 On
the other hand, the nonequilibrium Green’s-function formal-
ism �also referred to as the Keldysh formalism� provides an
interesting path to solve the Schrödinger equation with the
Coulomb interaction introduced perturbatively.19 Alterna-
tively, under the assumption that the system behaves like a
capacitor, one can use a simple linear relationship between
the number of electrons and the electrostatic potential in a
particular region to introduce partially Coulomb effects.12,18

The mean-field approximation appears again as a solution for
electron transport. For example, an average single-particle
time-independent potential profile can be computed, self-
consistently, from the set of wave-function solutions of a
single-particle time-independent Schrödinger equation.2,12

This represents a zero-order approximation �sometimes
called the Hartree4 approximation� to the complex problem
of electron-electron correlations. Additionally, remarkable
efforts have been done by Büttiker and co-workers20–22 to
include Coulomb interaction in their scattering matrix ap-
proach by applying different many-body approximations to
provide self-consistent electron-transport theories with over-
all charge neutrality and total current conservation. Finally,
extensions of the equilibrium density-functional theory to
deal with electron transport, by means of a time-independent
formalism,23 or with a powerful time-dependent version24–26

can also be found in the literature. The exact exchange-
correlation functionals needed in both formalisms are un-
known and they have to be approximated. Therefore, in all
the descriptions of nonequilibrium quantum systems men-
tioned here, the electron-electron correlations are approxi-
mated to some extent.
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For classical electron devices, the electrostatic interaction
among electrons is commonly obtained from an explicit so-
lution of the Poisson �Coulomb� equation. However, again,
this does not provide an exact treatment of the classical
electron-electron correlations but only an average
estimation.27,28 It is well known that the solution of a classi-
cal many-particle system can always be written as a coupled
system of single-particle Newton-type equations. However, a
classical mean-field approximation is explicitly assumed in
semiclassical transport simulators in order to deal with a
unique average electrostatic potential for all electrons.27 A
successful application of the classical mean-field approxima-
tion appears, for example, in the semiclassical Boltzmann
equation that describes the time evolution of the electron
distribution function in a one-electron phase space.27 The use
of a unique electric field �i.e., a unique average electrostatic
potential� in the Boltzmann equation neglects the correct
electron-electron correlations because each electron “feels”
its own charge.28–32 A powerful time-dependent technique to
solve the Boltzmann equation is the semiconductor Monte
Carlo method applied to electron devices.27

In this work, we are interested in revisiting the computa-
tion of an ensemble of Coulomb-interacting particles in an
open system without any of the approximations mentioned in
the previous paragraphs. With this goal, we have developed
an exact many-particle Hamiltonian for Coulomb-interacting
electrons in an open system in terms of the solutions of the
Poisson equation. To our knowledge, the type of develop-
ment of the many-particle Hamiltonian proposed in this pa-
per has not been previously considered in the literature be-
cause, up to now, it was impossible to handle the
computational burden associated with a direct solution of a
many-particle Hamiltonian. Here, we present a classical and
also a quantum solution of the many-particle Hamiltonian,
both of which are applicable to realistic three-dimensional
�3D� electron devices. The classical solution is obtained by
solving a coupled system of Newton-type equations with a
different electric field for each particle. The quantum solu-
tion of the many-particle Hamiltonian is obtained from the
use of quantum trajectories.33 The merit of the quantum so-
lution is certainly remarkable because, nowadays, the com-
putational burden associated with the direct �i.e., without any
approximation� solution of the many-particle wave function
is only accessible for very few �2,3 , . . .� electrons.1,2 Our
quantum algorithm is able to treat electron dynamics without
any �mean-field or perturbative� approximation in the de-
scription of the electrostatic interaction among a larger num-
ber ��50� of electrons. In this paper, we present the classical
and quantum algorithms together because they solve exactly
the same many-particle Hamiltonian and both share many
technical details �such a 3D Poisson solver to treat spatial-
dependent permittivity scenarios� in their implementation
into realistic 3D electron devices.

After this introduction, the rest of the paper is divided as
follows. In Sec. II, we write the many-particle Hamiltonian
for an ensemble of electrons in an open system. We discuss
the role of the boundary conditions on the borders of the
open system to include the Coulomb interaction between par-
ticles inside and outside of the open system in Sec. III. In
Sec. IV, we discuss the solution of the many-particle Hamil-

tonian in classical scenarios. The path for the quantum solu-
tion is provided in Sec. V using quantum �Bohm� trajecto-
ries. In Sec. VI, we show the numerical results for the
classical and quantum solutions of the many-particle Hamil-
tonian for nanoscale electron devices and we compare the
results with time-dependent mean-field approximation. We
conclude in Sec. VII. Appendixes A and B discuss the tech-
nical details of the image-charge method and mean-field ap-
proximation.

II. MANY-PARTICLE HAMILTONIAN IN OPEN SYSTEM

In this section, we develop an exact expression for the
many-particle Hamiltonian that describes a set of electrons in
an open system. Throughout this paper, we will assume that
the magnetic field is negligible and that the particle velocity
is small enough to assume a nonrelativistic behavior. In ad-
dition, in order to provide a discussion valid for either clas-
sical or quantum systems, we will assume spinless particles.
Let us clarify that the exchange interaction is always present
in a system of identical particles �electrons�, but it will not be
mentioned in this section because it does not affect explicitly
the expression of the �first-quantization� many-particle
Hamiltonians discussed here. The exchange interaction is in-
troduced into the symmetry �when electron positions are in-
terchanged� of the many-body wave function. We will briefly
revisit this issue in Sec. V when dealing with the quantum
solution.

A. Many-particle Hamiltonian for a closed system

First, we start our discussion with a set of M particles in a
closed system. The many-particle Hamiltonian contains ki-
netic plus Coulomb energies,

H�r�1, . . . ,r�M,p�1, . . . ,p�M� = �
k=1

M �K�p�k� +
1

2 �
j = 1
j�k

M

qk · V�r�k,r� j�� .

�1�

The factor 1
2 that appears in the second term of the right-hand

side is due to the fact that each two-particle interaction is
counted twice �i.e., V�r�k ,r� j� is identical to V�r� j ,r�k��. The con-
dition j�k takes into account the obvious restriction that a
particle cannot interact with itself. The kinetic energy K�p�k�
that appears in Eq. �1� is defined, for a classical system, as

K�p�k� =
1

2 · mk
�p�k�2, �2a�

while for a quantum system

K�p�k� = −
�2

2 · mk
�r�k

2 . �2b�

Let us notice that the position and momentum in Hamil-
tonian �1� can be either classical variables, r�k and p�k in Eq.
�2a�, or quantum �real-space representation� operators, r�k and
−i��r�k

in Eq. �2b�. In particular, it is important to emphasize
that when we refer to r�k as the electron position, we are not
referring to a fixed position but a variable vector. On the
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contrary, when we are interested in specifying a fixed elec-
tron position, we will write r�k�t�. The parameter mk is the
particle mass that, in Sec. VI, will be understood as the par-
ticle effective mass. Identically, we define the Coulomb po-
tential in Eq. �1� as

V�r�k,r� j� =
qj

4��	r�k − r� j	
, �3�

where qj is the particle charge and � is the permittivity. Al-
though we are always thinking about electrons in semicon-
ductors, the development of this section is valid for arbitrary
particles with different masses and charges.

A complete electronic circuit �including the devices, the
wires, and the batteries� behaves as a closed system with a
large �M→�� number of electrons. However, since we can
only deal with a finite number of electrons, we restrict our
system to a small part of the circuit, for example, the channel
of a transistor. Thus, we need to develop the Hamiltonian
that describes the dynamics of a subensemble of the whole
set of M particles in an open system inside a limited volume
� �see Fig. 1�.

B. Many-particle Hamiltonian for an open system

We divide the previous ensemble of M particles into a
subensemble 
1,2 ,3 , . . . ,N�t�� of particles whose positions
are inside the volume � and a second subensemble 
N�t�
+1, . . . ,M� which are outside it �see Ref. 34�. We assume
that the number of particles inside, N�t�, is a time-dependent
function that provides an explicit time dependence in the
many-particle �open-system� Hamiltonian. As drawn in Fig.
1, we assume a parallelepiped where the six rectangular sur-
faces S= 
S1 ,S2 , . . . ,S6� are the boundaries of �. Along this
paper, we use r�l as the “boundary” vector representing an
arbitrary position on the surfaces Sl.

Since we are only interested in the dynamics of the first
N�t� particles, the kinetic energy and the Coulomb interac-
tion between the particles of the second subensemble do not
appear in the new Hamiltonian of the open system. Never-
theless, the Coulomb interaction between particles of the first
and second subensembles must explicitly appear. Thus, the
many-particle Hamiltonian for the first N�t� particles can be
written as

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t�

= �
k=1

N�t�

�K�p�k� +
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j� + �
j=N�t�+1

M

qk · V�r�k,r� j�
 .

�4�

Let us notice also that the factor 1
2 disappears in the last term

of Eq. �4� because there is no double counting of interactions
between electrons inside and outside �. For convenience, we
rewrite Eq. �4� as

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t�

= �
k=1

N�t�

�K�p�k� + �
j=1

j�k

N�t�

qk · V�r�k,r� j� + �
j=N�t�+1

M

qk · V�r�k,r� j�

−
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j�
 . �5�

Although up to this point we have discussed the many-
particle Hamiltonian in terms of the Coulomb force, this ap-
proach is inconvenient to deal with solid-state scenarios with
a spatial-dependent permittivity.35,36 For this reason, we re-
write our many-particle Hamiltonian in terms of the more
generic Poisson �or Laplace� equation, which can be applied
to systems with �or without� a spatial-dependent permittivity
�by substituting �→��r�� in the Poisson equation�.

Each term V�r�k ,r� j� that appears in Eq. �5� can be explic-
itly obtained from a Poisson �or Laplace� equation inside the
volume �. Then, using the superposition property of the
Poisson �or Laplace� equations, we can rewrite Eq. �5� as

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t�

= �
k=1

N�t�

�K�p�k� + qk · Wk�r�1, . . . ,r�N�t�,t�

−
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j�
 , �6�

where the term Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� is a particular solution
of the following Poisson equation:

�r�k

2 
� · Wk�r�1, . . . ,r�N�t��� = �k�r�1, . . . ,r�N�t�� . �7�

The term �k�r�1 , . . . ,r�N�t�� in Eq. �7� depends on the position
of the first N�t� electrons,34

�k�r�1, . . . ,r�k, . . . ,r�N�t�� = �
j=1

j�k

N�t�

qj · ��r�k − r� j� , �8�

but Eq. �8� is independent of the position of the external
particles because they only affect the boundary conditions of
Eq. �7�. Let us notice that there are still terms, V�r�k ,r� j�, in

S1(Drain)

z

y
x

� �N tr
� lr�

Mr
�

jr
�

S2 S6

�
S3 S5

Lx Ly

Lz

S4(Source)

FIG. 1. �Color online� Schematic representation of the volume
�=Lx ·Ly ·Lz and its limiting surface S= 
S1 ,S2 , . . . ,S6�. There are
N�t� particles inside and M −N�t� outside this volume. The vector r�l

points an arbitrary position at the boundary surface Sl.

MANY-PARTICLE HAMILTONIAN FOR OPEN SYSTEMS… PHYSICAL REVIEW B 79, 075315 �2009�

075315-3

Guille
D



Eq. �6� that are not computed from Poisson equation but
from Eq. �3�. However, we will show that these terms
V�r�k ,r� j� have no role in the classical �i.e., Sec. IV� or quan-
tum �i.e., Sec. V� solutions of Eq. �6�.

By construction, comparing Eqs. �5� and �6�, the term
Wk�r�1 , . . . ,r�N�t� , t� can be rewritten as

Wk�r�1, . . . ,r�N�t�,t� = �
j=1

j�k

N�t�

V�r�k,r� j� + �
i=N�t�+1

M

V�r�k,r�i� . �9�

The dependence of Wk�r�1 , . . . ,r�N�t� , t� on the positions of the
external particles is explicitly written in the last sum in Eq.
�9�, while in Eq. �7� this dependence is hidden in the bound-
ary conditions of Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� on the surface S
= 
S1 ,S2 , . . . ,S6�. In fact, the boundary conditions are a deli-
cate issue that we will discuss in Sec. III. Finally, we want to
remark that this discussion is valid for either classical or
quantum Hamiltonians because the expression �9� �or its
equivalent definition in �7� and �8�� of Wk�r�1 , . . . ,r�N�t� , t� at
r�1 , . . . ,r�k , . . . ,r�N�t� is identical for a classical or a quantum
system.

III. BOUNDARY CONDITIONS FOR THE
ELECTROSTATIC POTENTIAL Wk(r�1 , . . . ,r�k−1 ,r� ,r�k+1 ,r�N(t) , t)

ON THE BORDERS OF THE OPEN SYSTEM

Since we want to deal with solutions of the Poisson equa-
tion �Eq. �7��, the boundary conditions for the N�t� terms
Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� have to be specified on the border
surface S= 
S1 ,S2 , . . . ,S6�. Such boundary conditions will
provide, somehow, information on the electrostatic effect
that outside electrons �i.e., N�t�+1, . . . ,M� have on the elec-
trons inside �. In order to provide a clear notation for dis-
cussing the boundary conditions of Wk�r�1 , . . . ,r�k , . . . ,r�N�t��,
we distinguish between the “source” vectors
r�1 , . . . ,r�k−1 ,r�k+1 ,r�N�t� and the additional “observation” vector
r� that runs over all space.36 In particular, the electrostatic
potential that appears in Hamiltonian �6� is defined as the
value of the potential Wk�r�1 , . . . ,r�k−1 ,r� ,r�k+1 ,r�N�t� , t� at the
particular position r�=r�k,

Wk�r�1, . . . ,r�k−1,r�k,r�k+1,r�N�t�,t�

= Wk�r�1, . . . ,r�k−1,r�,r�k+1,r�N�t�,t�	r�=r�k
. �10�

Our goal is to find an educated guess for all the N�t� terms
Wk�r�1 , . . . ,r�k−1 ,r� ,r�k+1 ,r�N�t� , t� at all observation points r�=r�l

on all surfaces l=1, . . . ,6. For example, the information of
such boundary conditions can come from the value of the
total voltage �due to internal and external electrons� at posi-
tion r�l and time t. We define the total voltage
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� as the electrostatic potential asso-
ciated to an additional probe charge qM+1 situated on that
boundary, r�l�r�M+1�Sl �see Fig. 2�. The electrostatic poten-
tial “seen” by this extra charge due to the presence of the rest
of the particles is just

B�r�1, . . . ,r�N�t�, . . . ,r�M,r�l,t� � 	�
j=1

M

V�r�M+1,r� j�	r�M+1=r�l,

�11�

where the expected restriction j�M +1 is hidden in the limit
of the sum.

Once relationship �11� is established, we can easily define
the boundary conditions of any of the N�t� electrostatic po-
tential Wk�r�1 , . . . ,r� , . . . ,r�N�t�� from the function
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�. In particular, from Eq. �9�, we
know that

Wk�r�1, . . . ,r�k−1,r�,r�k+1,r�N�t�,t�	r�=r�l

= �
j=1

j�k

M

V�r�l,r� j� = B�r�1, . . . ,r�M,r�l,t� − V�r�l,r�k�,

l = 1, . . . ,6. �12�

The discussion done here is valid for either classical or quan-
tum systems �see Ref. 37�. In the previous discussion we
have assumed Dirichlet boundary conditions; however it is a
straightforwardly procedure to develop the same argumenta-
tions for Neumann boundary conditions.

The reader can be surprised by the fact that the right-hand
side of expression �12� tends to infinite, V�r�l ,r�k�→�, when
r�k→r�l. However, when r�k→r�l, the extra particle at r�l

�r�M+1�Sl will also provide an infinite value of the electro-
static potential, i.e., B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�→�, due to
the presence of the k particle on the surface. Therefore, the
first infinite, V�r�l ,r�k�→�, is canceled by the second infinite,
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�→�. This discussion will be rel-
evant in Sec. VI when we discuss the numerical implemen-
tation of these boundary conditions.

Gate
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FIG. 2. �Color online� The electrostatic potential
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� measured on a surface Sl at position r�l

and time t �due to internal and external electrons� by an additional
probe charge qM+1 situated on the boundary r�l�r�M+1�Sl.
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Up to here, our argumentation might seem somehow
tricky. We have defined the value of Wk�r�1 , . . . ,r� , . . . ,r�M� 	r�=r�l

on the volume boundaries without mentioning the position of
the external particles but using the function
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� which is unknown. This strategy
transforms the complexity of finding the boundary conditions
of N�t� electrostatic potential Wk�r�1 , . . . ,r� , . . . ,r�N�t�� into pro-
viding an educated guess for a unique function
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�. In our numerical results in Sec.
VI, we will fix B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� based on standard
arguments for electron devices. We will assume a uniform
value of the voltage on the l surface independent of
the external electrons, B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�
�Bl�r�1 , . . . ,r�N�t� , t�. Such value can be obtained taken into
account the voltage fixed by the external battery and the
requirement of charge neutrality at the contacts.35,38

Finally, we want to enlighten the physical interpretation of
the many-particle Hamiltonian �6� and boundary conditions
of Eq. �12� developed here. To do this, we compare our ap-
proach with the image-charge method applied to electron
transport. The image-charge method is a basic solving tool in
electrostatics36 that has been successfully applied, for ex-
ample, in the calculation of the electric field in field-emission
devices39 or the barrier-reduction in the metal-semiconductor
Schottky contacts.40 The name of the method originates from
the replacement of certain “real” charges by a set of few
“imaginary” charges that replicate the real boundary condi-
tions at the surface �see Fig. 3�. From the uniqueness theo-
rem of electrostatics,36 once the charge of the 1 , . . . ,N�t�
particles inside a volume is fixed and the correct electrostatic
potential �or electric field� is specified at the boundaries of
that volume, B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�, the solution of the
Poisson equation inside the volume is unique and does not
depend on whether the external charges are real or imagi-
nary. Then, according to the image-charge method, the elec-
trostatic potential seen by the k particle is equal to the elec-
trostatic potential generated by the sum of the imaginary plus
the real particles except the k particle. Thus, identically to
our many-particle Hamiltonian, the image-charge method
goes beyond the mean-field approximation �discussed in Ap-
pendix B� because each particle feels its own potential pro-
file that excludes the Coulomb interaction with itself. In Ap-
pendix A, we show in detail that the boundary conditions in

Eq. �12� are identical to the boundary conditions found with
the image-charge method.

However, although the outcome of the image-charge
method and our many-particle Hamiltonian are identical, the
Hamiltonian presented in this paper has an unquestionable
advantage over the image-charge method: the former can be
directly implemented into practical 3D electron device simu-
lators as we will see in Sec. VI while the latter cannot. For
example, let us consider the numerical simulation of the tran-
sistor done in Sec. VI. The system consists in a large number
��20� of electrons inside a volume � limited by surfaces

S1 ,S2 , . . . ,S6� with Dirichlet and Neumann boundary condi-
tions. Then, the exact application of the image-charge
method faces up to the following serious difficulties. The
computation of the imaginary charges in an arbitrary surface
�different from the standard infinite plane whose imaginary
charges are found in textbooks41� is not at all obvious.42 Let
us notice that each imaginary charge that provides the correct
value of the Neumann boundary condition on Si does also
affect the Neumann �or Dirichlet� boundary condition on all
other surfaces 
S1 ,S2 , . . . ,S6�. Finally, even after assuming
that we would be able to find somehow the density distribu-
tion of imaginary charges that reproduces simultaneously the
boundary conditions on all six surfaces, the practical appli-
cation of this method in a time-dependent simulator with a
3D Poisson solver �to be able to deal with spatial-dependent
permittivity scenarios� would require simulating much more
particles �the real plus the imaginary� in a larger simulation
box �to include the location of those imaginary particles out-
side of ��. In summary, the image-charge method is an ex-
cellent approach to obtain analytical expression for the
many-body description of electron transport in simple sys-
tems �such as one electron crossing an infinite ideal41 metal-
lic surface�, but it is not practically possible to implement it
in simulators for actual 3D electron devices.42 On the con-
trary, as we will show in our numerical result in Sec. VI, the
many-particle Hamiltonian �6� and the boundary conditions
of Eq. �12� can be implemented in a extremely simple and
transparent way in, either classical or quantum, realistic elec-
tron device simulators using a 3D Poisson solver for arbi-
trary surfaces.

IV. EXACT MANY-PARTICLE HAMILTONIAN FOR
CLASSICAL OPEN SYSTEMS

In this section, we discuss the classical solution of the
many-particle open-system Hamiltonian of expression �6�.
Interestingly, the results obtained here can partially be used
for the quantum solution of the many-particle Hamiltonian
developed in Sec. V.

The classical description of the particle dynamics sub-
jected to the many-particle Hamiltonian �6� can be computed
by using the well-known Hamilton’s equations. In particular,
we can obtain the �Newton-type� description of the classical
trajectory r�i�t� in the real space through

�
1( ,..., , , )l

MB r r r t� � �

lr�kr
�

� �N tr
�

Imaginary particles

' ';M Mr q�

( 1) ' ( 1)';N Nr q� �
�

Lz

Lx
Ly

FIG. 3. �Color online� The imaginary charges q�N + 1�� and qM�,
located outside the volume � at r��N + 1�� and r�M�, together with the
real particles inside � reproduce the electrostatic potential
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� on all l surfaces.
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dp� i�t�
dt

= �− �r�i
H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t��r�1=r�1�t�,. . .,p�N�t�=p�N�t��t�

, �13a�

dr�i�t�
dt

= ��p� i
H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t��r�1=r�1�t�,. . .,p�N�t�=p�N�t��t�

. �13b�

For the many-particle Hamiltonian studied in this work, ex-
pression �13b� gives the trivial result m ·v� i�t�= p� i�t�, while the
evaluation of expression �13a� requires a detailed develop-
ment. We know that the r�i gradient of the exact many-particle
Hamiltonian �6� can be written as

��r�i
H�R� =R� �t� = ��r�i�

k=1

N�t�

�qk · Wk�r�1, . . . ,r�N�t�,t�

−
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j�
�
R� =R� �t�

. �14�

We define the multidimensional vector R� = �r�1 , . . . ,r�N�t�� to
account, in a compact way, for the classical trajectories of

N�t� electrons, R� �t�= �r�1�t� , . . . ,r�N�t��t��. Substituting the defi-
nition of Wk�r�1 , . . . ,r�N�t� , t� done in expression �9� into Eq.
�14�, we find

��r�i
H�R� =R� �t� = ��r�i�2�

j=1

j�i

N�t�

qjV�r� j,r�i� + �
j=N�t�+1

M

qjV�r� j,r�i�

− �r�i�

j=1

j�i

N�t�

qj · V�r� j,r�i��
R� =R� �t�

. �15�

Note the elimination of the factor 1
2 in the last term of the

right-hand part of Eq. �15� that accounts for those terms
qk ·V�r�k ,r� j� in Eq. �14�, where r�k�r�i and r� j =r�i that are iden-
tical to the term qi ·V�r�i ,r�k� in Eq. �15�. For the same reason,
we include a factor 2 on the first term of right hand of Eq.
�15�. From expressions �9� and �15�, we realize that

��r�i
H�R� =R� �t� = ��r�i

Wi�r�1, . . . ,r�N�t���R� =R� �t�. �16�

Only the term Wi�r�1 , . . . ,r�N�t�� of whole Hamiltonian �6� be-
comes relevant for a classical description of the i particle. In
fact, since we only evaluate a r�i gradient, the rest of particle
positions can be evaluated at their particular value at time t,
i.e., r�k→r�k�t� for all k� i. Therefore, we define the single-

particle potential W̄i�r�i , t� from the many-particle potential as

W̄i�r�i,t� = Wi�r�1�t�, . . . ,r�i−1�t�,r�i,r�i+1�t�, . . . ,r�N�t��t�� .

�17�

We use a “hat” to differentiate the �time-dependent� single-
particle electrostatic potential from the many-particle poten-

tial. Each i term of the single-particle electrostatic potential,

W̄i�r�i , t�, is a solution of one particular 3D-Poisson equation,

�r�i

2 ���r�i� · W̄i�r�i,t�� = �̄i�r�i,t� , �18�

where the single-particle charge density is defined as

�̄i�r�i,t� = �
j=1

j�i

N�t�

qj��r�i − r� j�t�� , �19�

and the boundary conditions �Eq. �12�� are adapted here as

W̄i�r�i,t�	r�i=r�l = Bl�r�1�t�, . . . ,r�N�t��t�,t� − V�r�l,r�i�t��,

l = 1, . . . ,6. �20�

where we have included the approximation
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�� , t��Bl�r�1 , . . . ,r�N�t� , t� mentioned in
Sec. III. Let us remind that expressions �17�–�20� provide an
exact treatment of the many-particle correlations in classical
scenarios. They imply a coupled system of Newton equa-
tions. The N�t� Newton equations are coupled by N�t� Pois-
son equations. Therefore, as mentioned in Sec. I, the many-
particle Hamiltonian of Eq. �6� can be written exactly
�without mean-field approximation� as a sum of single-
particle Hamiltonian for classical scenarios,

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t� = �
k=1

N�t�


K�p�k� + qk · W̄k�r�k,t�� .

�21�

The term W̄k�r�k , t� in Eq. �21� means that each particle “sees”
its own electrostatic potential �or electric field�, which is dif-
ferent from that of others.

V. EXACT MANY-PARTICLE HAMILTONIAN FOR
QUANTUM OPEN SYSTEMS

The many-particle open-system Hamiltonian developed in
expression �6� is also valid for quantum systems. In this sec-
tion, we will explain its practical quantum solution using the
recent quantum �Bohm� trajectory formalism in Ref. 33. For
convenience, we rewrite the many-particle Hamiltonian in
Eq. �6� as

ALBAREDA, SUÑÉ, AND ORIOLS PHYSICAL REVIEW B 79, 075315 �2009�

075315-6

Guille
D



H�r�1, . . . ,r�N�t�,t� = ��
k=1

N�t�

−
�2

2 · mk
�r�k

2 + U�r�1, . . . ,r�N�t�,t�� ,

�22�

where we explicitly write the electron momentum as
p�k=−i��r�k

in the kinetic energy �as mentioned in Eq. �2b��.
According to Eq. �6�, the many-particle electrostatic poten-
tial U�r�1 , . . . ,r�N�t� , t� is defined as

U�r�1, . . . ,r�N�t�,t� = �
k=1

N�t�

�qk · Wk�r�1, . . . ,r�N�t�,t�

−
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j�
 . �23�

Then, the many-particle time-dependent Schrödinger equa-
tion that provides the many-particle wave function,
	�r�1 , . . . ,r�N�t� , t�, which describes the electron dynamics as-
sociated to our many-particle �open-system� Hamiltonian, is

i�
�	�r�1, . . . ,r�N�t�,t�

�t
= ��

k=1

N�t�

−
�2

2 · m
�r�k

2

+ U�r�1, . . . ,r�N�t�,t�� · 	�r�1, . . . ,r�N�t�,t� .

�24�

The practical utility of expression �24� in understanding
quantum scenarios can seem quite doubtful because its direct
solution becomes computationally inaccessible for more than
very few electrons.1,2,43 However, one of the authors has re-
cently developed a transport formalism33 in terms of Bohm
trajectories that simplifies the complexity of evaluating Eq.
�24�.

Some introductory explanations about Bohm trajectories
in single-particle and many-body scenarios can be found in
Refs. 44–47. Here, we go directly to the main result of Ref.
33 where it is shown that a many-particle electron Bohm
trajectory r�a�t� computed from the many-particle wave func-
tion, 	�r�1 , . . . ,r�N�t� , t�, solution of the Eq. �24� can be
equivalently computed from the single-particle wave-
function 
a�r�a , t� solution of the following single-particle
Schrödinger equation:

i�
�
a�r�a,t�

�t
= �−

�2

2 · m
�r�a

2 + Ua�r�a,R� a�t�,t� + Ga�r�a,R� a�t�,t�

+ i · Ja�r�a,R� a�t�,t��
a�r�a,t� , �25�

where we have defined R� a�t�= 
r�1�t� ,r�a−1�t� ,r�a+1�t� ,r�N�t� , t�
as a vector that contains all Bohm trajectories except r�a�t�.
The exact definition of the other potentials that appear in Eq.

�25�, Ga�r�a ,R� a�t� , t� and Ja�r�a ,R� a�t� , t�, can be obtained from
Ref. 33. The total many-particle electrostatic potential in Eq.
�24� has been divided into two parts,

U�r�a,R� a�t�,t� = Ua�r�a,R� a�t�,t� + Ub�R� a�t�,t� . �26�

From expressions �9� and �23�, we realize that Ua�r�a ,R� a�t� , t�
can be greatly simplified as

Ua�r�a,R� a�t�,t� = 2 �
j=1

j�a

N�t�

qa · V�r�a,r� j�t�� + �
i=N�t�+1

M

qa · V�r�a,r�i�t��

− �
j=1

j�a

N�t�

qa · V�r�a,r� j�t�� = W̄a�r�a,R� a�t�,t� . �27�

The rest of the terms V�r� j�t� ,r�i�t�� of expression �26� appear

in Ub�R� a�t� , t� and they are included in the potential

Ga�r�a ,R� a�t� , t�. However, this term Ub�R� a�t� , t� has no role
on the single-particle wave function 
a�r�a , t� because it has
no dependence on r�a and it only introduces an irrelevant
global phase on 
a�r�a , t�.

Let us notice that, in the right-hand side of expression
�27�, we have used the same definition of the potential profile
as in classical expression �17�. The only difference here is

that R� a�t� are not classical trajectories but quantum �Bohm�
trajectories. Therefore, the computation of the potential pro-

file W̄a�r�a ,R� a�t� , t� that appears in the single-particle
Schrödinger equation �Eq. �25�� just needs 3D Poisson equa-
tions �Eqs. �18� and �19�� with the boundary conditions �Eq.

�20��. Interestingly, since the term W̄a�r�a ,R� a�t� , t� is com-
puted from a Poisson equation, our quantum-trajectory algo-
rithm can also be directly extended to spatial-dependent per-
mittivity systems.

In fact, in order to effectively solve the Schrödinger equa-
tion �Eq. �25��, we need to know the position of the rest of

Bohm particles R� a�t�= 
r�1�t� ,r�a−1�t� ,r�a+1�t� ,r�N�t� , t�. There-
fore, all N�t� Bohm trajectories have to be computed simul-
taneously within a system of N�t� Schrödinger equations
coupled by N�t� Poisson equations. The keystone of our
quantum-trajectory algorithm is that, in order to find r�a�t�,
we do not have to evaluate the electrostatic potential,
U�r�1 , . . . ,r�N�t� , t�, and the wave function, 	�r�1 , . . . ,r�N�t� , t�,
everywhere in the N-multidimensional configuration space

r�1 , . . . ,r�a , . . . ,r�N�t� , t�, but only over a smaller number of
configuration points where all positions of electrons are

fixed, R� a�t�, except r�a, i.e., 
r�1�t� , . . . ,r�a , . . . ,r�N�t��t� , t�. We
want to remark that the full �short- and long-range� Coulomb
interaction present in Eq. �6� is considered explicitly in Eq.
�25� without any �mean-field or perturbative� approximation.

Finally, according to the summary done in Sec. I of this
work, we want to emphasize the similarities between the
�open-system� Bohm-trajectory computational algorithm dis-
cussed in Ref. 33 and the �electron-transport version�
density-functional theory mentioned in Sec. I. For the latter,
the decomposition of the many-particle system into a set of
coupled single-particle Schrödinger equations is exact and
demonstrated by the Hohenberg-Kohn-Sham theorem.6,7

However, from a practical point of view, the exact exchange-
correlation functionals that appear in the single-particle
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Schrödinger equations are unknown and, therefore, require
some approximation. Identically, in the quantum �Bohm� tra-
jectory algorithm, the use of single-particle Schrödinger
equation �Eq. �25�� is exact to treat many-particle system as
demonstrated in the theorem considered in Ref. 33. However,

the exact values of the terms Ga�r�a ,R� a�t� , t� and

Ja�r�a ,R� a�t� , t� that appear in Hamiltonian �25� are unknown
�because they require the partial knowledge of the shape of
the many-particle wave function�. Thus, from a practical
point of view, they need to be approximated by some edu-
cated guess as in the density-functional theory.

Finally, the exchange interaction among the �fermions�
electrons can also be considered in the present quantum al-
gorithm. A brief explanation of how the exchange interaction
can be introduced in the present quantum �Bohm� trajectory
algorithm is mentioned in Ref. 33, but the discussion of this
issue is far from the goal of the present paper.

VI. NUMERICAL RESULTS FOR THE MANY-PARTICLE
HAMILTONIAN IN CLASSICAL AND QUANTUM

ELECTRON DEVICES

In Secs. I–V of this paper, a many-particle Hamiltonian
has been developed for an arbitrary ensemble of particles
with Coulomb interaction among them. In this section, our
numerical examples will deal with electrons in solid-state
semiconductors. Therefore, first of all, we have to specify
under what approximations the theoretical many-particle
Hamiltonian developed in the first part can be used to de-
scribe solid-state semiconductors. Only the dynamics of the
free electrons will be studied in our numerical results. The
interaction with the rest of the charges �associated to core
electrons and ions� will be considered as average polarization
charges via a spatial-dependent permittivity.36 We do also
assume an effective mass48 for the free electrons that ac-
counts for their interaction with the periodic atomic structure
under the standard Born-Oppenheimer approximation49 �that
neglects the interaction of valence electrons with other kind
of particle such as phonons�. These are reasonable approxi-
mations in most electron-transport models of ballistic
devices.12,27

We solve the many-particle �open-system� Hamiltonian
from expression �6� to compute the current-voltage charac-
teristic for classical and quantum electron devices. We use
the classical algorithm discussed in Sec. IV for the simula-
tion of a double-gate field-effect transistor50 �DG-FET�,
while we use the quantum algorithm discussed in Sec. V for
a resonant tunneling diode47 �RTD�. As mentioned above, no
phonon, impurity, or roughness scattering mechanism is in-
cluded in the simulations and only the full Coulomb interac-
tion is considered explicitly. In order to emphasize the im-
portance of our treatment of the electron-electron
correlations in such nanoscale devices, we will compare
these current-voltage characteristics with the results obtained
with a time-dependent “mean-field” approach that will be
discussed in Appendix B. We refer to “many-electron” re-
sults to describe the simulation done with either classical
�Sec. IV� or quantum �Sec. V� algorithms that requires solv-
ing N�t� Poisson equations with N�t� different boundary con-

ditions and charge densities �expressions �17�–�20�� at each
time step. Alternatively, we refer to the time-dependent
‘‘mean-field’’ results when a single Poisson equation �expres-
sions �B1�–�B4�� is solved for all electrons at each time step
of the simulation.

For all simulations �quantum, classical, mean field, or
many electron�, the same electron injection model is used.
We use an injection model applicable to systems with arbi-
trary electron confinement, which is a time-dependent ver-
sion of the Landauer boundary conditions, valid for degen-
erate and nondegenerate systems. We inject electrons
according to the Fermi-Dirac statistics defined by a Fermi
level �an electrochemical potential� deep inside the
contacts.38 The applied bias provides a difference between
the values of the Fermi level at each injecting surface. Our
injection model, coupled to the boundary conditions of the
Poisson equation, also ensures charge neutrality at the
contacts.35

All simulations use a 3D finite-difference Poisson solver
scheme. The whole volume � of the active region drawn in
Fig. 1 is divided into Nx ·Ny ·Nz cells. Each 3D cell has
spatial dimensions of DX, DY, and DZ. Thus, the active re-
gion of our simulating device has a volume equal to
�Nx ·DX� · �Ny ·DY� · �Nz ·DZ�=Lx ·Ly ·Lz. The boundary con-
ditions of the Poisson equation on the six rectangular sur-
faces S= 
S1 ,S2 , . . . ,S6� of Fig. 1 are defined using either
Dirichlet or Neumann arguments. In general, on the surfaces
S2, S3, S5, and S6, Neumann boundary conditions are used
with the educated guess that the component of the electric
field normal to the surface is zero there, E� l�r�l , t� ·n� l=0, where
n� l is a unit vector normal to the mentioned surfaces and
pointing outward. The continuity of the displacement vector
normal to surfaces justifies the assumption E� l�r�l , t� ·n� l=0 at
the boundaries when the relative permittivity inside � is
much higher than the corresponding value outside. On the
other hand, in the surfaces S1 and S4 of Fig. 1 we use the
Dirichlet boundary conditions discussed in Sec. III,
Bl�r�1 , . . . ,r�N�t� , t�, with final expression �20�.

Finally, a technical remark about the application of ex-
pression �20� in the classical or quantum many-electron
simulations is mandatory. Strictly speaking, our assumption
that the potential at one particular surface is position inde-
pendent, B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t��Bl�r�1 , . . . ,r�N�t� , t�, is
not completely accurate because we known from the discus-
sion in Sec. III that the original function
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� in expression �11� has to repro-
duce, somehow, the atomistic charge distribution on the
surface.41 In particular, one can expect
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�→� when the electron is close to
the border, r�k→r�l. However, due to our ignorance about the
atomistic description of the contact interface,41 we apply the
boundary conditions �Eq. �20�� assuming that the distance
between r�k and r�l is always greater than 1 nm �this value is
interpreted as a measure of range of the atomistic
pseudopotential2 in the spatial-dependent permittivity sce-
narios discussed here�.

A. Classical simulation of two-electron system: Many electron
versus mean field

In this section we will explain the origin of the important
differences that will appear later between the mean-field and
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many-electron algorithms using a simple semiclassical two-
electron system. We consider one electron �labeled as one
electron� injected from the source surface, S4, at an arbitrary
position. A second electron is injected, arbitrarily, from the
drain surface, S1. A battery provides an external voltage
equal to zero at the drain and source surfaces. A 3D cubic
system with a volume of �= �20 nm�3 is considered as the
active device region. We consider silicon parameters for the
numerical simulation. Within the mean-field approximation

only the potential profile W̄mean�r� , t� is calculated for the two-
electron system using expressions �B1�–�B4�. Then, we real-
ize from Fig. 4 that each electron can be reflected by an
artificial alteration of the potential profile related to its own
charge. In Figs. 5 and 6 we have plotted the energy potential

profile seen by the one electron, W̄1�r�1 , t�, and by the two

electron, W̄2�r�2 , t�, using the many-electron algorithm de-
scribed by expressions �17�–�20�. Electrons are not affected
by their own charge. We clearly see that, within the mean-
field approximation, electrons can be unable to overcome the
large potential barrier that appears at their own position �due
to their own charge�. In addition, the simple results confirm
that the mean-field error is equal to expression �B7�, i.e., the

error of the mean-field potential profile at each position of
the active region is Errork�r� , t�=V�r� ,r�k�t��.

Finally, a discussion about the role of the spatial mesh
used for the numerical solution of the Poisson equation is
relevant. For an electron device with a length of hundreds of
nanometers, we need a mesh of the 3D active region with
spatial step DX�DY �DZ�10 nm to deal with not more
than 1000 nodes in the numerical solution of the Poisson
equation. This computational limitation in the resolution of
the potential is present when solving either the mean-field or
the many-electron algorithm. With such spatial resolution,
the short-range interaction is missing in both procedures be-
cause two electrons inside the same spatial cell will not repel
each other. In addition, the error between both procedures,
Errork�r� , t�=V�r� ,r��t�k�, is reduced because the numerical
Coulomb potential profile is smoothed due to the low reso-
lution �i.e., the diameter of the region where V�r� ,r��t�k� has a
strong influence is shorter than the cell dimensions�. There-
fore, we obtain roughly identical results with both schemes.
In the subplots of Fig. 7, the same electron trajectory is pre-
sented for different mesh resolutions. As can be seen, for the
best mesh resolution �DX=DY =DZ=2 nm�, the differences
between both treatments are maximized due to the important
spurious autoreflection effect found in the mean-field trajec-
tory. On the other hand, as the resolution of our mesh is
reduced, differences between both treatments disappear, giv-
ing roughly equal trajectories for cell dimensions above 5
nm.

In summary, when the spatial cells are large, the mean-
field and the many-electron schemes correctly model the
long-range Coulomb interaction, but both neglect the short-
range component. On the contrary, with smaller spatial steps
DX�DY �DZ�5 nm, the many-electron resolution takes
into account long- and short-range Coulomb interactions cor-
rectly, whereas the description of the short-range component
within the mean-field approximation is completely incorrect
�i.e., electrons are repelled by themselves�. In other words,
when DX ,DY ,DZ→0 the mesh error in our many-electron
algorithm reduces to zero, while the error in the mean-field
approach tends to infinite, Errork�r� , t�→� �see a schematic
summary of the explanation of this discussion in Fig. 8�.

FIG. 4. �Color online� Potential energy profile W̄mean�r� , t� com-
puted with a 3D Poisson solver using the classical mean-field ap-
proximation on the plane X-Y of the active region �= �20 nm�3 at
z=6 nm at 0.4 fs. The solid points are electron positions.

FIG. 5. �Color online� Potential energy profile of the one elec-

tron, W̄1�r�1 , t�, with the many-electron algorithm in the plane X-Y of
the active region �= �20 nm�3 at z=6 nm at 0.4 fs. The solid point
is the one-electron position.

FIG. 6. �Color online� Potential energy profile of the two elec-

tron, W̄2�r�2 , t�, with the many-electron algorithm in the plane X-Y of
the active region �= �20 nm�3 at z=6 nm at 0.4 fs. The solid point
is the two-electron position.
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Finally, it is important to remark that the electron trajec-
tories in Fig. 7 are computed using the classical scheme of
Sec. IV, but the electrostatic potential profiles are computed
from a 3D Poisson solver that is identical for the classical or
quantum algorithms. Therefore, the conclusions drawn here
for the classical algorithm can be directly extrapolated to our
quantum algorithm. In the classical algorithm, the wrong po-
tential profile of Fig. 4 affects the electric field �Eqs. �13a�
and �13b�� that modifies the electron dynamics. Identically,
the wrong mean-field potential in expression �25� will affect
the solution of the Schrödinger equation that will modify
Bohm trajectories.

B. Classical simulation of a double-gate field-effect transistor

Now, we use the classical solution of the many-particle
Hamiltonian �6� to provide a full simulation51 for the DG-
FET depicted in Fig. 9. Electron transport in the x direction
�from source to drain� takes place along a silicon �100� ori-
entation channel at room temperature. In particular, the elec-
tron mass is taken according to the six equivalent ellipsoidal
constant energy valleys of the silicon band structure.27,50 The
effective masses of the ellipsoid are ml=0.9163m0 and mt
=0.1905m0, with m0 as the free-electron mass. For details on

the particular effective mass taken by the electrons in each
direction and valley see Ref. 38. The dimensions of the chan-
nel of devices Lz and Ly are both small enough, so that the
active region becomes an effective one-dimensional �1D�
system �a quantum wire� and the energy of an electron in
one particular valley is E=�2kx / �2mt�+E1D

q , where E1D
q

=�2�2 / �2mtLy
2�+�2�2 / �2mlLz

2� represents the minimum en-
ergy of the first subband, whose value is E1D

q =0.182 eV for
Lz=2 nm and Ly =5 nm. The energies of the next lowest
subbands �E1D

q =0.418 eV or E1D
q =0.489 eV� are assumed

high enough to keep a single band simulation. Therefore, we
use a 3D Poisson solver for electrostatic, but a 1D algorithm
to describe the velocity of each electron in the x direction.
Due to the lateral electron confinement, the velocities in the
y and z directions are zero.52 We solve N�t� 1D Newton
equation �Eq. �13�� coupled by N�t� 3D Poisson equation
�Eq. �18��.

We obtain the transistor current-voltage characteristics by
computing the time evolution of many interacting electrons
inside the 1D DG-FET. The classical many-electron algo-
rithm is compared with the classical mean-field one. The
details of the simulation are described in Table I. A total
number of cells, Nx ·Ny ·Nz, on the order of 1000 and a num-
ber of electrons, N�t�, about 20–50, implies a simulation time
on the order of 3–4 h for each bias point,53 while it takes
20–30 min within the mean-field approximation.

TABLE I. Parameters for the DG-FET depicted in Fig. 9.

Units Symbol Value

Lengths �nm� Lx 15

�nm� Ly 5

�nm� Lz 6

�nm� LSI 2

�nm� Wox 2

Spatial step �nm� DX 3.0

�nm� DY 1.6

�nm� DZ 1.0

Relative permittivity Air 1.0005

Oxide 3.8000

Silicon 11.7514

Doping �cm−3� Channel Intrinsic

�cm−3� Contact N+ 2
1019

Simulation time �sec.� T 5
10−10

Temporal step �sec.� Dt 2
10−16

FIG. 7. �Color online� Electron trajectory computed with the
mean-field �circles� and the many-electron �squares� algorithms for
four different mesh resolutions. �a� DX=DY =DZ=2 nm, �b� DX
=DY =DZ=4 nm, �c� DX=DY =DZ=6 nm, and �d� DX=DY
=DZ=8 nm.

DX

� �,kError r t�
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55nnmm

“mean-field” (1 Poisson Eq.)

“many-electron” (N Poisson Eq.)

FIG. 8. �Color online� Schematic representation of the errors in
the mean-field and the many-electron approaches as a function of
the size of the discretization mesh.
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FIG. 9. �Color online� Schematic representation of the
DG-FET.
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In Figs. 10 and 11 average values for current and number
of particles are presented for different gate and drain volt-
ages. When the FET remains under subthreshold region, the
results are quite similar for both methods. However, interest-
ingly, the average current of the FET system in the sub-
threshold region predicted by the many-electron algorithm is
slightly larger than the result obtained by the mean-field ap-
proximation. In other words, the mean-field results remain in
the subthreshold region, while the many-electron results
show a DG-FET channel partially opened. In any case, the
most important differences occur for higher gate voltages. In
order to understand the results, we have to remind that the
DG-FET tends to behave as a capacitor where the charge
inside the channel is controlled by the gate voltage. In addi-
tion, the charge at the contacts is controlled by the injection
process that achieves local charge neutrality there. Therefore,
the number of electrons inside the channel tends to be iden-
tical within both methods. However, the average current that
is sensible to electron dynamics is higher with the many-

electron method than with the mean-field approximation be-
cause fewer electrons are reflected in the former �i.e., there
are no electrons reflected by its own charge�. For the highest
gate voltages, equal results for the mean current are obtained
for both methods.

C. Quantum simulation of a resonant tunneling diode

In this section, we will provide a numerical example of
the solution of the quantum many-particle Hamiltonian �6�
for an ensemble of electrons in a RTD of Fig. 12. We again
compare our many-electron method with the mean-field ap-
proximation. We consider a RTD composed of two highly
doped drain-source GaAs regions, two AlGaAs barriers, and
a quantum well �see Table II�. We assume a constant effec-
tive mass m=0.067m0, with m0 as the electron free mass
along the whole structure. Transport takes place from emitter
to collector in the x direction. The lateral dimensions are
small enough to consider electron confinement in y and z
directions.52 The energy of an electron in one particular
valley is E=�2kx / �2m�+E1D

q , where E1D
q =�2�2 / �2mLy

2�
+�2�2 / �2mLz

2� represents the minimum energy of the first
subband, whose value is E1D

q =0.137 eV for Lz=9 nm and
Ly =9 nm. The energies of the next lowest subbands are in-
accessible to electrons �E1D

q =0.551 eV or E1D
q =1.239 eV�.

Again, room temperature is assumed.
The practical quantum algorithm for the RTD implies

solving numerically N�t� time-dependent single-particle 1D
Schrödinger equation �Eq. �25�� for the transport direction x.
Due to the confinement in the lateral directions, we assume
that the Bohm velocity in y and z directions is negligible.52

Since expression �25� deals with time-dependent potential
profiles, its solution must be computed with a numerical
finite-difference scheme method �see the numerical algo-
rithm presented in Appendix A of Ref. 54�. In particular, as
discussed in Ref. 33, we assume the zero-order Taylor ap-

TABLE II. Parameters for the RTD depicted in Fig. 12.

Units Symbol Value

Lengths �nm� Lx 6.4

�nm� Ly 9.0

�nm� Lz 9.0

Barrier dimensions �eV� High 0.5

�nm� Lwell 2.4

�nm� Wbarrier 1.6

Relative permittivity Air 1.0005

GaAs 13.1800

AlGaAs 11.7760

Spatial step �nm� DX 0.20

�nm� DY 1.12

�nm� DZ 1.12

Doping �cm−3� Channel Intrinsic

�cm−3� Contact N+ 2
1019

Simulation time �sec.� T 2
10−10

Temporal step �sec.� Dt 1
10−17

FIG. 10. �Color online� Average current for the 1D DG-FET of
Fig. 9 using the many-electron and mean-field algorithms. The open
ellipses include results with the same gate voltage indicated on the
left.

FIG. 11. �Color online� Average number of particles inside the
active region of the DG-FET of Fig. 9 using the many-electron and
mean-field algorithms. The open ellipses include results with the
same gate voltage as indicated on the left of Fig. 10.
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proximations Ga�r�a ,R� a�t� , t��Ga�r�a�t� ,R� a�t� , t� and
Ja�r�a ,R� a�t� , t��Ja�r�a�t� ,R� a�t� , t� in expression �25�. We do
also emphasize that the term Ua�r�a ,R� a�t� , t� that appears in
Eq. �25� contains the full �long and short ranges� Coulomb
interaction with the particular boundary conditions devel-
oped in Sec. III. All Schrödinger equations are coupled by
N�t� 3D Poisson equations with N�t� different boundary con-
ditions and charge densities �expressions �17�–�20��. The to-
tal number of cells, Nx ·Ny ·Nz, on the order of 1000, and the
number of electrons, N�t�, about 10–20, implies a computa-
tional time on the order of 2–3 days for each bias point,53

while it takes 10 h within the mean-field approximation. The
calculations of the mean-field approximations and our many-
electron approach are identical except in the computation of
the potential profile. In the former a unique potential profile
is computed, while in the later there is one potential profile
for each electron. Finally, let us notice that we consider reso-
nant tunneling, electron confinement, and Coulomb interac-
tion in our quantum solution of the many-particle Hamil-
tonian, but we do not include the exchange interaction
among electrons. The algorithm to include such interaction
in our quantum �Bohm� trajectory proposal is presented in
Ref. 33.

In Fig. 13 average values for current are presented for
different biases with the many-electron and mean-field algo-
rithms. We compute the average current at each bias point
using a detailed version of the Ramo-Shockley theorem54 in
surface S4 �emitter� and surface S1 �collector�. As expected,
identical results are obtained from both surfaces showing the
numerical accuracy of our simulator. When the RTD remains
far from the resonant voltage, the results are quite similar for
both methods, but the many-electron approach provides a bit
higher current because it avoids the self-reflected electrons in
the contact that are found in the mean-field approach, as
mentioned previously in Figs. 4–6. On the contrary, in the
resonant region, the correct consideration of the electron-
electron interaction is very relevant because the quantum
transport is very sensible to the quantum well electrostatics.
Now, the potential profile determines the shape of the quan-
tum well and, therefore, the resonant energies �dashed hori-
zontal line in insets �a� and �b� of Fig. 13� of the electrons.
When a “mean-field” electron tries to traverse the “empty”
double barrier structure, it “feels” a perturbation in the quan-
tum well due to its own charge implying an increase in the
resonant energy and the possibility of being finally reflected
by its own charge. In other words, the “mean-field” electron
can be Coulomb blockaded by itself. Our many-electron al-

gorithm is free from this pathological behavior. This impor-
tant difference explains the spurious reduction in the current
with the mean-field method at resonance. It also explains the
movement of the position of the resonant voltage �i.e., the
voltage at the maximum current� as schematically explained
in the insets of Fig. 13. The inset of Fig. 13�a� shows how the
electron that traverses an empty quantum well feels its own
repulsion when the mean-field approximation is used �in-
creasing the resonant energy in dotted line�, while in inset of
Fig. 13�b�, the electron with a many-electron simulation is
free from this pathological effect.

In summary, the relation between the shape of the poten-
tial profile and the behavior of the electron can be much
more complex in the quantum regime than in its classical
counterpart �where the spatial derivative of the potential pro-
file directly defines the electron acceleration�. Figure 13
shows the importance of providing the exact many-particle
Coulomb description of electrons in the current-voltage char-
acteristic of a RTD. The time-dependent mean-field approach
used here provides spurious effects on the correlations of
electrons that are evident even in the dc behavior of RTD
simulations. To be fair, let us notice that the time-dependent
mean-field approach �the same as in Ref. 47� does improve
the treatment of the Coulomb correlations when compared
with the standard Fermi-liquid approaches13,14 because, in
spite of providing a pathological “autointeraction” with it-
self, it captures the Coulomb correlation between one elec-
tron and the others.47 In any case, the many-electron ap-
proach developed here, with the exact description of the
electron Coulomb interactions, is greatly preferred.

VII. CONCLUSIONS

The prediction of the collective behavior of many elec-
trons is a very active field of research and several theoretical
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FIG. 12. �Color online� Schematic representation of the
RTD.
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FIG. 13. �Color online� Average current through surfaces S1 and
S4 for the RTD of Fig. 12 as a function of bias using the many-
electron �solid symbols� and mean-field �open symbols� algorithms
�lines are a visual help�. Nonuniform voltages steps are used to
focus on the resonant region. Insets show schematically the effect of
an electron crossing an empty well on its own electrostatic potential
using �a� the mean-field or �b� the many-electron approaches.
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approximations have been proposed to improve the treatment
of electron-electron correlations. In this work, an exact
many-particle Hamiltonian for N�t� electrons inside an open
system is developed, without any mean-field or perturbative
approximation. The many-particle Hamiltonian �6� is
built from a sum of N�t� electrostatic potentials
Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� solutions of N�t� Poisson equation
�Eq. �7�� in a 3D volume. We use the Poisson equation to
define Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� instead of the Coulomb law
because the former is valid for scenarios with �or without� a
spatial-dependent permittivity. In particular, it is shown that
the boundary conditions �Eq. �12�� are different for each term
Wk�r�1 , . . . ,r�k , . . . ,r�N�t��. It is shown that these particle-
dependent boundary conditions �Eq. �12�� of the electrostatic
potentials provide the same electron dynamics than the
image-charge method applied to electron transport. However,
our many-particle approach has the fundamental advantage
that it can be directly implemented into 3D realistic �classical
or quantum� electron device simulators, while the image-
charge method is an excellent analytical approach applicable
only to very simple systems �such as one electron crossing
an ideal41 infinite metallic surface�.

A classical solution of the many-particle Hamiltonian is
presented for a DG-FET. The results are compared with a
time-dependent mean-field approach described in Appendix
B. Within the mean-field approximation only one potential

profile W̄mean�r� , t� is calculated for all electrons. Then, each
electron can be reflected by an artificial alteration of the po-
tential profile due to its own charge. On the contrary, in the
many-electron algorithm described here, electrons are not af-
fected by their own charge. The average current and the
number of particles are computed for the DG-FET showing
that the differences between the mean-field approximation
and the exact many-electron approach become important
when small geometries �that imply stronger electrostatic in-
teraction� are involved.

A quantum solution of the many-particle Schrödinger
equation with the exact many-particle �open-system� Hamil-
tonian developed here is presented in terms of the quantum
�Bohm� trajectory algorithm mentioned in Ref. 33. The rel-
evant point of the quantum-trajectory formalism is that
Bohm trajectories can be computed without the full knowl-
edge of the many-particle wave function, 	�r�1 , . . . ,r�N�t� , t�,
but with the knowledge of the single-particle wave function,

a�r�a , t�. It is emphasized that the approach presented in
Ref. 33 has similarities with the density-functional theory. In
both, the decomposition of many-particle system into a
coupled set of single-particle Schrödinger equations is exact,
but both need an approximation for the single-particle poten-
tials that appear in their equations �i.e., the exchange-
correlation functionals in the latter and the terms

Ga�r�a ,R� a�t� , t� and Ja�r�a ,R� a�t� , t� in the former�. We do also

emphasize that the electrostatic term Ua�r�a ,R� a�t� , t� that ap-
pears in the time-dependent Schrödinger equation with time-
dependent potentials, expression �25�, contains the full �long
and short ranges� Coulomb interaction with the particular
boundary conditions developed in Sec. III. Numerical results
are presented for a RTD and compared with time-dependent
mean-field approach developed in Appendix B. The many-

electron approach developed here is greatly preferred be-
cause it avoids the “self-interaction” found in the time-
dependent mean-field approach discussed in Appendix B.

Finally, since either the classical or the quantum many-
electron solutions of the Hamiltonian are time-dependent
Coulomb-interacting algorithms, apart from the average �dc�
current shown in this work, both many-particle approaches
are a really valuable simulation tools to obtain reliable infor-
mation on the high-frequency and �dc and ac� noise perfor-
mances of the state-of-the-art nanoscale devices. Future work
will follow this direction.
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APPENDIX A: THE ELECTRON DYNAMICS OBTAINED
BY THE BOUNDARY CONDITIONS [EQ. (12)] AND

BY THE IMAGE-CHARGE METHOD

In this appendix, we show that, in principle, the electro-
static potential that guides the dynamics of the i particle
obtained by the image-charge method is identical to the one
computed with our many-particle Hamiltonian. In fact, we
only have to show that the boundary conditions are identical
in both approaches.

As seen in Fig. 3 of the paper, we define a subensemble of
imaginary particles 
�N+1�� , . . . ,M�� located outside �. The
essential property of these imaginary particles is that, to-
gether with the first N�t� particles inside �, they reproduce
the expected value of the potential B�r�1 , . . . ,r�M�t� ,r�

l , t� mea-
sured at the boundary surface Sl,

�
k=1

N�t�

V�r�l,r�k� + �
j�=N�t�+1

M� qj�

4��	r�l − r� j�	
= B�r�1, . . . ,r�M�t�,r�

l,t� ,

�A1�

where the primes M� , j� in the second term remind that we
deal with imaginary charges �the generalization to a distribu-
tion of imaginary charge, rather than point particles, is also
available�. Then, the electrostatic potential seen by the i par-
ticle at the Sl boundary is just

W̄i
image�r�,t�	r�=r�l = �

k=1

k�i

N�t�

V�r�l,r�k� + �
j�=N�t�+1

M� qj�

4��	r�l − r� j�	
.

�A2�

Therefore, from Eqs. �A1� and �A2�, the electrostatic poten-
tial of the i particle at the boundary can be computed as

W̄i
image�r�,t�	r�=r�l = B�r�1, . . . ,r�M�t�,r�

l,t� − V�r�l,r�i� . �A3�

Expression �A3� is exactly the same result that we obtain
from the use of our many-particle boundary conditions �see
expression �12��. Since the charge distribution inside the vol-
ume � does not change with the image-charge method or
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with our algorithm and both have identical boundary condi-
tions, the uniqueness electrostatic theorem guarantees that
the potential distributions obtained by both algorithms are
identical not only in the boundaries but in any point inside

the volume �. Therefore, we obtain the identity W̄i
image�r� , t�

=W̄i�r� , t�; ∀r���. An explanation in terms of the electric
field, rather than the electrostatic potential, follows identical
steps.

Finally, as mentioned in the paper, let us remind that the
demonstration of the identity is quite simple, but the relevant
point to compare both methods is that finding the imaginary

charges, � j�=N�t�+1
M� qj� /4��	r�l−r� j�	, which fulfill expression

�A1� in 3D realistic scenarios is not at all trivial.41,42 On the
other hand, the ability of our many-particle Hamiltonian to
be included into 3D realistic devices is explicitly demon-
strated in Sec. VI.

APPENDIX B: TIME-DEPENDENT MEAN-FIELD
APPROXIMATION FOR THE MANY-PARTICLE

HAMILTONIAN

As described in Sec. I, the mean-field approximation pro-
vides a single average potential for computing the dynamics
of all the electrons. This average potential, which we label

here by the suffix “mean” W̄mean�r� , t�, is still capable of pre-
serving most of the collective effects of the Coulomb inter-
action. Here, we compare this approximation with our exact

many-particle Hamiltonian. The term W̄mean�r� , t� is computed
by taking into account all charges inside the volume �.
However, since one particle cannot “feel” its own charge, in

fact, W̄mean�r� , t� can be interpreted as the electrostatic poten-
tial seen for an additional probe charge whose position is r�,

W̄mean�r�,t� = W̄M+1�r�1�t�, . . . ,r�N�t��t�,r�� . �B1�

This term W̄mean�r� , t� is a solution of a unique 3D Poisson
equation,

�r�
2W̄mean�r�,t� = �̄mean�r�,t� , �B2�

where the charge density is defined as

�̄mean�r�,t� = �
j=1

N�t�

qj��r� − r� j�t�� , �B3�

and, according to expression �11� in the paper, the boundary
conditions for this additional probe charge must be

W̄mean�r�,t�	r�=r�� = B�r�1�t�, . . . ,r�N�t��t�,r�l,t�, l = 1, . . . ,6.

�B4�

Let us notice that the time-dependent mean-field approxi-
mation discussed here can be applied to either classical or
quantum systems. Both approaches share expressions
�B2�–�B4� for the computation of the electrostatic potentials
�change the classical trajectories by the quantum ones�. We
also want to remark the time-dependence of expression �B2�.
This is a common feature for classical �semiconductor Monte

Carlo51� simulations but less frequent for quantum mean-
field approaches.

Now, we estimate the error of our time-dependent mean-
field approximation. First, we show that the mean-field po-

tential can be written in terms of the potentials W̄i�r�i , t� men-
tioned in Eq. �17�. In particular, we can write the mean-field

potential W̄mean�r� , t� as

W̄mean�r�,t� =
1

N�t���
j=1

N�t�

W̄mean�r�,t�� =
1

N�t� �j=1

N�t�


W̄j�r�,t�

+ V�r�,r� j�t��� . �B5�

Now, we compute the error, Errork�r� , t�, as

Errork�r�,t� = W̄mean�r�,t� − Wk�r�,t� =
1

N�t���
j=1

N�t�

W̄j�r�,t�

+ V�r�,r� j�t��� − W̄k�r�,t� , �B6�

which can be finally rewritten as

Errork�r�,t� =
1

N�t� �j=1

N�t�


W̄j�r�,t� − W̄k�r�,t� + V�r�,r� j�t���

= V�r�,r�k�t�� , �B7�

where, according to Eq. �9�, we have used the identity

W̄j�r�,t� − W̄k�r�,t� = �
i=1

i�j

M

V�r�,r�i�t�� − �
i=1

i�k

M

V�r�,r�i�t��

= V�r�,r�k�t�� − V�r�,r� j�t�� . �B8�

Expression �B7� shows that Errork�r� , t�→� when
r�→r�k�t�. The mean-field approximation implies that the po-
tential “felt” by the k particle at r�→r�k�t� is its own potential
profile. In fact, from a numerical point of view, the use of the
mean-field approximation is not so bad. For example, classi-
cal simulators uses 3D meshes with cell sizes of few nanom-
eters, DX�DY �DZ�10 nm. Then, the error of the mean-
field approximation is smaller than the technical error �i.e.,
mesh error� due to the finite size of the cells. The long-range
Coulomb interaction is well captured with the mean-field
approximation, while this approximation is really bad strat-
egy to capture the short-range Coulomb interaction28–32 �see
Fig. 8 in the paper�.

Finally, let us remark another important point about the
mean-field approximation. Looking at final expression �B7�,
rewritten here as Wk�r� , t�=W̄mean�r� , t�−V�r� ,r�k�t��, it seems
that Wk�r� , t� can be computed from a unique mean-field so-

lution of the Poisson equation W̄mean�r� , t� when subtracting
the appropriate two-particle potential V�r� ,r�k�t��. In fact, this
is the strategy used in several recent works28–32 to improve
the treatments of the short-range Coulomb interaction in
electron device Monte Carlo simulators. However, this strat-
egy is not as general as our procedure because these works
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need an analytical expression for the two-particle Coulomb
interaction V�r� ,r�k�t��. The analytical expression of V�r� ,r�k�t��
written in expression �3� is only valid for scenarios with
homogenous permittivity. On the contrary, our procedure

with N�t� electrostatic potentials computed from N�t� differ-
ent Poisson equations in a limited 3D volume � can be ap-
plied inside general scenario with �or without� spatial-
dependent permittivity.
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Abstract. According to roadmap projections, nanoscale field-effect transistors
(FETs) with channel lengths below 30 nm and several gates (for improving their
gate control over the source–drain conductance) will come to the market in the
next few years. However, few studies deal with the noise performance of these
aggressively scaled FETs. In this work, a study of the effect of the intrinsic
(thermal and shot) noise of such FETs on the performance of an analog amplifier
and a digital inverter is carried out by means of numerical simulations with
a powerful Monte Carlo (quantum) simulator. The numerical data indicate
important drawbacks in the noise performance of aggressively scaled FETs that
could invalidate roadmap projections as regards analog and digital applications.
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1. Introduction

The ITRS predicts for the near future the introduction of nanoscale field-effect transistors
(FET) with channel lengths below 30 nm, including novel structures with two, three
or even four gates provided in order to improve the gate control over the source–drain
conductance [1]. The advantages of these nanoscale FETs in overcoming the physical
limits of traditional FETs are clearly established in terms of size, speed and power
consumption. However, few studies deal with the noise performance of these aggressively
scaled FETs. This is the main goal of this work.

At very small (a few nanometers) dimensions of FETs, two important physical features
appear in the description of electron transport. On one hand, ballistic transport comes into
play. For advanced FETs with channel length smaller than 30 nm, an electron crossing
the channel suffers very few inelastic collisions and its total (kinetic plus electrostatic)
energy is nearly constant. On the other hand, when the lateral dimensions of the
channel are comparable to the de Broglie wavelength of the electron, its wave nature
is manifested. The only available energies for electrons are those that provide a solution
of the Schrödinger equation whose modulus is zero at the lateral boundaries. The role of
such particularities in the noise performance of FET structures will be studied in this work
using a powerful Monte Carlo (quantum) simulator. Although there are other sources that
provide time-dependent fluctuations of the electronic current in FETs [2], when all those
‘spurious’ sources of noise are eliminated, thermal and shot noise still remain. Therefore,
we will consider only these two sources of noise within a particular 3D (bulk) FET and a
1D (quantum wire) FET.

In section 2, we provide analytical estimations for the signal-to-noise ratio (S/N) of a
simple analog amplifier, and the bit–error ratio (BER) of a simple CMOS inverter. Then,
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Figure 1. (a) Schematic representation of an analog amplifier. D and S denote
the drain and source respectively. (b) Equivalent FET circuit, where δIDS(t) and
IDS(t) denote noise and signal sources respectively and G represents the FET
conductance.

in section 3, we will compute numerical results for the analog and digital applications by
means of an electron device Monte Carlo simulator coupled to a full Poisson solver [3] with
a novel injection model suitable for electron devices with or without quantum confinement
conditions [4]. We conclude in section 4 summarizing the most important results of this
work.

2. Intrinsic noise in quasi-ballistic devices

Here, we obtain analytic estimates for the noise performances in both analog and digital
FET applications. Such analytic expressions for the S/N ratio and the BER will help in
the understanding of the Monte Carlo numerical noise results.

2.1. Analytical results for noise in analog applications

In the present subsection we deduce an analytical expression for the S/N ratio for the
analog amplifier depicted in figure 1(a).

The current fluctuations can be extracted from the equivalent circuit shown in
figure 1(b):

ΔIDS = G ΔVDS + δIDS (1)

where G is the FET conductance, ΔVDS is the source–drain voltage fluctuation and δIDS

denotes the intrinsic current noise. At the same time, since the FET is operated in the
saturation region,

G ≡ dIDS

dVDS

≈ 0, (2)

we assume that the fluctuation of the drain–source current in (1) will depend not on the
drain–source voltage variation, but only on δIDS(t). This is a reasonable approximation for
the saturation region and the low-frequency limit assumed here. Thus, we can rewrite (1)
as

ΔIDS(t) = δIDS(t). (3)
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On the other hand, using the superposition principle, VDS and IL can be broken down into
signal (capital letters) and noise (δ). Removing signal sources from figure 1, it is easy to
demonstrate that the noise current on the resistor RL is

δIRL
(t) ≡ δVDS(t)

RL

=
R

R + RL

δI(t). (4)

Equation (4) can be expressed in the frequency domain as

δIRL
(ω) = H(ω)δI(ω) (5)

where H(ω) is a transfer function. Now, integrating over a bandwidth B associated with
a specific amplifier configuration, the resulting total noise power is

NRL
=

∫ B

0

|H(ω)|2 SIRL (6)

which yields, using H(ω) = R/(R + RL), the following result:

NRL
=

R2RL

(R + RL)2
2qIDSFB. (7)

Note that in equations (6) and (7), we have used the corresponding power spectral density
of the thermal noise (SI), expressed in terms of the Fano factor (F ):

SI = 2qIDSF. (8)

Now, let us calculate the signal power. First, we express VDS as

VDS =
IDSRRL + VCCRL

R + RL
. (9)

Then, we solve (9), obtaining expression for IRL
:

IRL
= IDS

(
R

R + RL

)
+

VCC

R

(
R

R + RL

)
. (10)

Finally, the signal power SRL
= I2

RL
RL can be written as

SRL
=

R2RL

(R + RL)2

{
I2
DS +

(
VCC

R

)2

+ 2IDS
VCC

R

}
. (11)

Assuming R � RL, expressions (7) and (11) reduce respectively to

NRL
≈ 2qIDSFBRL (12)

and

SRL
= I2

DSRL. (13)

Finally, the signal-to-noise ratio is

SRL

NRL

=
IDS

2qB

1

F
. (14)

The expression (14) tells us that when the current IDS decreases or the Fano factor (F )
increases, the signal-to-noise ratio is degraded.
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Figure 2. (a) Schematic representation of a digital inverter. (b) Equivalent
circuit for N1 and P2, where δIDS(t) and ΔIDS(t) denote noise and signal
sources respectively assuming a linear region of operation. G represents the FET
conductance and C the associated capacitance for P2 transistors.

Hereafter, we show that, in fact, the downscaling trend of CMOS technology towards
low-dimensional active regions provides lower current and also higher Fano factor. For
ballistic devices, only the electrons crossing the FET channel contribute to the average
and the noise currents [4]. As an example, let us assume a potential barrier within a
FET channel. Only those electrons energetically above this barrier will contribute to the
current and noise (if tunneling can be neglected). These ‘hot’ electrons come from the
Fermi distribution tail. Thus, they are mainly uncorrelated electrons, so they provide
little current but a high Fano factor (close to the uncorrelated Poisson value of F = 1),
resulting in a degraded S/N ratio. Similarly, within a ballistic confined FET system,
only those electrons above the confinement energy will enter the channel. In this sense,
confinement introduces an additional potential barrier that makes the system deal with a
‘hotter’ region of the fermi distribution, where noise is greater and current lower, giving
rise to a degradation of the S/N ratio. On the other hand, bulk FETs do not present
potential barriers linked to confinement, resulting in a better S/N ratio. In conclusion,
low-dimensional FETs implicitly exhibit higher S/N ratios. Later, in section 3, numerical
results obtained with a powerful Monte Carlo (quantum) simulator will be computed
for the same system without some of the analytical (low-frequency) simplifications used
above.

2.2. Analytical results for noise in digital (logic and memory) applications

Next we deduce analytical expressions for the BER of the digital inverter depicted in
figure 2(a), taken as a simple digital circuit for analyzing the role of scaling. When a
logical ‘1’ is applied at the first inverter, the P-type transistor P1 is turned off, while the
N-type transistor N1 is turned on. N1 is now working in the equilibrium region, giving a
logical ‘0’ at the input of the second inverter. Thus, N2 will be turned off while P2 will
be turned on. Under these operation conditions, N1 and P2 can be equivalently defined
as depicted in the figure 2(b). Transistor N1 can be modeled as the parallel combination
of a signal source IDS, a noise source δIDS and a conductance G. On the other hand P2
can be modeled as a capacitor.

doi:10.1088/1742-5468/2009/01/P01044 5
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Since N1 has its channel completely open, it works within the equilibrium region of
operation. Then the current fluctuations around zero mean value, IDS(t) ≈ 0, are given
by

ΔIDS = G ΔVDS(t) + δIDS(t) (15)

where the conductance G is linked with the linear region of operation, i.e. G is roughly
constant under small voltage fluctuations. Therefore, G only depends on the applied gate
voltage and it can be defined on the equilibrium region, i.e. G = ∂IDS/∂VDS|VDS=0. The
first term on the right in equation (15) corresponds to the current fluctuations associated
with the voltage fluctuations in the capacitor. The second term corresponds to the intrinsic
transistor noise.

Under the equilibrium conditions that we are assuming, noise in the transistor N1 is
characterized by the Nyquist–Johnson thermal noise [5]. Then, the corresponding power
spectral density for δIDS(t) at low frequencies exhibits the form

SI(0) = 4kBTG. (16)

We can relate variations of the current for the N1 transistor to voltage variations at the
capacitor representing P2. Then, making equation (15) equal to the one corresponding to
the capacitor current, the intrinsic current noise can be expressed as

δIDS(t) = −G ΔVDS(t)− C
d (ΔVDS(t))

dt
. (17)

The previous expression can be rewritten in the frequency domain as

δI(ω) = G ΔVDS(ω) + jωC ΔVDS(ω). (18)

Therefore, the bias fluctuations are

ΔVDS(ω) = δI(ω)
1

C

1

((1/RT C) + jω)
. (19)

Combining equations (16) and (19), the total power for the bias fluctuations can be
calculated by integrating the spectral density over the frequency:

SV (0) =
1

π

∫ Wt

0

1

C2

1

((1/R2C2) + ω2)
4kBTG dω. (20)

A bit error appears when (during a period TC = 1/fc with fc the clock frequency) the
mean value of the bias fluctuations exceeds the threshold value for a logical ‘0’. Therefore,
when we use the superior limit of the integral of expression (20) as Wt = 2πfc, we obtain

SV (0) =
1

π

4kBT

C
tan−1 (2πfcRT C) . (21)

Therefore, the bit error probability can be expressed as [6]

Pe = Q

(
A

2

√
πC

4kBT tan−1 (2πfcRT C)

)
(22)
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where A is the bias value associated with the logical value ‘1’, and Q is the error function
defined as

Q(x) =
1√
2π

∫ ∞

x

e−λ2/2 dλ. (23)

From (22) and (23), the BER is higher with higher clock frequencies (see the dependence of
expression (22) on the clock frequency through the inverse tangent). For clock frequencies
far below the intrinsic frequency (RT C)−1, the following simplification can be made:
tan−1(x) ≈ x. Then, the total power, obtained from expression (21), can be approximated
as

SV (0) ≈ 8kBTfcRT . (24)

It can be seen from expression (24) that under this frequency limit, there is no capacitance
dependence of the BER. On the other hand, for clock frequencies higher than the intrinsic
frequency (RT C)−1, then tan−1(x) ≈ π/2, and the total power can be approximated as

SV (0) ≈ 2kBT

C
. (25)

In expression (25), the variance of the normal distribution shrinks with the capacitance
value. In other words, smaller FETs will show higher error probabilities. A similar result,
obtained through a different reasoning, has been presented in [7].

So far, analytical estimations for noise performance for analog and digital applications
have been deduced. In fact, expressions (14) and (22) will only capture the main trends
as regards the understanding of intrinsic noise behavior in nanoscale devices. In view of
this, the main goal of the next section is to obtain numerical values for S/N and BER
through a much more complex and detailed description of the electron dynamics. Next,
we use a Monte Carlo (quantum) simulator which is a powerful and robust technique that
allows the study of time-dependent fluctuations without some of the approximations used
in this section.

3. Numerical results for nanoscale field-effect transistors

The numerical results presented in this work are computed using a Monte Carlo (quantum)
simulator that introduces some features that allow solving a many-electron scenario within
3D and 1D systems. First, we present a brief description of the device under study and
the numerical algorithm behind our simulations. Finally we present DC current and noise
results for analog and digital applications.

3.1. Device description

We assume that electron transport (from source to drain) takes place along a silicon (100)
oriented channel, at room temperature (see figure 3). A double-gate (DG) geometry for the
transistor has been considered for numerical simulations, but the qualitative conclusions
can be extended to other gate geometries. We assume that electrons can reach the six
equivalent ellipsoidal constant energy valleys of the silicon band structure. The effective
masses of the ellipsoid are m∗

l = 0.9163 m0 and m∗
t = 0.1905 m0 with m0 the free electron

mass. For details on the particular effective mass value taken by the electrons in each
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Figure 3. Schematic representation of a DG-FET. Electron transport from source
to drain takes place along the x direction. The channel (open system) of the FET
has arbitrary lateral dimensions, W and T , determining electron confinement.

direction and valley see [4]. We consider two different geometries to be able to deal with a
3D bulk and a 1D quantum wire, by controlling the electron confinement. When W and
T are much larger than the electron de Broglie wavelength, the active region is a three-
dimensional (3D) system (bulk) and there is no restriction on the possible values of the
energies of an electron in each of the six valleys. The total electron energy for a particular
valley is E = Ex +E⊥, where the energies Ex and E⊥ are defined as Ex = �2ky/(2mt) and
E⊥ = �2ky/(2mt)+�2kz/(2ml). On the other hand, when T and W are both small enough,
the active region becomes a 1D system (a quantum wire) and the energy of an electron in
one particular valley is E = �2kx/(2mt)+Eq

1D, where Eq
1D = �2π2/(2mtL

2
y)+�2π2/(2mlL

2
z)

represents the minimum energy of the first sub-band, whose value is Eq
1D = 0.182 eV for

T = 2 nm and W = 5 nm. The energies of the next lowest sub-bands are inaccessible
for electrons (Eq

1D = 0.418 eV or Eq
1D = 0.489 eV) and only two valleys become relevant.

For the quantum wire, the electron velocities in the z and y directions are zero due to
the electron confinement1. Let us notice that we refer to a 3D (bulk) or 1D (quantum
wire) system to emphasize the energy confinement in the active region that determines
the available energies for electrons. However, the paths of the electrons are defined in the
x, y, z directions and, consequently, the electrostatics are obtained through a 3D Poisson
solver for all simulations (even for the 1D quantum wire).

3.2. Numerical Monte Carlo simulation algorithm

Our numerical algorithm for solving the dynamics of an ensemble of interacting electrons
is quite close, but not identical, to the standard Monte Carlo method applied to

1 The electron velocity is equal to zero in the direction where there is energy confinement. This is a reasonable
assumption that can be formally justified, for example using Bohm trajectories, when the probability of presence
in that direction does not change with time. The main approximation here is assuming that the time dependence
of the wavefunction involves only one quantized energy in the aforementioned direction, exp(iEq

1Dt/�), because it
assumes that the single-particle wavefunction is separable in the 3D space and that only one sub-band is relevant
for electron transport. We define the geometries of the 1D system to support these approximations.
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semiconductor electron devices. This technique is a powerful method for solving the
Boltzmann transport equation, which is developed under the mean-field approximation.
In the latter, a unique Poisson equation is solved at each time step of the simulation,
while in our many-electron Monte Carlo approach we solve N(t) Poisson equations with
N(t) different boundary conditions and charge densities. We use a 3D Poisson solver
based on a finite-difference scheme. We divide the whole volume Ω of the scenario
drawn in figure 3 into NxNy Nz cells. Each 3D cell has spatial dimensions DX, DY
and DZ. Thus, the active region of our simulating device has a volume equal to
(NxDX)(Ny DY )(Nz DZ) = LWT . The most time-consuming algorithm is that for
the solution of the Poisson equation. Therefore, in our algorithm, the simulation time
is proportional to N(t) NxNy Nz, while it reduces to NxNy Nz under standard Monte
Carlo simulations. As an example, for a total number of cells, NxNy Nz, on the order
of 1000–2000 cells and a number of electrons, N(t), of ∼20–50, the computational time is
about 2–3 h for each bias point using a state-of-the-art workstation2.

At the same time, our numerical algorithm includes electron confinement in the
active region. Considering the Bohm trajectory modeling of quantum mechanics, it
can be demonstrated that the study of electron transport for confinement conditions
can be hugely simplified if only one relevant energy level is meaningful in the confined
directions [8] (see footnote 1). In this work we take advantage of this fact by taking into
account the same result for the classical Monte Carlo trajectories.

We also use an injection model applicable to systems with arbitrary electron
confinement, which is a time-dependent version of the Landauer boundary conditions,
valid for degenerate and non-degenerate systems. We inject electrons according to the
Fermi–Dirac statistic defined by a Fermi level deep inside the contacts [9, 10]. The applied
bias provides a difference between the values of the Fermi level at each injecting surface.
Our injection model, coupled to the boundary conditions of the Poisson equation, also
assures charge neutrality at the contacts [10].

Finally, as mentioned in the introduction, phonon, impurity, and roughness scattering
mechanisms are not taken into account, and only the full (long and short range) Coulomb
interaction is considered explicitly. In our algorithm, randomness appears in the rate and
properties of the electron injection from the contacts into the volume Ω.

3.3. DC results

In the present section we compute the time evolution of many interacting electrons inside
3D and 1D DG-FETs with the characteristics defined in table 1. The DG-FETs are
surrounded by air and metal at the boundary surfaces.

Figures 4 and 5 present the average values for current at different gate and drain
voltages for 1D and 3D configurations. VGS represents the saturation gate–source bias
and VDS the saturation source–drain bias. The linear region is enclosed below a source–
drain bias of 0.1 V while the saturation region is found beyond 0.3 V approximately.
On the other hand, saturation gate–source biases are reached around 0.5 V. There,
the saturation currents differ between the two configurations. The highest source–drain
current is achieved by the 3D configuration, while the lowest is achieved by the 1D system.

2 The time is computed using a dual Xenon 3.06 GHz.
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Figure 4. Average current for the 1D DG-FET.

Table 1. Parameters for the DG-FET depicted in figure 3.

Magnitude 3D bulk 1D Quantum wire

Channel dimensions (nm) L 30 15
W 10 5
T 8 2
tox 2 2

Spatial step (nm) DX 3 3
DY 2.5 1.6
DZ 2 1

Doping (cm−3) Channel 1× 1010 1× 1010

Contact 2× 1019 2× 1019

Simulation time (s) T 3× 10−10 5× 10−10

Temporal step (s) Dt 2× 10−16 2× 10−16

3.4. Analog noise results

As mentioned earlier in section 2.1, differences between confined and non-confined systems
are expected. Figure 6 indicates these important differences for 3D and 1D FETs. For
our 1D system, the Fano factor is bigger than that of the 3D system and the average
current is smaller than the 3D one. Therefore, from expression (14) with a bandwidth
B = 1 MHz, the 1D S/N ratio is approximately one order of magnitude smaller than the
3D S/N ratio (see figure 7). Hence, the qualitative behavior of the S/N ratio discussed
in terms of equation (14) is confirmed numerically by these Monte Carlo results: smaller
FETs offer substantially worse analog noise performances than bigger ones.

3.5. Digital noise results

For digital applications (an inverter), a bit error appears when an input voltage ‘0’ or ‘1’
leads to an erroneous interpretation of the output voltage, because of noise. Here we are
wondering about those errors due to intrinsic noise fluctuations. In figures 8 and 9 the
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Figure 5. Average current for the 3D DG-MOSFET.

Figure 6. Average current (solid), I, and Fano factor (dashed) as a function of
gate voltage for the three double-gate FET geometries mentioned in the text.
The oxide thickness is 2 nm. The drain–source voltage is 0.5 V.

probability density for finding certain drain voltages when 0 V is expected is computed
for the 1D and 3D systems respectively. Results for two different clock frequencies are
presented: 50 and 500 GHz.

On one hand, the clock frequency plays a key role in the BER. As the clock frequency
grows, the faster voltage fluctuations are less and less averaged (see the explanation linked
to equation (21)). Therefore, the probability of finding higher drain voltages increases with
faster switching.

On the other hand, since the voltage fluctuations are directly related to the
capacitance value C (see figure 2), different results are obtained for 1D (C = 1.26 ×
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Guille
E



J.S
tat.M

ech.
(2009)

P
01044

Intrinsic noise in aggressively scaled field-effect transistors

Figure 7. Signal-to-noise ratio for the bulk DG-FET and the quantum wire
DG-FET considered here.

Figure 8. Monte Carlo results for the probability density for finding different
drain voltages at 50 and 500 GHz for the 1D system.

10−18 F), and 3D (C = 5.05× 10−18 F) systems. From figures 8 and 9, the corresponding
system variance is increased from the 3D configuration to the 1D configuration. Again, the
1D system presents a poorer noise performance behavior. Thus, increasing miniaturization
of the FET dimensions implies an important drawback for digital applications, mainly due
to a decrease of the associated gate capacitance.

It is worth pointing out that both shrinking dimensions and increasing clock
frequencies, two of the principal targets of the ITRS roadmap [1], imply an important
increase of the BER due to intrinsic noise.
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Figure 9. Monte Carlo results for the probability density for finding different
drain voltages at 50 and 500 GHz for the 3D system.

4. Conclusions

In this work, we have discussed the noise performance of aggressively scaled FETs (with
and without confinement) in digital and analog applications. First, the noise performance
for analog applications was discussed in terms of the signal-to-noise ratio. Smaller devices
produce a smaller average current and a larger Fano factor, leading to a signal-to-noise
(S/N) degradation. Second, the performance for digital applications was analyzed in terms
of the bit error probability. Incrementation of the clock frequency and reduction of the
FET lateral dimensions result in a drastic incrementation of the BER, mainly because
smaller devices (with smaller capacitances) are more sensitive to electrostatics. Our results
are supported by analytical estimations and numerical results obtained with a powerful
Monte Carlo (quantum) simulator. In summary, our work predicts that smaller FETs are
intrinsically noisier. This statement may imply a serious limitation for the continuous
shrinking of FET dimensions and increasing of clock speed predicted by the ITRS [1].
In view of these (single-finger-device) results, the consideration of new scaling-related
strategies (such as using multi-finger devices) seems mandatory for providing nanoscale
devices with acceptable noise performances.
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Abstract For nanoscale electron devices, the role of a
single-electron (or a single-impurity) can have a large im-
pact on their electrical characteristics. A new method for
introducing the long-range and short-range Coulomb inter-
action in semiconductor semi-classical Monte Carlo simula-
tions is presented. The method is based on directly dealing
with a many-particle system by solving a different Poisson
equation for each electron. The present work shows the nu-
merical viability of this alternative approach for nanoscale
devices with few (<100) electrons. The method is compared
with the traditional “mean-field” Monte Carlo simulations.
It is shown, numerically, that the “mean-field” approxima-
tion produces important errors for aggressively-scaled de-
vices.

Keywords Semiconductor device modeling · Monte Carlo
methods · Electron-electron scattering

1 Introduction

For any system of electrons (for example, a nanotransistor),
the dynamics of one particular electron is coupled to the rest
of electrons (and atoms) of the system because of their mu-
tual interactions. From a computational point of view, the
direct solution of such a many-electron quantum system is
inaccessible. This issue is at the heart of almost all the un-
solved problems in modeling electron transport.

In most semi-classical/quantum electron transport mod-
els, the standard solution to overcome this computational

G. Albareda (�) · J. Suñé · X. Oriols
Departament d’Enginyeria Electrònica, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
e-mail: guillem.albareda@uab.cat

barrier is based on assuming that electrons move accord-
ing to a unique “average” potential profile (the so-called
“mean field” approximation). Nevertheless, in the state-of-
the-art nanometric electron devices the output current is car-
ried by very few electrons inside very small (nanometric)
regions. In these scenarios, the role of a single electron (or
a single-impurity) can have a large impact on the charac-
teristics of these devices. Therefore, the simulation of elec-
tron devices using the “mean-field” approximation can be
quite inaccurate. For example, experimental phenomena as-
sociated to Coulomb Blockade in nano transistors (which
completely escape to the “mean-field” approximation) have
already been reported [1, 2].

In the literature, several approaches are proposed to in-
clude the short-range Coulomb interaction into the tradi-
tional Monte Carlo “mean-field” procedure by taking into
account the precise location of electrons within the same
spatial cell [3, 4]. In this work, we propose an alterna-
tive method for the study of the dynamics of a set of
electrons inside an electron device: we treat the electron
system, directly, as a many-particle system by solving a
particular Poisson equation for each electron. Such model
is implemented in a semi-classical semiconductor Monte
Carlo 3D simulator. The numerical results clearly show that
the “mean-field” approximation can be inaccurate for the
simulation of aggressively-scaled nanoscale devices.

2 Theoretical background

In this section, in order to provide a common language for a
classical and quantum description of electrons, we describe
the dynamics of each individual electron in terms of the
Hamiltonian of the system of electrons.
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The whole many-particle Hamiltonian related with a
system of electrons inside a semiconductor (involving the
atoms) is unsolvable. Therefore, different approximations
are mandatory. First of all, the Born-Oppenheimer approx-
imation (being the mass of the atoms much larger than the
mass of electrons) assumes that atoms are always at rest in
the electronic time scale. Second, the use of the effective
mass approximation (for “infinite” structures) decouples the
study of the electron transport from that of the electronic
structure. Within these approximations, the Hamiltonian that
describes the dynamics of a system of electrons inside the
device is:

Hexact =
N(t)∑

i=1

{
K( �pi) + U ext

i (�ri) + 1

2
U int

i (�r1, . . . , �rN)

}
(1a)

U int
i (�r1, . . . , �rN) =

N(t)∑

k=1
k �=i

q2

4πεrε0rik
(1b)

where the first term of the right-hand side of (1a) is the ki-
netic energy of the i-electron with �pi momentum, the sec-
ond term is the potential energy at the position �ri of the i-
electron due to the external bias and the third term is the
Coulomb interaction that couples the dynamics of all elec-
trons through rik = |�ri − �rk|. Hereafter qi is the electric
charge and εr/ε0 are the relative/vacuum permittivity. For
the ith electron, the two potentials terms in (1a) can be com-
puted by solving a 3D Poisson equations taking into account
the charge of the other N(t) − 1 electrons inside the active
region [see the condition k �= i in (1b)] with the appropriate
boundary conditions that accounts for the interaction with
external electrons (at the gates or contacts).

2.1 Mean-field approximation

An enormous simplification in the computational procedure
of the Coulomb interaction among the electrons can be ob-
tained when the expression of the potential terms in (1a) is
assumed to be equivalent for all electrons. Therefore, the so-
lution of a system of N(t) electrons can be obtained from:

Hmean-field =
N(t)∑

i=1

{
K( �pi) + U ext(�ri) + 1

2
U int(�ri)

}
(2a)

U int(�ri) =
N(t)∑

k=1

q2

4πεrε0rik
(2b)

Notice that we have eliminated the subindex “i” in the po-
tentials terms of the Hamiltonian (1a) by omitting the re-
striction k �= i in the potential expression in (2b). Then, we

just need to solve a unique Poisson equation for all elec-
trons (at one particular position, all electrons move accord-
ing to the same electric field). Such enormous simplifica-
tion comes at the price that the charge of the ith electron
is also counted in (2b) and this charge affects the dynamics
of the ith electron. This simplification is obviously not ex-
act and it incorrectly treats the short-range Coulomb inter-
actions among electrons. However, it captures most of the
long-range component.

In this work, we directly solve the many-particle system
(1) by computing an individual 3D potential profile for each
electron. From a numerical point of view, the solution of the
exact 3D Hamiltonian (1) is accessible for active regions of
few nanometers, where the number of electrons is <100 [5].

Finally, let us mention that the numerical results of this
work are obtained taking into account the Coulomb interac-
tion among electrons, but without considering the additional
quantum exchange interaction among them (fermions). This
is why we say that our treatment of Hamiltonians (1) and (2)
is semi-classical.

3 Numerical comparison for nanoscale device

As we mentioned, in this work we want to check the va-
lidity of the mean-field approximation for the simulation of
nanoscale devices. We compare the results obtained with the
exact solution (1) to the results of the approximation (2) with
the Monte Carlo technique.

3.1 Comparison for the average current in a nanoscale
devices

In Fig. 1, we represent the active region of the nanomet-
ric two-terminal N+NN+ (N+ = 2 × 1019 cm−3, N = 1 ×
1017 cm−3) device that we simulate in the present work. For
simplicity, neither (phonon, impurity, surface, . . .) scattering
nor electron confinement is considered inside the active re-
gion. Electron transport (from source to drain) takes place
along the Silicon (100) channel orientation at room temper-
ature with a relative permittivity εr = 11.9. External elec-
trons outside the active region (with volume Lx · Ly · Lz)
are not explicitly taken into account in the Hamiltonian, but
they are considered through the boundary conditions of the
Poisson equation. Hereafter, we refer to the results obtained

Fig. 1 Schematic representation of a 3D two-terminal nano device
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Fig. 2 Average current and number of electrons for the two-terminal
device of Fig. 1 using the “exact” Hamiltonian or the “mean-field” ap-
proximation

from (1) as “exact” results. Alternatively, the term “mean-
field” refers to the solution of (2).

The solution of the 3D Poisson equation is performed
with the method of finite-differences. As we will discuss
later on, the dimensions of the spatial steps, DX, DY and
DZ, that define the grid in the 3D volume of the active re-
gion, have important consequences on the modeling of the
“short-range” Coulomb interaction.

The electron injection model is based on imposing charge
neutrality at the contacts and preserving the Fermi-Dirac
distribution there [6]. When dealing with the “exact” Hamil-
tonian, each electron “sees” a different boundary condition
at the contacts.

In Fig. 2, we show the numerical computation of the av-
erage current and number of electrons through the device
depicted in Fig. 1 using the “exact” Hamiltonian (1) and the
“mean-field” approximation (2). We use DX = DY = DZ =
3 nm, Lx = 12 nm and Ly = Lz = 9 nm. In Fig. 2 we see
that the “mean-field” approximation gives considerable er-
rors in the output current before saturation. The errors in the
output current are closely related to the difference between
the computation of the average number of electrons involved
in the “mean-field” and the “exact” results.

3.2 Comparison for a two-electron system

In the rest of the manuscript we will explain the origin of
the important differences depicted in Fig. 2, by studying the
behavior of a simpler two-electron system (just two carriers
inside the active region of Fig. 1). One electron (labeled as
1-electron) is injected from the source surface at an arbitrary
position. A second electron is injected, arbitrarily, from the
drain surface. Within the “mean-field” approximation only
one potential profile is calculated for the two electrons (see
Fig. 3). Then, each electron can be reflected by an “artificial”
alteration of the potential profile due to its own charge.

Fig. 3 Common potential energy profile (“mean-field” approxima-
tion) in the plane X–Y of the active region of Fig. 1 at z = 6 nm at
0.4 fs with Vext = 0 V. The solid points are electron positions

Fig. 4 Potential energy profile (“Exact” Hamiltonian) for 1-electron
in the plane X–Y of the active region of Fig. 1 at z = 6 nm at 0.4 fs
with Vext = 0 V. The solid point is the 1-electron position

In Figs. 4 and 5 we have plotted the potential profile
“seen” by electron 1 and by electron 2 in the active region of
Fig. 1 using the “exact” Hamiltonian (1). Electrons are not
affected by their own charge. We clearly see that, within the
“mean-field” approximation, electrons are unable to over-
come the “large” potential barrier that appears at their own
position (due to their own charge). Therefore, the results ob-
tained with the “mean field” approximation are unphysical
in some situations (unless a large applied bias minimizes the
error).

3.3 The role of the spatial step in the numerical solution

Finally, in order to correctly understand the applicability
of the “mean-field” approximation in the traditional Monte
Carlo simulation, a comment about the 3D discretization
mesh used for the solution of the Poisson equation is needed.
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Fig. 5 Potential energy profile (“Exact” Hamiltonian) for 2-electron
in the plane X–Y of the active region of Fig. 1 at z = 6 nm at 0.4 fs
with Vext = 0 V. The solid point is the 2-electron position

For an electron device with a length of hundreds of
nanometers, we need a mesh of the 3D active region with
spatial step DX ∼ DY ∼ DZ > 10 nm to deal with no
more than one thousand nodes in the 3D Poisson numeri-
cal solution. This computational limitation in the resolution
of the potential is present either when solving (1) or (2).
With such spatial resolution, the short-range interaction is
missing in both procedures because two electrons inside the
same spatial cell will not repel each other. Therefore, we ob-
tain roughly identical results with both schemes. In simpler
words, when the spatial cells are large, both schemes cor-
rectly model the long-range Coulomb interaction, but both
neglect the short-range component.

On the contrary, for electronic device with lengths of 10
to 20 nanometers, we can numerically afford the 3D Monte
Carlo simulations with spatial steps DX ∼ DY ∼ DZ ∼ 3 nm.
Then, the scheme described in (1) takes into account long-
and short-range interaction correctly, whereas the descrip-
tion of the short-range component within the “mean-field”

approximation is incorrect (electrons are repelled by them-
selves!).

4 Conclusion

In conclusion, in this work, the “mean-field” approximation
is tested. Our results clearly show that this approximation
may imply important errors for nanoscale devices with a
small (DX ∼ 3 nm) spatial step. Within the Monte Carlo
technique, the “exact” solution of the many-particle (1) in
real 3D scenarios is numerically accessible for nanoscale ac-
tive regions with <100 electrons [5].
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