


 

 

Proceedings of the  

7
th

 International Conference on Unsolved 

Problems on Noise 

 

July 13-17, 2015 

Casa Convalescència, Barcelona, Spain 

 

http://europe.uab.es/upon2015/index.html 

 

Organizing Committe: 

Xavier Oriols (Chair), Jordi Suñé, Rosana Rodríguez, David Jiménez, Xavier Cartoixà, 

Guillem Albareda, Javier Martín-Martínez, Zhen Zhan, Enrique Colomés, Damiano Marian 

 

 

 

 

ISBN: 978-84-942706-9-7 

http://europe.uab.es/upon2015/index.html


 

Acknowledgements 

 

The 7
th
 International Conference on Unsolved Problems on Noise (UPoN 2015) 

would like to acknowledge the generous support by the following: 

 

 

 

 

 

 

 

 

 

 



Foreword 
 

On behalf of the organizing committee, I would like to welcome all participants to the 7
th
 International 

Conference on Unsolved Problems on Noise (UPoN). The study of random fluctuations has always been 

an interdisciplinary subject that has attracted some of the best scientists. The aim of the UPoN 

conferences is to provide a forum for researchers working at the frontiers of noise in different (but related) 

disciplines. 

One of the most fascinating stories about the importance of exchanging scientific knowledge comes from 

the Ancient Library of Alexandria, in Egypt. During centuries, it attracted many of the most famous 

thinkers of the ancient world. At some times, it housed 900.000 books (papyrus scrolls). However, the 

library suffered several fires and was finally destroyed. It is unknown how much scientific knowledge 

was lost there.   

Today, international conferences are the modern forums for exchanging scientific knowledge. Your help 

is needed for a fruitful conference. The UPoN conference deals with unsolved problems on noise that are 

starting to become understandable. At such frontiers of research, our knowledge is still unstable, 

somehow immature and, certainly, not free from controversies. I encourage all participants to promote 

discussions on noise, asking and answering questions, in a friendly atmosphere. We are all in the same 

team trying to understand, at the end of the day, how Nature works.     

I would also like to encourage all participants (especially those who are in Barcelona for the first time) to 

discover our city. Barcelona is worldwide famous for its modernist architecture, the Sagrada Familia 

being one of its maximum exponents. Indeed, the conference site (casa Convalescència) is another 

example of the modernist style. This is one of the reasons for choosing this place to hold the conference. 

Finally, I would like to thank our sponsors Panstanford Publishing, Universitat Autònoma de Barcelona, 

Agència de Gestió d’Ajusts Universitaris i de Recerca from Generalitat de Catalunya and Secretaría de 

Estado de Investigación, desarrollo e innovación from Gobierno de España. Special thanks to the 

scientific committee of the UPoN conference for its help and effort in the elaboration of the excellent and 

noisy program that you will find in this book of abstracts.  

I really wish all of you a very pleasant and scientifically very fruitful stay in Barcelona during this week.       

Yours faithfully, 

                                                                                 

Xavier Oriols                                                                            

Chair UPoN 2015                                                                                                    

Casa Convalescència, Barcelona, July 13, 2015 



 

List of Invited Speakers 

 

Yaroslav M. Blanter  Delft University of Technology (THE NETHERLANDS)  

Classical and quantum non-linear dynamics in optomechanical systems 

Topic: 2. - Quantum noise and coherence 

 

Gianpietro Cagnoli    Laboratoire des Matérieux Avancés (FRANCE) 

Thermal and mechanical noise in gravitational wave detectors 

Topic: 8. - Experimental frontiers of noise and fluctuations 

 

Sergio Ciliberto Laboratoire de Physique de l'ENS (FRANCE) 

Fluctuation theorems: applications to energy fluctuations in electric circuits and micro devices 

Topic: 1. - Theoretical trends in noise and fluctuations 

 

Irene Donato  Centre of Theoretical Physics (FRANCE) 

Is it possible to detect long-range interactions among biomolecules through noise and diffusion? 

Topic: 4. - Fluctuations in biological systems 

 

Mark Dykman Michigan State University (USA) 

 Rates of rare events: scaling, fragility, and delay effects 

Topic: 5. - Noise in complex and non-linear systems/circuits 

 

Zoltan Gingl University of Szeged (HUNGARY) 

How can the fluctuations in the motion of kayak-paddlers be used to estimate performance? 

Topic: 9. - Other topics of noise and fluctuations 

 

Peter Hänggi  University of Augsburg (GERMANY) 

The role of temperature in different thermodynamic ensembles 

Topic: 2. - Quantum noise and coherence 

 

Laszlo Kish  Texas A&M University (USA) 

All that glitters is not gold: Zero-point energy in the Johnson noise of resistors 

Topic: 1. - Theoretical trends in noise and fluctuations 

 

Sigmund Kohler  Instituto de Ciencias de Materiales de Madrid (SPAIN) 

Adiabatic Passage and Noise in Quantum Dots 

Topic: 2. - Quantum noise and coherence 

 

 

 

http://www.tnw.tudelft.nl/live/pagina.jsp?id=50332a93-bdbf-4e22-9c14-8ac3bd13d11f
http://europe.uab.es/upon2015/abstracts/007.pdf
http://lma.in2p3.fr/Lmagb.htm
http://europe.uab.es/upon2015/abstracts/011.pdf
http://perso.ens-lyon.fr/sergio.ciliberto/
http://europe.uab.es/upon2015/abstracts/009.pdf
http://europe.uab.es/upon2015/abstracts/010.pdf
http://www.pa.msu.edu/~dykman/
http://europe.uab.es/upon2015/abstracts/012.pdf
http://www.inf.u-szeged.hu/~gingl/en
http://europe.uab.es/upon2015/abstracts/013.pdf
http://europe.uab.es/upon2015/abstracts/008.pdf
http://engineering.tamu.edu/electrical/people/lkish
http://europe.uab.es/upon2015/abstracts/039.pdf
http://europe.uab.es/upon2015/abstracts/098.pdf


 

List of Invited Speakers 

 

Pietro Massignan ICFO - Institute of Photonic Sciences Barcelona (SPAIN) 

From cell membranes to ultracold gases: classical and quantum diffusion in inhomogeneous media 

Topic: 4. - Fluctuations in biological systems 

 

Vyacheslav R. Misko Universiteit Antwerpen (BELGIUM) 

Active Brownian motion in confined geometries 

Topic: 7. - Applications of noise 
 

Bernard Plaçais Département de Physique de l'ENS Paris (FRANCE) 
Noise in graphene and carbon nanotube devices 

Topic: 3. - Fluctuations in materials and devices 

 

H. Eugene Stanley Boston University (USA) 

Novel Statistical Physics Approaches to Understanding Economic Fluctuations 

Topic: 6. - Fluctuations in econophysics and financial markets 

 

Aneta Stefanovska Lancaster University (UK) 

Chronotaxic dynamics: when the characteristic frequencies fluctuate and the system is stable 

Topic: 4. - Fluctuations in biological systems 

 

http://users.icfo.es/Pietro.Massignan/
http://europe.uab.es/upon2015/abstracts/015.pdf
http://www.fwo.be/en/persons/vyacheslav-misko/
http://europe.uab.es/upon2015/abstracts/016.pdf
http://europe.uab.es/upon2015/abstracts/016.pdf
http://europe.uab.es/upon2015/abstracts/016.pdf
http://www.phys.ens.fr/~placais/index.html
http://europe.uab.es/upon2015/abstracts/018.pdf
http://polymer.bu.edu/hes
http://europe.uab.es/upon2015/abstracts/020.pdf
http://www.physics.lancs.ac.uk/people/aneta-stefanovska
http://europe.uab.es/upon2015/abstracts/020.pdf


      

UPoN International Scientific Committee 

 

Derek Abbott ( Adelaide University, Australia ) 

Dean Astumian ( University of Maine, USA ) 

Kamal K. Bardhan ( Saha Institute of Nuclear Physics, India ) 

Ludovic Bellon ( École Normale Superieure de Lyon, France )   

Sergey Bezrukov ( National Institutes of Health, USA ) 

Paolo Bordone ( Università di Modena e Reggio Emilia, Italy ) 

Gijs Bosman ( University of Florida, USA ) 

Anna Carbone ( Torino Polytechnique, Italy ) 

Sergio Ciliberto ( École Normale Superieure de Lyon, France ) 

Jamal Dean ( McMaster University, Canada ) 

Charlie Doering ( University of Michigan, USA ) 

Gianfranco Durin ( Instituto Electronico Nazionale, Italy ) 

Peter Hänggi ( University of Augsburg, Germany ) 

Kumiko Hayashi ( Tohoku University, Japan ) 

Laszlo Kish ( Texas A&M University, USA ) 

Andre Longtin ( Center for Neural Dynamics, Canada ) 

Lukasz Machura ( University of Silesia, Poland ) 

Massimo Macucci ( University of Pisa, Italy ) 

Peter McClintock ( Lancaster University, England ) 

Xavier Oriols ( Universitat Autònoma de Barcelona, Spain ) 

Cecilia Pennetta ( University of Salento,  Italy ) 

Lino Reggiani ( University of Salento, Italy ) 

Sergey Rumyantsev ( Ioffe Physico-Technical Institute, Russia ) 

Michael Shlesinger ( Office of Naval Research, USA ) 

H. Eugene Stanley ( Boston University, USA ) 

Luca Varani ( University of Montpellier, France ) 

Stefano Zapperi ( CNR-IENI, Italy ) 

http://www.adelaide.edu.au/directory/derek.abbott
http://physics.umaine.edu/people/faculty/r-dean-astumian/
http://www.saha.ac.in/web/
http://perso.ens-lyon.fr/ludovic.bellon
https://science.nichd.nih.gov/confluence/display/smt/Home
http://www.fim.unimore.it/site/home.html
http://old.ece.ufl.edu/people/faculty/bosman.html
http://areeweb.polito.it/ricerca/noiselab/carbone.htm
http://perso.ens-lyon.fr/sergio.ciliberto/
http://www.ece.mcmaster.ca/fac_mems/deen.htm
http://scholar.google.com.au/citations?user=MM8WAQYAAAAJ&hl=en
http://scholar.google.it/citations?user=uyvFM_QAAAAJ
http://www.physik.uni-augsburg.de/theo1/hanggi/
http://www.eng.tohoku.ac.jp/english/research/search/detail.html?uid=05c95797fb06d6877f49d831a0998b02&lang=en
http://engineering.tamu.edu/electrical/people/lkish
http://mysite.science.uottawa.ca/alongtin/
http://cirrus.phys.us.edu.pl/~lukasz/index.html
http://unimap.unipi.it/cercapersone/dettaglio.php?ri=4342&template=dettaglio.tpl
http://www.physics.lancs.ac.uk/people/peter-mcclintock
http://europe.uab.es/xoriols/FrontPage.html
http://www.cmtg.it/cecilia.html
http://oldsite.dii.unisalento.it/seo-start/page/home.eng.people/user_id/aaa91a0f69865a0e71514070e15de509/seo-stop/index.php
http://scholar.google.es/citations?user=g9xkxKoAAAAJ&hl=en
http://www.onr.navy.mil/
http://polymer.bu.edu/hes
http://www.ies.univ-montp2.fr/
http://www.smmlab.it/people/cv/


 

                      Scientific Program 

 

 

 

 

 

8:00-9:00      Registration 
 

9:00-9:30   Welcome and opening remarks UPoN 2015 

                          Ferran Sancho Piffaré – Rector de la Universitat Autònoma de Barcelona (UAB)   

                            Emilio Lora-Tamayo D'Ocón - President of the Consejo Superior de Investigaciones Científicas (CSIC) 

 Xavier Oriols – Chairman UPoN 2015 

 

Fluctuations in econophysic 

 

9:30-10:00   Novel Statistical Physics Approaches to Understanding Economic Fluctuations. 
(INVITED)                                                                                                                                                         (pp. 1-2)            

                          H. Eugene Stanley
1 

  

                               
1
Boston University, USA                                                                                                             

                                                                             

Applications of noise (I) 

CHAIRMAN: Michael F. Shlesinger (Office of Naval Research ONR, USA) 

 

10:00-10:30  Active Brownian motion in confined geometries. (INVITED)                                          (pp. 3-4)                    

                            Vyacheslav R. Misko
1,2                                            

                               
1
Universiteit Antwerpen, Belgium, 

2
CEMS, Japan                                                                                 

 

10:30-10:50    Brownian motion and weak ergodicity breaking. (ORAL)                                           (pp. 5-6) 

                            P. Massignan
1
, C. Manzo

1
, J. A. Torreno-Pina

1
, M. F. García-Parajo

1
, M. Lewenstein

1
, G. J. Lapeyre Jr

1
  

                               
1
ICFO, Institute of Photonic Sciences, Spain                                                                                      

 

10:50-11:10    Brownian motors in the micro-scale domain: Enhancement of efficiency by noise. 
(ORAL)                                                                                                                                                           (pp. 7) 

                          Jakub Spiechowicz
1
, Peter Hänggi

2
, Jerzy Łuczka

3 

  
1
University of Silesia, Poland, 

2
Universität Augsburg, Germany, 

3
Silesian Center for Education and Interdisciplinary    

Research, University of Silesia, Poland                                                                                                       

                                                         

Monday, July 13 2015 
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11:10-11:30    Unconditional security in practical Kirchhoff-law-Johnson-noise key exchangers. 
(ORAL)                                                                                                                                                           (pp. 8-9) 

                             Berry Chen
1
, Laszlo B. Kish

1
, Claes G. Granqvist

2
, Robert Mingesz

3
, Zoltan Gingl

3 
                                                1

Texas A&M University, USA, 
2
Uppsala University, Sweden, 

3
University of Szeged, Hungary                                                                                                                

 

11:30-12:00      Coffee Break  

 

Noise in complex and non-linear systems (I) 
CHAIRMAN: Lukasz Machura (University of Silesia, Poland) 

 

12:00-12:30    Rates of rare events: scaling, fragility, and delay effects. (INVITED)                        (pp. 10-11) 

                              Mark Dykman
1
  

                               
1
Michigan State University, USA                                                                                                   

 

12:30-12:50    Stochastic resonance and diversity-induced resonance in complex systems. (ORAL)  

                                                                                                                                                                      (pp. 12-13) 

                              Marco Patriarca
1
, Els Heinsalu

1
, Emilio Hernández-García

2
, Raúl Toral

2 
                                                1

NICPB-National Institute of Chemical Physics and Biophysics, Estonia, 
2
CSIC-UIB, Spain                                    

 

12:50-13:10    Non-hermitian diffusion. (ORAL)                                                                                                   (pp. 14-15) 

                             Maciej A. Nowak
1
  

                                                1
Jagiellonian University, Poland                                                                                              

 

13:10-14:40     Lunch (at the Dining Room of Casa Convalescència) 

 

Fluctuations in biological systems (I) 

CHAIRMAN: Aneta Stefanovska (Lancaster University, UK) 

 

14:40-15:10     From cell membranes to ultracold gases: classical and quantum diffusion in 

inhomogeneous media. (INVITED)                                                                                                (pp. 16-17)               

                             Pietro Massignan
1
, G. J. Lapeyre

1,2
, J. A. Torreno-Pina

1
, Anielo Lampo

1
, Jan Wehr

3
, M. F. García-Parajo

1
,   

 M. Lewenstein
1 

                                                1
ICFO-Institut de Ciències Fotòniques, Spain, 

2
IDAEA-CSIC, Spain, 

3
University of Arizona, USA                                                                         

                                                                          

15:10-15:30    A motor that detects the length of DNA by using chain fluctuation. (ORAL)       (pp. 18-19) 

                         Ana Maria Florescu
1
, Kuni H Iwasa

1,2
  

                                                    1
Max Planck Institute for Physics of Complex Systems, Germany, 

2
National Institutes of Health (NIH), USA  

 

15:30-15:50     Model and parameter determination for molecular motors from single molecule 

experiment. (ORAL)                                                                                                                   (pp. 20-21)                  

                             Francisco Javier Cao
1
  

       
1
Universidad Complutense de Madrid, Spain                                                                                        

http://europe.uab.es/upon2015/abstracts/057.pdf
http://europe.uab.es/upon2015/abstracts/012.pdf
http://europe.uab.es/upon2015/abstracts/066.pdf
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15:50-16:10     Free energy measurement of ligands binding nucleic acids using fluctuation 

theorems.  (ORAL)                                                                                                                                    (pp. 22) 

                              Joan Camunas-Soler
1
, Anna Alemany

1
,Felix Ritort

1,2 
                                                1

Universitat de Barcelona, Spain, 
2
Instituto de Salud Carlos III, Madrid, Spain                                                                                                              

 

16:10-16:40    Coffee Break 

 

Fluctuations in biological systems (II) 

CHAIRMAN: Bernardo Spagnolo (Università di Palermo, Italy) 

 

16:40-17:10    Is it possible to detect long--‐range interactions among biomolecules through noise 

and diffusion?  (INVITED)                                                                                                                         (pp. 23) 

 I. Donato
1
, M. Gori

1
, I. Nardecchia

1
, M. Pettini

1
, J. Torres

2
, L. Varani

2 
                                                    1

Aix-Marseille University, France, 
2
Montpellier University, France                                                                                                           

                                                                              

17:10-17:30    Electrochemical noise analysis to probe ion transport mechanisms in a membrane 

channel. (ORAL)                                                                                                                                       (pp. 24-25) 

                             Maria Queralt-Martin
1
, M. Lidón López

1
, Antonio Alcaraz

1
  

                               
1
Universitat Jaume I, Spain                                                                                                                                                                              

 

17:30-17:50    Coulomb Blockade of Stochastic Permeation in Biological Ion Channels. (ORAL)  

                                                                                                                                                                      (pp. 26-27) 

                          W.A.T. Gibby
1
, I. Kh. Kaufman

1
, D. G. Luchinsky

1
, P.V.E. McClintock

1
, R.S. Eisenberg

2
  

                                                    1
Lancaster University, UK, 

2
Rush University, Chicago, USA                                                                       

 

17:50-18:10    Antipersistent Random Walk in a Two State Flashing Magnetic Potential. (ORAL) (pp. 28) 

                             Pietro Tierno
1
, Francesc Sagués

1
, Tom H. Johansen

2,3
, Igor M. Sokolov

4 

                               
1
Universitat de Barcelona, Spain, 

2
University of Oslo, Norway, 

3
Center for Advanced Study at The Norwegian 

Academy of Science and Letter, Norway,  
4
 Humboldt-Universität zu Berlin, German                                                             

 

18:10-18:30    Giant acceleration of diffusion observed in a single-molecule experiment on F1-

ATPase.  (ORAL)                                                                                                                                       (pp. 29-30) 

                    Kumiko Hayashi
1
  

  1
Tohoku University, Japan                                                                                                                                                                                          
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Quantum noise and coherence (I)  

CHAIRMAN: Wolfgang Belzig (University of Konstanz, Germany) 

 

9:00-9:30         The role of temperature in different thermodynamic ensembles. (INVITED)      (pp. 31-32) 

                             Peter Hänggi
1
  

                     1
Universität Augsburg, Germany                                                                                                    

                                                                           

9:30-10:00       Adiabatic passage and noise in quantum dots. (INVITED)                                              (pp. 33-34) 

                              Sigmund Kohler
1
  

  
1
CSIC, Madrid, Spain                                                                 

 

10:00-10:20     Non-zero probability of detecting identical electrons at the same position: How does 
it affect the Landauer-Büttiker noise expression at high temperatures? (ORAL)  

                                                                                                                                                                    (pp. 35-36) 
                              Enrique Colomés

1
, Damiano Marian

1
, Xavier Oriols

1
  

  1
Universitat Autònoma de Barcelona, Spain                                                                                                                                                         

 

10:20-10:40    Dissipative dynamics of a quantum particle strongly interacting with a super-Ohmic 
heat bath. (ORAL)                                                                                                                                 (pp. 37-38) 

                              Luca Magazzù
1,2

, Davide Valenti
1
, Bernardo Spagnolo

1,2,3
   

                                                   1
Università di Palermo, Italy, 

2
Lobachevsky State University, Russia, 3INFN Catania, Italy                                                                        

 

10:40-11:00     Fractional quantum Hall spectroscopy investigated by a resonant detector. (ORAL) 

                                                                                                                                                                     (pp. 39-40) 

                             Alessandro Braggio
1
, Matteo Carrega

1
, Dario Ferraro

2,3
, Maura Sassetti

4,1 
        1

SPIN-CNR, Italy, 
2
Université de Toulon, France, 

3
Université de Genève, Switzerland,

 4
Università di Genova, Italy                                                                                                                                                                                             

 

11:00-11:30     Coffee Break 

 

Experimental frontiers of noise 

CHAIRMAN: Luca Varani (University of Montpellier, France) 

 

11:30-12:00    Thermal and mechanical noise in gravitational wave detectors. (INVITED)           (pp. 41-42) 

                             Gianpietro Cagnoli
1 

   
1
Université de Lyon, France                                                                                             

                                                                   

Tuesday, July 14 2015 

http://europe.uab.es/upon2015/abstracts/008.pdf
http://europe.uab.es/upon2015/abstracts/099.pdf
http://europe.uab.es/upon2015/abstracts/001.pdf
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12:00-12:20     The quest for the missing noise in a micro-mechanical system out of equilibrium. 
(ORAL)                                                                                                                                                           (pp. 43-44) 

                              Mickael Geitner
1
, Felipe Aguilar Sandoval

1,2
, Éric Bertin

3
, Ludovic Bellon

1 
  1

Université de Lyon & CNRS, France, 
2
Universidad de Santiago del Chile, Chile, 

3
Université Joseph Fourier & CNRS, 

France  

                                                                                                                                                                                     

12:20-12:40    Noise Thermal Impedance: a way to access electron dynamics. (ORAL)                (pp. 45-46) 

                              E. Pinsolle
1
, B. Reulet

1 

 
 1

Université de Sherbrooke, Canada                                                                                                   

                                                                                          

12:40-15:30     Poster session & Lunch (at the Dining Room of Casa Convalescència) 

 

Applications of noise (II)  

CHAIRMAN: Laszlo Kish (Texas A&M University, USA) 

 

15:30-15:50     Towards an information-theoretic model of the Allison mixture. (ORAL)            (pp. 47-48) 

                              L. Gunn
1
, F. Chapeau-Blondeau

2
, A. Allison

1
, D. Abbott

1
  

                                               1
The University of Adelaide, Australia, 

2
University of Angers, France                                                                          

 

15:50-16:10    How a player with finite memory can win by switching in a sequence of Parrondo  

                         Games?  (ORAL)                                                                                                                                       (pp. 49-50) 

                             Ka Wai CHEUNG
1
, Ho Fai MA

1
, Degang Wu

1
, Ga Ching LUI

1
, Kwok Yip Szeto

1 
                                 1

The Hong Kong University of Science and Technology, China                                                                                   

 

16:10-16:30    Asymmetry in Genetic Code and the Role of Parrondo’s Paradox in Nature. (ORAL)  

                                                                                                                                                                    (pp. 51-52) 

                             Lee Kee Jin
1
, Shu Jian Jun

1 

                               
1
Nanyang Technological University, Singapore                                                                                

 

16:30-17:00     Coffee Break 

 

Fluctuations in materials and devices (I) 

CHAIRMAN: Javier Mateos (University of Salamanca, Spain) 

 

17:00-17:20    Percolation noise at the metal-insulator transition of nanostructured VO2 films. 
(ORAL)                                                                                                                                                      (pp. 53-54) 

                              Zareh Topalian
1
, Shu-Yi Li

1
, Gunnar A. Niklasson

1
, Claes G. Granqvist

1
, Laszlo B. Kish

1,2
  

                                    1
Uppsala University, Sweden, 

2
Texas A&M University, USA                                                                         

 

                                 

 

http://europe.uab.es/upon2015/abstracts/068.pdf
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http://europe.uab.es/upon2015/abstracts/028.pdf
http://europe.uab.es/upon2015/abstracts/028.pdf
http://europe.uab.es/upon2015/abstracts/005.pdf
http://europe.uab.es/upon2015/abstracts/022.pdf


 

17:20-17:40    Frequency-dependent shot noise in single-electron devices interpreted by means of 
waiting time distributions. (ORAL)                                                                                          (pp. 55-56) 

                              Vincent Talbo
1
, Javier Mateos

1
, Sylvie Retailleau

2
, Philippe Dollfus

2
, Tomás González

1 

  
1
Universidad de Salamanca, Spain, 

2
Université Paris-Sud, France                                                                     

 

17:40:18:00    Conductance fluctuation in Si nanowires studied from first-principles. (ORAL) (pp. 57-58) 

                             Riccardo Rurali
1
, F. Iori

2
, S. Ossicini

2
  

                                                    1
ICMAB-CSIC, Spain, 

2
Università di Modena e Reggio Emilia, Italy                  

 

 

 

  

 

Fluctuations in biological systems (III) 

CHAIRMAN: Peter McClintock (Lancaster University, UK) 

 

9:00-9:30       Chronotaxic dynamics: when the characteristic frequencies fluctuate and the system 

is stable. (INVITED)                                                                                                                                 (pp. 59-60) 

                           Aneta Stefanovska
1
, Philip Clemson

1
, Y. F. Suprunenko

2 
  1

Lancaster University, UK, 
2
University of Liverpool, UK                                                                                                                

 

9:30-9:50       Fluctuations and effective temperature in an active dumbbell system. (ORAL) (pp. 61-62) 

                           Giuseppe Gonnella
1
, Antonio Suma

2
, Leticia F. Cugliandolo

3
  

  1
Università di Bari and INFN, Italy, 

2
SISSA, Trieste, Italy, 

3
Sorbonne Universités, Paris, France                                                                                   

 

9:50-10:10     Fluctuation Relations applied to characterize heterogeneous molecular ensembles. 
(ORAL)                                                                                                                                                          (pp. 63-64) 

                           Alvaro Martínez-Monge
1
, Anna Alemany

1
, Felix Ritort

1
  

   1
Universitat de Barcelona, Spain                  

                                         

10:10-10:30    Stochastic facilitation in the brain? (ORAL)                                                                            (pp. 65-66) 

                            Lawrence M. Ward
1
, Priscilla E. Greenwood

1
  

  1
University of British Columbia, Canada                                      

 

10:30-10:50    Seeking for a fingerprint: analysis of point processes in actigraphy recording. (ORAL)                         

                                                                                                                                                                     (pp. 67-68) 

                            Ewa Gudowska-Nowak
1
  

  1
Jagiellonian University in Kraków, Poland                                 

                                                                                                      

10:50-11:20    Coffee Break 
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Fluctuations in materials and devices (II) 

CHAIRMAN: Gijs Bosman (University of Florida, USA) 

 

11:20-11:50    Noise in graphene and carbon nanotube devices. (INVITED)                                          (pp. 69-70) 

                            Bernard Plaçais
1
, C. Voisin

1
, G. Fève

1
, J. M. Berroir

1
  

                                               1
Département de Physique de l'ENS Paris, France            

                                                                                                                                          

11:50-12:10    Is the peculiar behavior of 1/f noise in graphene the result of the interplay between 

band-structure and inhomogeneities? (ORAL)                                                                      (pp. 71-72) 
                            B. Pellegrini

1
, P. Marconcini

1
, M. Macucci

1
, G. Fiori

1
, G. Basso

1 
                                               1

Università di Pisa, Italy              

                                                                                                                                                             

12:10-12:30    Monte Carlo study of velocity fuctuations during transient regimes in graphene.  
                            (ORAL)                                                                                                                                                           (pp. 73-74) 

                            José M. Iglesias
1
, R. Rengel 

1
, E. Pascual

1
, María J. Martín

1 
  1

Universidad de Salamanca, Spain            

                                                                                                      

12:30    Photo of the UPoN 2015 conference 

 

12:45-14:30    Lunch (at the Dining Room of Casa Convalescència) 

 

Fluctuations in materials and devices (III) 

CHAIRMAN: Massimo Macucci (Università di Pisa, Italy) 

 

14:30-14:50   Measurements of RF noise in InGaAs/InAlAs recessed diodes: Signatures of shot-

noise suppression. (ORAL)                                                                                                               (pp. 75-76) 

                            Ó. García-Pérez
1
, T. González

1
, S. Pérez

1
, A. Westlund

2
, J. Grahn

2
, J. Mateos

1 
  1

Universidad de Salamanca, Spain, 
2
Chalmers University of Technology, Gothenburg, Sweden 

                                                                                               

14:50-15:10    1/f noise arising from time-subordinated Langevin equations. (ORAL)                 (pp. 77-78) 

                            Julius Ruseckas
1
, Bronislovas Kaulakys

1 
  1

Vilnius University, Lithuania                                                                                                  

 

15:10-15:30    Plasmonic Noise of Field-Effect Transistors Operating at Terahertz Frequencies.  
 (ORAL)                                                                                                                                                          (pp. 79-80) 

                             C. Palermo
1
, A. Mahi

1
, H. Marinchio

1
, L. Varani

1
, P. Shiktorov

2
, E. Starikov

2
, V. Gruzhinskis

2 
                                  1

University of Montpellier, France, 
2
Center for Sciences and Technology, Vilnius, Lithuania          

                                                     

17:00    Visit to Sagrada Familia / Catedral del mar 

 

                        Committee dinner 

http://europe.uab.es/upon2015/abstracts/018.pdf
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http://europe.uab.es/upon2015/abstracts/051.pdf
http://europe.uab.es/upon2015/abstracts/044.pdf
http://europe.uab.es/upon2015/Socialevents.html


 

 

 

 

 

 

Theoretical trends in noise and fluctuations (I)  

CHAIRMAN:  Peter Hänggi (Universität Augsburg, Germany) 

 

9:00-9:30        Fluctuation theorems and stochastic thermodynamics: applications to energy 
fluctuations in electric circuits and micro devices. (INVITED)                                               (pp. 81) 

                           Sergio Ciliberto
1
  

  
1
Laboratoire de Physique de l'ENS de Lyon, France                                                                                  

 

9:30-9:50        Experimental realization of a microscopic Carnot engine. (ORAL)                              (pp. 82-83) 

 L. Dinis
1
, I. A. Martínez

2
, E. Roldán

3
, J. M. R. Parrondo

1
, R. A. Rica

4 
                                               1

Universidad Complutense de Madrid, Spain, 
2
Ecole Normale Superieure, Lyon, France, 

3
Max Plank Institute, 

Dresden, Germany,  
4
ICFO, Spain                                                         

 

9:50-10:10      Equilibrium and non-equilibrium fluctuations at the single molecule level: from free-
energy measurements to inference. (ORAL)                                                                                (pp. 84) 

   M. Ribezzi-Crivellari
1
, F. Ritort

1 
  1

Universitat de Barcelona, Spain           

                                                                                                                                           

10:10-10:30    Fluctuations of intensive variables and non-equivalence of thermodynamic  

                        ensembles. (ORAL)                                                                                                                                       (pp. 85) 

                            A. Ya. Shul’man
1
  

                                               1
V. A. Kotel'nikov Institute of Radio Engineering and Electronics of the RAS, Russia   

                                                                                             

10:30-11:00   Coffee Break 

 

Other topics of noise 

CHAIRMAN: Felix Ritort (Universitat de Barcelona, Spain) 

 

11:00-11:30    How can the fluctuations in the motion of kayak-paddlers be used to estimate 

performance? (INVITED)                                                                                                                      (pp. 86-87) 

                            Gergely Vadai
1
,
 
Zoltan Gingl

1 
  

  1
University of Szeged, Hungary                                                                                                          

 

11:30-11:50    Is There an Optimal Search Strategy? (ORAL)                                                                  (pp. 88-89) 

                        Michael F. Shlesinger
1
  

                        
1
Office of Naval Research ONR, USA                                           

                                                                                                                  

Thursday, July 16 2015 
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11:50-12:10     A stochastic model for phytoplankton dynamics in the Tyrrhenian Sea. (ORAL)  

                                                                                                                                                                      (pp. 90-91) 

                             Davide Valenti
1
, Giovanni Denaro

1
, Bernardo Spagnolo

1,2,3
, Fabio Conversano

4
, Christophe Brunet

4
  

  1
Università di Palermo, Italy, 

2
Lobachevsky State University, Russia, 

3
INFN Catania, Italy, 

4
Stazione Zoologica Anton 

Dohrn, Italy                                                                                                                                                          

 

12:10-14:50    Poster session & Lunch (at the Dining Room of Casa Convalescència) 

 

Theoretical trends in noise and fluctuations (II)  

CHAIRMAN: Ludovic Bellon (Université de Lyon, France) 

 

14:50-15:20     All that glitters is not gold: Zero-point energy in the Johnson noise of resistors.  
                             (INVITED)                                                                                                                                                     (pp. 92-93) 

                             Laszlo B. Kish
1
  

 
1
Texas A&M University, USA                                                                                       

 

15:20-15:40     The spectral characteristics of steady-state Lévy flights in an infinitely deep 
rectangular potential well. (ORAL)                                                                              (pp. 94-95)          rectangular potential well. (ORAL) 

                              A. A. Kharcheva
1
, A. A. Dubkov

1
, B. Spagnolo

2,3
, D. Valenti

2
  

                                               1
Lobachevsky State University, Russia, 

2
Università di Palermo, Italy, 3

INFN Catania, Italy                                                         

 

15:40-16:00     Stationary states in 2D systems driven by Lévy noises. (ORAL)                                  (pp. 96-97) 

                             B. Dybiec
1
, K. Szczepaniec

1
  

   1
Jagiellonian University, Poland 

                                                                                               

16:00-16:20    Typical pure states and rare events for quantum many-body systems. (ORAL) (pp. 98-99) 

                             Takaaki Monnai
1
  

     1
Seikei University, Japan 

                                                                                                                                                   

16:20-16:50    Coffee Break 

 

 

Noise in complex and non-linear systems (II) 

CHAIRMAN: Derek Abbott (The University of Adelaide, Australia) 

 

16:50-17:10     Degradation Stochastic Resonance Concept: Benefits of Controlled Noise Injection   
in Adaptive Averaging cell-based Architecture. (ORAL)                                               (pp. 100-101) 

                             Nivard Aymerich
1
, Sorin Cotofana

2
, Antonio Rubio

3
  

  1
Broadcom Networks Spain, 

2
Delft University, Netherlands,

 3
UPC, Spain      

      

 

 

                                                                          

http://europe.uab.es/upon2015/abstracts/036.pdf
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17:10-17:30    Noise on resistive switching: a Fokker-Planck approach. (ORAL)                            (pp. 102-103) 

                            G. A. Patterson
1
, D. F. Grosz

2,3
, P. I. Fierens

1,2
  

                            
1
Instituto Tecnológico de Buenos Aires, Argentina, 

2
Consejo Nacional de Investigaciones Científicas y Técnicas, 

Argentina, 
3
Instituto Balseiro, Argentina                                                          

 

17:30-17:50    Stochastic enhancement of absolute negative mobility. (ORAL)                               (pp. 104) 

                            Lukasz Machura
1
, Jakub Spiechowicz

1
, Jerzy Łuczka

1 

  
1
University of Silesia, Poland                                                                                                                   

 

17:50-18:10    Cascade Amplification of Fluctuations. (ORAL)                                                                (pp. 105-106) 

                            Michael Wilkinson
1
, Marc Pradas

1
, Robin Guichardaz

2
, Alain Pumir

2
  

  1
The Open University, UK, 

2
Ecole Normale Supérieure de Lyon, France         

                                                 

18:10-18:30    Conversion of mechanical noise into useful electrical energy using piezoelectric 2D 

Materials. (ORAL)                                                                                                                               (pp. 107-108) 

                            Gabriel Abadal
1
, M. López-Suárez

2
, W. Venstra

3
, F. Torres

1
, L. Gammaitoni

2
, R. Rurali

4
  

                                               1
Universitat Autònoma de Barcelona, Spain, 

2
University of Perugia, Italy, 

3
Delft University, Netherlands, 

4
ICMAB-

CSIC, Spain                                                                                                            

 

20:30           Gala dinner (Museu d'art de Catalunya) 

 

 

 

 

 

 

 

 

 

 

Quantum noise and coherence (II) 

CHAIRMAN: Paolo Bordone (Università di Modena e Reggio Emilia, Italy) 

 

9:00-9:30         Classical and quantum non-linear dynamics in optomechanical systems. (INVITED)  

                                                                                                                                                                  (pp. 109-110) 

                             Yaroslav M. Blanter
1
  

  
1
Delft University of Technology, Netherlands                                              

 

9:30-9:50         Pauli-Heisenberg Oscillations in Electron Quantum Transport. (ORAL)             (pp. 111-112) 

                             Karl Thibault
1
, Julien Gabelli

2
, Christian Lupien

1
, Bertrand Reulet

1 
                                                1

Université de Sherbrooke, Canada, 
2
Université Paris-Sud, France                                                    

 

Friday, July 17 2015 
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9:50-10:10       Effects of non-Gaussian α-stable noise sources on the transient dynamics of long 
Josephson junctions. (ORAL)                                                                                                        (pp. 113-114) 

                             Claudio Guarcello
1,2

, Davide Valenti
1
, Bernardo Spagnolo

1,2,3
  

  1
Università di Palermo, Italy, 

2
Lobachevsky State University, Russia, 

3
INFN Catania, Italy                                                   

 

10:10-10:30     On the weak measurement of the electrical THz current: a new source of noise? 

(ORAL)                                                                                                                                                    (pp. 115-116) 

                             Damiano Marian
1
, Nino Zanghì

2
, Xavier Oriols

1
  

                                
1
Universitat Autònoma de Barcelona, Spain, 

2
Università di Genova and INFN Genova, Italy                                                  

 

10:30-11:00     Coffee Break 

 

Quantum noise and coherence (III) 

CHAIRMAN: Yaroslav M. Blanter (Delft University of Technology, Netherlands) 

 

11:00-11:30     Elementary events and probabilities in time-dependent quantum transport.  (ORAL)     

                                                                                                                                                                  (pp. 117-118)   

                             Wolfgang Belzig
1
, Mihajlo Vanevic

2 
   

1
University of Konstanz, Germany, 

2
University of Belgrade, Serbia                                                  

 

11:30-11:50    Electron interferometry in quantum Hall edge channels. (ORAL)                          (pp. 119-120) 

                             Jerôme Rech
1
, Claire Wahl

1
, Thibaut Jonckheere

1
, Thierry Martin

1
  

  1
Aix Marseille Université, France                                                                                  

 

11:50-12:10     Functional approach to heat-exchange, application to the spin boson model: from  
Markov to quantum noise regime. (ORAL)                                                                         (pp. 121-122) 

                             Matteo Carrega
1
, Paolo Solinas

1
, Alessandro Braggio

1
, Maura Sassetti

2
, Ulrich Weiss

3
  

                                                1
SPIN-CNR, Italy, 

2
Università di Genova, Italy, 

3
Universität Stuttgart, Germany                                                                             

 

12:10-12:30     Heat and charge current fluctuations in a thermoelectric quantum dot. (ORAL)  

                                                                                                                                                                  (pp. 123-124) 

                              Adeline Crépieux
1
, Fabienne Michelini

1 
               1

Aix Marseille Université, France 

                                                                                                                                                

12:30-12:45     Concluding remarks 

                             Lino Reggiani
1
  

                                
1
University of Salento, Italy              
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POSTER SESSION 

 

P.01       Non-Gaussian Stochastic Diffusion: Accounting Fourth Cumulant                                     (pp. 125) 

               Boris Grafov
1
  

  
1
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Russia    

                                              

P.02       Quasi-stable PDF of velocities of accelerated metal clusters on graphite before joining an 

island                                                                                                                                         (pp. 126-127) 

               Ekaterina I. Anashkina
1,2

, Aleksey V. Kargovsky
1
, Olga A. Chichigina

1
, Alexandra K. Krasnova

1 

  
1
Lomonosov Moscow State University, Russia, 

2
Università di Palermo, Italy                                                  

 

P.03       Random walks in random stochastic environments                                                        (pp. 128-129) 

               M. A. García-March
1
, Gerald J. Lapeyre Jr.

2
, Pietro Massignan

1
, and Maciej Lewenstein

1,3
  

  1
ICFO-Institut de Ciències Fotòniques, Spain, 

2
IDAEA – Institute of Environmental Assessment and Water Research, 

Spain, 
3
ICREA – Institució Catalna de Recerca i Estudis Avanҫats, Spain 

                                                                                        

P.04       Independence of superdiffusion in random low-density Lorentz gas on geometrical 

properties of moving scatterers                                                                                           (pp. 130-131) 

               Alexandra K. Krasnova
1,2

, Olga A. Chichigina
1
, Ekaterina I. Anashkina

1 
                         1

Moscow State University, Russia, 
2
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 

Russia  

 

P.05 Single molecule measurement of the effective temperature in nonequilibrium steady states 

                                                                                                                                                                                     (pp. 132) 

                 E. Dieterich
1
, J. Camunas-Soler

2,3
,  M. Ribezzi-Crivellari

2,3
, U. Seifert

1
,  F. Ritort

2,3 

  1
Universität Stuttgart, Germany, 

 2
Universitat de Barcelona, Spain, 

3
Instituto de Salud Carlos III, Madrid, Spain                                                                                                              

 

P.06       Finite-frequency noise in a non-interacting quantum dot                                             (pp. 133-134) 

               Redouane Zamoum
1
, Mirelle Lavagna

2
, Adeline Crépieux

3
  

  1
Université de Bouira, Algeria, 

2
Comissariat à l'Energie Atomique de Grenoble INAC/SPSMS, France, 

3
Aix Marseille 

Université, France 

                                                                                                                       

P.07       Features of Noise in Ultrathin Gold Nanowire Structures                                              (pp. 135-136) 

               Volodymyr Handziuk
1
, Sergii Pud

1
, Alexandre Kisner

2
, Svetlana Vitusevich

1
  

                         1
Forschungszentrum Jülich, Peter Grünberg Institute (PGI 8), Germany, 

2
Rutgers University, USA                                                 

                  

P.08       High Frequency Cutoff in 1/f Spectra of Hole Doped LaxCa1-xMnO3 Manganite Single 

Crystals                                                                                                                                     (pp. 137-138) 

               Jacek Przybytek
1
, Jan Fink-Finowicki

2
, Roman Puźniak

2
, Grzegorz Jung

2,3
  

  1
University of Warsaw, Poland, 

2
Institute of Physics PAS, Poland, 

3
Ben Gurion University of the Negev, Israel         
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P.09       Noise-induced resonance-like phenomena in InP crystals embedded in fluctuating electric 

fields                                                                                                                                          (pp. 139-140) 

 D. Persano Adorno
1
, N. Pizzolato

1
, P. Alaimo

1
, B. Spagnolo

1,2  

  
1
Università di Palermo, Italy, 

2
INFN Catania, Italy                                                                                                                    

                         

P.10       Study on the origin of 1/f noise in bulk acoustic wave resonators                              (pp. 141-142) 

               F. Sthal
1
, M. Devel

1
, J. Imbaud

1
, R. Bourquin

1
, S. Ghosh

1
, G. Cibiel

2 
                         1

FEMTO-ST Institute, France, 
2
CNES, France                                                                                                                                        

                        

P.11       The electron transit time is not the ultimate responsible for the high-frequency noise: The 

frontier between electronics and electromagnetism                                                    (pp. 143-144) 

                Zhen Zhan
1
, E. Colomés

1
, A. Benali

1
, X. Oriols

1 
                            1

Universitat Autònoma de Barcelona, Spain 

 

P.12       Random Telegraph Noise (RTN) analyzed by using Weighted Time Lag Method in Resistive  

              Switching devices                                                                                                                    (pp. 145-146) 

               M. Maestro
1
, J. Diaz

1
, A. Crespo-Yepes

1
, J. Martin-Martinez

1
, R. Rodriguez

1
, M.B. Gonzalez

2
, F. 

Campabadal
2
, M. Nafria

1
, X. Aymerich

1 
                         1

Universitat Autònoma de Barcelona, Spain, 
2
Institut de Microelectronica, IMB-CNM (CSIC), Spain 

 

P.13       On the Role of Current-Voltage Correlations on the Electric Power Consumption of 

Electronic Devices                                                                                                                   (pp. 147-148) 

               Guillermo Albareda
1
, Fabio Lorenzo Traversa

2
, Xavier Oriols

3
  

  1
Universitat de Barcelona, Spain, 

2
University of California, USA, 

3
Universitat Autònoma de Barcelona, Spain                                                                                                             

 

P.14       1/fß fluctuations from sequences of rectangular pulses                                                 (pp. 149-150) 

               Vaidas Juknevičius
1
, Bronislovas Kaulakys

1
, Julius Ruseckas

1
   

 
1
Vilnius University, Lithuania                                                                                                                           

 

P.15        D'yakonov-Perel' spin decay in the weak scattering regime and the case of graphene 

                                                                                                                                                                                (pp. 151-152) 

                Xavier Cartoixà
1
  

  
1
Universitat Autònoma de Barcelona, Spain                                                                                                  

 

P.16        Current Fluctuations Originating from Non-Metallic (Physical) Leads                       (pp. 153-154) 

                Guillermo Albareda
1
, Liping Chen

2
, Xavier Oriols

3
, Ignacio Franco

2
  

  
1
Universitat de Barcelona, Spain, 

2
University of Rochester, USA, 

3
Universitat Autònoma de Barcelona, Spain  

 

P.17        Elastic response and secondary structure of single-stranded DNA                                 (pp. 155) 

                Xavier Viader-Godoy
1
, Joan Camunas-Soler

1
, Maria Marti-Prieto

1
, Felix Ritort

1,2 
  1

Universitat de Barcelona, Spain, 
2
Instituto de Salud Carlos III, Madrid, Spain                                                                                                             
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P.18        Thermodynamic and kinetic analysis of a DNA hairpin using optical tweezers and a 

temperature controller                                                                                                          (pp. 156-157) 

                Marc Rico Pastó
1
, Marco Ribezzi-Crivellari

1
, Felix Ritort

1,2
  

 
1
Universitat de Barcelona, Spain, 

2
Instituto de Salud Carlos III, Madrid, Spain                                                                                                                   

 

P.19        Causality analysis of ANS activities by multidimensional directed coherence on body 

temperatures variations                                                                                                        (pp. 158-159) 

                 Akio Nozawa
1
, Shizuka Bando

1
  

  
1
Aoyama Gakuin University, Japan                                                                                                                    

 

P.20         Fluctuations on cancer growth dynamics in Chronic Myeloid Leukemia                    (pp. 160-161) 

                 N. Pizzolato
1
, D. Persano Adorno

1
, D. Valenti

1
, B. Spagnolo

1,2
  

  
1
Università di Palermo, Italy, 

2
INFN Catania, Italy                                                                                                                                   

 

P.21         Analysis of Fluctuation in Repeated Handwritting Based on Psychophysiological Factors 

                                                                                                                                                                                 (pp. 162-163) 

                 Amir Maleki
1
, Yuki Oshima

1
, Akio Nozawa

2
, Tota Mizuno

1
, Masafumi Uchida

1
  

  
1
The University of Electro-Communications, Japan, 

2
Aoyama Gakuin University, Japan                                                                                             
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I. INTRODUCTION

Recent analysis of truly huge quantities of empirical
data suggests that classic economic theories not only fail
for a few outliers, but that there occur similar outliers
of every possible size. Specifically, if one analyzes only a
small data set (say 104 data points), then outliers appear
to occur as “rare events.” However, when we analyze or-
ders of magnitude more data (108 data points), we find
orders of magnitude more outliers—so ignoring them is
not a responsible option, and studying their properties
becomes a realistic goal. We find that the statistical
properties of these “outliers” are identical to the statis-
tical properties of everyday fluctuations. For example, a
histogram giving the number of fluctuations of a given
magnitude x for fluctuations ranging in magnitude from
everyday fluctuations to extremely rare fluctuations that
occur with a probability of only 10−8 is a straight line in
a double-log plot, so one can quantify the probability of
an event of any given size.

II. TWO UNIFYING PRINCIPLES

Two unifying principles that underlie much of the fi-
nance analysis we will present are scale invariance and
universality.1 Scale invariance is a property not about al-
gebraic equations but rather about functional equations,
which have as their solutions not numbers but rather
functional formbs power laws, e.g., the solution of trhe
functional equation f(λx) = λpf(x) is f(x) = xp. The
key idea of universality is that the identical set of “scal-
ing laws” hold across diverse markets, and over diverse
time periods, e.g., the inverse cubic law for price changes
seems to hold for a huge range of indices.

We demonstrate the principles of scaling and universal-
ity by describing very recent work.2–4 Financial market
fluctuations are characterized by many abrupt switchings
on very short time scales from increasing “microtrends”
to decreasing “microtrends”—and vice versa. We ask
whether these ubiquitous switching processes have quan-
tifiable features analogous to those present in phase tran-
sitions, and find striking scale-free behavior of the time
intervals between transactions both before and after the
switching occurs. We interpret our findings as being con-
sistent with timedependent collective behavior of finan-
cial market participants.

We demonstrate the principles of scaling and universal-
ity by describing very recent advances.3 Financial market
fluctuations are characterized by many abrupt switchings
on very short time scales from increasing “microtrends”

to decreasing “microtrends”—and vice versa. We ask
whether these ubiquitous switching processes have quan-
tifiable features analogous to those present in phase tran-
sitions, and find striking scale-free behavior of the time
intervals between transactions both before and after the
switching occurs. We interpret our findings as being con-
sistent with time-dependent collective behavior of finan-
cial market participants.

III. THE FRAGILITY OF
INTERDEPENDENCY: INTERDEPENDENT

NETWORKS & SWITCHING PHENOMENA IN
ECONOMIC SYSTEMS

Recent disasters ranging from financial “shocks” to
large-scale power and terrorists attacks dramatically ex-
emplify the fact that the most dangerous vulnerability
is hiding in the many interdependencies among different
networks. We quantify failures in interconnected net-
works, and demonstrate the need to consider mutually
dependent network properties in designing resilient sys-
tems. Specifically, we have uncovered new laws governing
the nature of switching phenomena in coupled networks,
and found that phenomena that are continuous “second
order” phase transitions in isolated networks become dis-
continuous abrupt “first order” transitions in interdepen-
dent networks.2,5 For example, we find that the same laws
governing the formation and bursting of the largest finan-
cial bubbles also goven the tiniest finance bubbles, over
a factor of 1,000,000,000 in time scale.3,4

IV. PREDICTING THE FUTURE

Finally, we demonstrate that by analyzing changes in
Google query volumes for search terms related to finance,
we find patterns that may be early warning signs of stock
market moves.6 We conclude by discussing the network
basis for understanding sudden death in the elderly, and
the possibility that financial “flash crashes” are not un-
like the catastrophic first-order failure incidents occur-
ring in interdependent networks.7
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I. INTRODUCTION

Rectification of Brownian motion has been the focus of
a concerted effort, both conceptual1 and technological2,
aimed at establishing net particle transport on a periodic
substrate in the absence of external biases. According to
the Pierre Curie’s conjecture, two basic ingredients are
required for this purpose: a spatial asymmetry of the
substrate and a time correlation of the (non-equilibrium)
fluctuations.

Brownian diffusion in a narrow, corrugated channel can
also be rectified according to Curie’s conjecture. Sub-
jected to an a.c. drive, repelling particles drift in the
easy-flow direction of such a collective geometric ratchet,
where the average compartment corrugation is the less
steep3, although with much lower efficiency than in or-
dinary ratchet potentials. Such collective ratchets have
been experimentally demosntrated for a.c. drives and rel-
atively high particle densities4, whereas the net current
vanishes at low densities3. Rectification of repelling par-
ticles in an asymmetric channel can also be induced by
time-correlated thermal fluctuations (thermal ratchets).
However, being thermal ratchets weak in general and col-
lective geometric ratchets less performing than potential
ratchets, demonstration of such an effect seems beyond
reach. On the other hand, rectification of Brownian dif-
fusion by an internal energy source, like the nonequi-
librium fluctuations invoked to power thermal ratchets,
is very appealing: The diffusing particles would harvest
kinetic energy directly from their environment, without
requiring any externally applied field (though unbiased),
and transport would ensue as an autonomous symmetry-
directed particle flow.

To enhance rectification of time correlated-diffusion in
a modulated channel with zero drives, we propose6 to
use active, or self-propelled, Brownian particles. Re-
cently, a new type of microswimmers has been syn-
thesized, where self-propulsion takes advantage of the
local gradients that asymmetric particles can gener-
ate in the presence of an external energy source (self-
phoretic effect). Such particles, called Janus particles5,
consist of two distinct “faces”, only one of which is
chemically or physically active. Such two-faced objects
can induce either concentration gradients, by catalyzing
some chemical reaction on their active surface, or ther-
mal gradients, by inhomogeneous light absorption (self-
thermophoresis) or magnetic excitation (magnetically in-
duced self-thermophoresis. We also demonstrated the
ability of Janus microswimmers to and separate colloidal
mixtures, due to their selective interaction with the con-
stituents of the mixture7.

II. ACTIVE SWIMMER IN A CHANNEL

An active microswimmer acquires a continuous push
from the environment, which in the overdamped regime
corresponds to a self-propulsion velocity ~v0 with con-
stant modulus v0 and direction randomly varying in time
with rate τ−1θ . In a two-dimensional (2D) boundless
suspension, the position ~r(t) = (x(t), y(t)) of the mi-
croswimmer diffuses according to Fürth’s law 〈∆~r(t)2〉 =
4(D0 + v20τθ/4)t+ (v20τ

2
θ /2)(e−2t/τθ − 1), where ∆~r(t) =

~r(t) − ~r(0) and D0 is the translational diffusion con-
stant of a passive particle of the same geometry at
a fixed temperature. The mechanisms responsible for
translational and rotational diffusion are not necessarily
the same and therefore D0, v0 and τθ can be treated
as independent model parameters. The Fürth’s dif-
fusion law is due to the combined action of two sta-
tistically independent 2D Gaussian noise sources8, a

delta-correlated thermal noise, ~ξ0(t) and a colored ef-

fective propulsion noise, ~ξc(t), with correlation functions
〈ξ0,i(t)〉 = 0, 〈ξc,i(t)〉 = 0, 〈ξ0,i(t)ξ0,j(0)〉 = 2D0δijδ(t),

and 〈ξc,i(t)ξc,j(0)〉 = 2(Dc/τθ)δije
−2|t|/τθ , with i, j = x, y

and Dc = v20τθ/4. Correspondingly, the microswimmer
mean self-propulsion path is lθ = v0τθ.

In a channel, with compartment size smaller than lθ,
the microswimmer undergoes multiple collisions with the
walls and the confining geometry comes into play (Knud-
sen diffusion). Contrary to standard thermal ratchets in
asymmetric potentials9, where the strength of the col-
ored noise is kept constant, here Dc grows linearly with

τθ (i.e., the variance of ~ξc(t) is set to v20). As a conse-
quence, increasing τθ not only makes geometric rectifica-
tion effective even in the case of a single particle, but also
enhances the power dissipated to fuel its self-propulsion.
As a result, rectification in active Brownian ratchets can
be so much stronger than in ordinary thermal ratchets
that direct observation becomes possible.

III. AUTONOMOUS JANUS RATCHET

The rectification of a Janus particle in a 2D asym-
metric channel was simulated6 by numerically integrat-
ing the Langevin equations8, ẋ = v0 cos θ + ξ0,x(t), ẏ =

v0 sin θ+ ξ0,y(t), θ̇ = ξθ(t), where ξ0,x(t) and ξ0,y(t) have
been defined above and ξθ(t) is an additional 1D Gaus-
sian noise with 〈ξθ(t)〉 = 0 and 〈ξθ(t)ξθ(0)〉 = 2Dθδ(t),
modeling the fluctuations of the self-propulsion angle θ,
measured, say, with respect to the positive channel easy-
flow direction.
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FIG. 1. Rectification of a single pointlike Janus particle with
self-propulsion speed v0 in a triangular channel with compart-
ment size xL = yL = 1: the average velocity v̄ vs. τθ for
channel pore size ∆ = 0.1, different D0 and sliding (filled
symbols) or randomized b.c. (empty symbols). probability
density P (x, y) in a channel compartment. [After Ref. 6].

Fig. 1 shows the results6 for the rectification current,
vp ≡ 〈ẋ〉 (in units of v0), of a pointlike Janus particle in
a triangular channel with fixed compartment dimensions
and varying τθ. At large τθ, microswimmer diffusion is
of the Knudsen type and rectification is dominated by
self-propulsion; all curves v̄(τθ) increase monotonously
with τθ until they level off. The curves vp(τθ) at low
τθ shift upwards on raising the thermal noise level D0,
therefore, thermal noise assists the rectification process.
At large τθ the rectification power is suppressed by the

thermal fluctuations6: ~ξ0(t) assists the Janus particle to
bypass the compartment corners. Therefore, the diode-
funneling effect exerted by the triangular compartments
can be either enhanced or weakened by delta-correlated
fluctuations.

IV. BINARY MIXTURES SEPARATION

We proposed7 a new mechanism of binary mixtures
separation, using self-propelled Janus microswimmers.
The average velocity (along the channel) 〈Vx〉 of parti-
cles A and B versus the effective self-propulsion force

~Fdrx is shown in Fig. 2. In general case, particles A
(small) move faster than their counterpart. We distin-
guish four regimes. (1): Rigid body motion. (2): Inverse
velocity motion. This unusual behavior is explained by
the stronger interaction of the MS with particles B than
with particles A. As a consequence, particles B are car-
ried along by the MS while the dynamical friction due to
the particle motion is very small in this case and can be
neglected. (3): Strong flow separation. With increasing
velocity, the dynamical friction becomes increasingly im-
portant, and type A particles (characterized by a larger
self-diffusion coefficient) move faster. (4): Fast MS mo-
tion. At large Fdrx, the system undergoes a transition to
a “quasi-rigid body” regime when the MS moves too fast
to produce any responce of the binary system.

FIG. 2. (a) Equilibrium configuration of a system with
equal number of particles of the two species NA = NB = 40.
(b) The average velocity of particles of type A, 〈V Ax 〉 (open
squares) and B, 〈V Bx 〉 (red dots), as a function of Fdrx. The
MS is shown by a blue filled circle. [After Ref. 7].
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I. INTRODUCTION

Non-ergodicity observed in single-particle tracking ex-
periments is usually modeled by transient trapping rather
than spatial disorder. I will talk about our models1 of a
particle undergoing Brownian motion in a medium with
inhomogeneous random diffusivities, but no traps. For
some values of model parameters, we find that the mean
squared displacement displays subdiffusion due to non-
ergodicity for both annealed and quenched disorder. This
is significant because Brownian motion itself is the proto-
typical example of ergodic, normal, diffusion. I will also
discuss recent results on extensions of these models to
quenched 2-d disorder.

The significance of this work is best understood in
the context of unanswered questions in the study of
of naturally occurring stochastic transport. Consider,
for example, receptors (molecules) diffusing laterally in
the cell membrane. In this setting, these questions in-
clude, “To what extent do tracking data point to ergodic
or non-ergodic processes”, and, “What are the physi-
cal/structural mechanisms behind these processes?”. In
the case that non-ergodic processes are observed, basic
characteristics of traps, such as their size or physical ori-
gin are not known. Furthermore, the present work shows
that it is not even necessary to assume the presence of
traps. We have, in fact, found that there are systems
for which inhomogeneity provides a quantitatively more
accurate description than than traps2.

In the talk, I will focus mainly on the theoretical story,
touching only briefly on the application to real systems.

II. MODEL

In our models of diffusion in inhomogeneous media,
one may assume annealed or quenched disorder. For con-
creteness, we introduce here a particular annealed model.
We consider a particle that undergoes Brownian motion
with a random diffusivity for a random time. Then, new,
independent random diffusivities and times are chosen
and the particle again undergoes Brownian motion. This
process is repeated. The asymptotic behavior, in particu-
lar the mean squared displacement, shows either ordinary
or anomalous behavior with weak-ergodicity breaking de-
pending on the model parameters.

More precisely, consider sequences of random variables,
the diffusivities {Dj} and the transit times {τj}. The
elements of {Dj} are identically distributed as are the
elements of {τj} All pairs are independently distributed
with the exception of pairs (Dj , τj), for all j. We assume
the (common) probability density function (PDF) for Dj

has the form

PD(D) ∼ Dσ−1 with σ > 0, (1)

for small D. Furthermore, we require that the PDF for
transit times τ conditioned on D, Pτ (τ |D), has mean

E [τ |D] = D−γ with −∞ < γ <∞, (2)

with all moments Pτ (τ |D) being finite. In this simple
case, the two parameters σ and γ characterize the model
completely.

We analyzed this model in a generalized continu-
ous time random walk framework using Fourier-Laplace
transforms. In particular, the asymptotic ensemble aver-
aged mean-squared displacement (MSD) is〈

x2(t)
〉
∼ tβ with 0 ≤ β ≤ 1, (3)

and β taking values depending on the model parameters
as shown in Tab. (1). Exponents for the model in one-
dimension when the diffusivities are quenched (fixed in
space for the duration of the walk) are also shown.

(0) (I) (II)

γ < σ σ < γ < σ + 1 σ + 1 < γ

Annealed 1 σ/γ 1 − 1/γ

Quenched 1d 1 2σ/(σ + γ) Unknown

TAB. 1. Ensemble averaged MSD exponent β in (3) for
the annealed model, and the one-dimensional quenched
model, as a function of σ and γ defined in (1) and (2).
The exponent β for the 1D quenched case in region II is

unknown at present.

By itself, the anomalous exponent in (3) is not enough
to demonstrate weak ergodicity breaking. However with
some additional assumptions, which are supported by
Monte Carlo studies, one finds that the result of perform-
ing both the ensemble averaged and the time averaged
MSD has the asymptotic form

〈x2(t)〉T ∼ T
β−1t for t� T (4)

where T is the observation time over which time averages
of functions of the lag time t are performed. The most
significant feature of (4) is that it is not equal to the en-
semble averaged quantity in (3). That is, the motion is
not ergodic. Furthermore, as is the case with the stan-
dard continuous time random walk, for short lag times t,
the particle shows ordinary diffusion.
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FIG. 1: Exponent β in (3) for annealed models. Lines
are analytic results as in Tab. (1)., for various values of
σ indicated in the figure. Symbols are numerical simula-
tions. Numerical estimates of β are extracted by fitting
Monte Carlo simulations of the ensemble average of an-
nealed models (H and N) to (3), and simulations of the
combined time-ensemble average (circles) to (4). The in-

set shows a density plot of β vs. both γ and σ.
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FIG. 2. Exponent β in (3) for the 1d quenched model.
Lines as in Fig. 1. Symbols are exponents extracted
from numerical simulations of the ensemble MSD (N) and
time-ensemble MSD (circles). Lines and symbols vary
from dark to light with increasing σ. Shading indicates
region (II), where the exponent is at present unknown.

The analytically determined exponents and Monte
Carlo estimates for the annealed model are plotted in
Fig. (1). The lines in the figure were drawn by fixing σ
at a sequence of values and varying γ along the coordinate
axis, computing the analytic expression for β. The points
correspond to Monte Carlo estimates of β computed for
various values of σ and γ. An analogous plot for the
1-d annealed case is shown in Fig. (2) We are currently
studying higher-dimensional quenched models. For many
situations (specifically, when spatial correlations are not
important), we expect to recover the annealed exponents.

To reiterate, the significance of this work in the context
of this conference is that it provides a clear example of the
fact the the characterization of the possible subdiffusive
processes arising from disorder is far from closed. In par-
ticular, if the distribution of diffusivities is anomalous,
even ordinary Brownian motion can exhibit anomalous
statistics.

1 Non-ergodic subdiffusion from Brownian motion in an in-
homogeneous medium, P. Massignan, C. Manzo, J. A.
Torreno-Pina, M. F. Garca-Parajo, M. Lewenstein, and G.
J. Lapeyre Jr Phys. Rev. Lett. 112, 150603 (2014).

2 Weak ergodicity breaking of receptor motion in living cells
stemming from random diffusivity, C Manzo, J.A. Torreno-
Pina, P. Massignan, G.J. Lapeyre Jr, M. Lewenstein, and
M.F. Garcia-Parajo Accepted for publication in Phys. Rev.
X., arxiv:1407.2552
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Transport occurring in the micro-scale domain is
strongly influenced by fluctuations and random perturba-
tions. The impact has seemed to be usually destructive,
i.e. transport is weakened with respect to such quantifiers
like averaged velocity or current. However, a constructive
role of both equilibrium and non-equilibrium fluctuations
has since been demonstrated for many situations with the
occurrence of several intriguing, noise-assisted phenom-
ena such as Brownian ratchets1, stochastic resonance2,
molecular motors and machines3, genetic and biochem-
ical regulatory systems4,5, intracellular transport6, to
mention only a few. Fluctuations and noise may enhance
the average velocity, reverse the natural transport direc-
tion, or induce anomalous transport processes.

We study a noisy drive mechanism for efficiency en-
hancement of Brownian motors operating on the mi-
croscale domain. It was proven7 that biased noise η(t)
can induce normal and anomalous transport processes8

similar to those generated by a static force F acting on
inertial Brownian particles in a reflection-symmetric pe-
riodic structure in the presence of symmetric unbiased
time-periodic driving. Here, we show that within se-
lected parameter regimes, noise η(t) of the mean value
η(t) = F can be significantly more effective than the de-
terministic force F : the motor can move much faster,
its velocity fluctuations are much smaller, and the mo-
tor efficiency increases several times9. These features
hold true in both normal and absolute negative mobility
regimes. We demonstrate this with detailed simulations
by resource to generalized white Poissonian noise.

FIG. 1. Brownian motors moving in symmetric periodic struc-
tures in the presence of an unbiased harmonic force and driven
by a static, biasing force F can be transported much faster
and in a more effective way when F is replaced by noise η(t)
of equal average bias η(t) = F .

Our theoretical results can be tested and corroborated
experimentally by use of a setup that consists of a resis-
tively and capacitively shunted Josephson junction. The
suggested strategy to replace F by η(t) may provide a
new operating principle in which micro- and nanomotors
could be powered by biased noise.

Yet, a number of open questions of the studied sys-
tem still remain to be answered. Prominent examples of
such problems may include the following: Does the main
conclusion of this work hold true also for other models
of non-equilibrium perturbation? Is the inherent non-
linearity of the system necessary for the observation of
this effect? Can this phenomenon be detected also in the
limiting case of over-damped dynamics? Is our proposed
strategy of the efficiency enhancement universal and may
be realized both in classical and quantum systems?..
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In physical secure key exchangers, the mathematical definition 
of the unconditional security 1 of the distributed keys is that the 
probability p of successfully guessing the bit by Eve can 
arbitrarily approach the value 0.5 when enough resources are 
available to Alice and Bob. One should note that this definition 
supposes a technically unlimited Eve, which means that the speed 
and accuracy of Eve’s measurements are curtailed only by the 
laws of physics and by rules of the protocol. For example, while 
Eve’s technical skills are unlimited she still cannot violate the 
Second Law of Thermodynamics or the Quantum No-Cloning 
Theorem, and she cannot record a longer sample of the signal than 
its actual cut-off length set by the protocol of Alice and Bob, who 
are in control of gating the signal. Similarly, Eve cannot utilize 
higher bandwidth with non-zero frequency components than the 
actual bandwidth set by Alice and Bob. Alternative definitions of 
unconditional security are based on statistical distance measures 2,3 
between the shared keys and ideal, perfectly secure keys, but these 
definitions are equivalent with the above one when the key bits 
are identical, independently distributed random variables 1. 

Whereas the unconditional security of practical quantum key 
distribution (QKD) systems is still debated 2–4, the classical 
physical Kirchhoff-law–Johnson-noise (KLJN) key exchange 
scheme 1,5–24 (Figure 1) has a general security proof 1 that is valid 
even for practical, weakly non-ideal situations. 

The unconditional security 1 against passive attacks in the ideal 
KLJN scheme is founded on the Second Law of Thermodynamics 

1,5–8, Kirchhoff’s Loop Law and the statistical properties of 
Gaussian noise 1,4,6,10,11. For active (invasive) attacks 1,5,6,9, 
however, an additional law is required: the information limit 
posed by Nyquist’s Sampling Theorem for signals with finite 
length and bandwidth 1,5,6,9. For the practical cases with weak non-
ideality, an additional, fundamental rule applies to offer 
unconditional security, namely, the continuity of classical physical 
functions in linear systems and in stable non-linear systems 1. As 
an example, will also show a new (capacitance) attack type with 
the so far highest success rate and the defense against it. 

Important practical applications of KLJN 12–15, impose the less 
fundamental but still essential question:  
 

How much would it take in terms of resources to reach a 
prescribed (outstanding) security level? 

 

Various ways have been proposed to reduce practical 
information leaks based on non-ideal components 7,8, and the 
extraordinarily small 16,17 bit-error probabilities (after error 
removal) in the KLJN scheme allow plenty of privacy 
amplification 18 to further diminish the information leak under 
laboratory conditions 20 to imperceptible levels. Still, important 
attack types have not been analyzed for practical conditions, such 
as: 

 

(i) information leak due to propagation delays in steady-state 
conditions, and 

 
(ii) information leak due to propagation delays at transients. 

 
 

 
Figure 1. Schematic of the Kirchhoff-law–Johnson-noise (KLJN) secure 
key exchange system. At the beginning of the key exchange, Alice and 
Bob make a random choice from the resistors representing the two bit-
values and connect the selected one to the wire. Then they execute passive 
and public current/voltage noise measurements on the cable and, based on 
these data, they determine the total loop resistance from the Johnson 
formula. The unknown resistance at the other end of the cable is then the 
difference between their own resistor and the total loop resistance. Eve 
does not know any of the connected resistor values; thus for her the loop 
resistance tells only if a secure bit exchange was performed (High/Low or 
Low/High situation). The High/High and Low/Low situations are not 
secure, and those bits are discarded. To defend against active and hacking 
attacks, the cable parameters and cable integrity are randomly monitored; 
the instantaneous voltage Uc(t) and current Ic(t) amplitudes in the cable are 
measured and compared via public authenticated data exchange, and full 
spectral and statistical analysis/checking is carried out by Alice and Bob. 
R, t and Teff denote resistance, time and effective temperature, respectively. 
Line filters, etc., are not shown. The effective noise temperature of the 
generators is public knowledge and is very much higher than room 
temperature (800 million to 800 billion Kelvin during an experimental 
demonstration 20). 

 

 Concerning item (i), Pao-Lo Liu, with a model-KLJN 
scheme 25, proved that, in the steady-state, even if propagating 
signal components were known in the two directions (by a 
directional coupler), the KLJN system would have remained 
perfectly secure. Gunn–Allison–Abbott (GAA) 21 recently tried to 
build a directional coupler for a new attack scheme by utilizing 
propagation effects during steady-state conditions, and their 
experiments seemed to demonstrate a huge information leak even 
under quasi-ideal conditions. However, subsequent careful studies 
clarified that the GAA scheme 21 was flawed at all levels 22–24: 
fundamentally, conceptually and experimentally. Moreover, 
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provided that the KLJN system is implemented with care, GAA’s 
scheme 21 actually yields less information leak than in an old 
cable-resistance attack 23. Furthermore, and analogously to the old 
situation, even this small leak can completely be nullified by the 
protocol 8 eliminating wire resistance based attacks, which also 
indicates that the scheme is a wire loss based attack.  Nevertheless 
the GAA attack and its analysis were beneficial by highlighting 
that security is a very serious matter and that a KLJN system, 
which is able to approach the security of idealized situations, 
requires very careful and thorough design even though its 
principle circuit looks relatively simple. 
 In conclusion, currently there is no successful attack against the 
KLJN scheme that is able to extract information from propagation 
effects under steady-state conditions.  
 Concerning item (ii), which considers transient effects, the 
situation is similar. Such effects should provide some information 
leak at the beginning and/or end of the key-exchange period. 
While a generic analysis shows 5 that unconditional security 
cannot be challenged by this kind of attack, it is essential to 
consider such attacks schemes in order to estimate the required 

resources in a practical KLJN design. 
 However, we have not yet seen any serious attack against even 
the most primitive transient protocol, such as ramping up/down 
the noise at the beginning/end of the measurement 20. Such 
transient protection, when done in the simplest way 20, protects 
only against high-frequency reflections and its excessive 
information leak however it still leaks out about a single-point 
noise measurement information 25 , (which can easily be 
eliminated). 
 So far, the most elaborate transient defense protocol has 
embodied a simple random walk of resistance values and noise 
envelopes until they reach the desired values 7.  
 

But there must be transient-based attacks on the KLJN scheme—
at least intuition suggests that would extract information even in 
such a case. What are those schemes and what ways can they be 
eliminated? 
 

These represent important unanswered questions which are open 
for future research. 
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I. INTRODUCTION

We consider the tails of the probability distribution
and the escape rates in classical and quantum systems
away from thermal equilibrium. These characteristics
and the very mechanisms of the appropriate large rare
fluctuations display features, which have no analogs in
equilibrium systems. An example is switching between
coexisting stable periodic states due to quantum fluc-
tuations via the mechanism, which we call quantum
activation and which is neither tunneling nor classical
activation.1 Despite the fact that there are no known
general principles, which would describe the rates of rare
events, these rates display some universal features. In
particular, they display scaling behavior near bifurcation
points where the number of the stable states changes.
We will describe this behavior and provide a comparison
with the experiment. We will also discuss the effect of
fragility of the switching rates. This effect consists in the
nonanalytic dependence of the logarithms of the rates
on the system parameters in the relevant limit. It has
been found in such diverse problems as population dy-
namics and nonequilibrium quantum fluctuations. How-
ever, the general nature of the fragility remains elusive,
this is an unsolved problem of noise. We will also outline
the results on rare fluctuations in classical systems with
delayed dissipation. In such systems, the most proba-
ble paths followed in fluctuations to a given state or in
switching are given by acausal equations. This leads to
nontrivial consequences and a strong modification of the
rates even for small delay.

II. QUANTUM ACTIVATION

A reliable platform for studying quantum phenomena
away from thermal equilibrium is provided by resonantly
modulated vibrational systems, such as modes of super-
conducting cavities or plasma vibrations of Josephson
junctions. These modes (oscillators) have a small de-
cay rate Γ compared to the eigenfrequency ω0 and weak
nonlinearity. When driven close to ω0 or parametrically
modulated close to 2ω0, they display almost sinusoidal
vibrations. However, when the driving amplitude F is
not too small, because of the interplay between the weak
nonlinearity and slow decay, they can have several coex-
isting vibrational states.

The coupling of a driven oscillator to a thermal reser-
voir leads to quantum noise. This noise and the motion
of the oscillator as a whole can be conveniently described
in the rotating wave approximation (RWA). For fairly
general assumptions about the coupling, on times slow

compared to the vibration period 2π/ω0 one can derive a
quantum Langevin equation for the scaled dimensionless
coordinate Q and momentum P in the rotating frame. It
can be written as

Q̇ = −i~̃−1[Q, ĝ]−Q+ f̂Q(τ),

Ṗ = −i~̃−1[P, ĝ]− P + f̂P (τ). (1)

Here, ~̃ is the scaled dimensionless Planck constant and
ĝ is the Hamiltonian of the driven oscillator in the rotat-
ing frame. It does not depend on time in the RWA. The
explicit form of ~̃ and ĝ is given in Ref. 1. The eigenval-
ues of the operator ĝ give the scaled quasienergy of the
periodically driven oscillator.

In Eq. (1), f̂Q,P are quantum noise operators. The
noise is δ-correlated in slow time,

〈f̂Q(τ)f̂Q(τ ′)〉 = 〈f̂P (τ)f̂P (τ ′)〉 = ~̃(2n̄+ 1)δ(τ − τ ′),
〈[f̂Q(τ), f̂P (τ ′)]〉 = 2i~̃δ(τ − τ ′); (2)

n̄ = [exp(~ω0/kBT )− 1]−1 is the oscillator Planck num-
ber.

Equations (1) simplify for the values of the driving field
F and its frequency ωF close to the bifurcation points
where the number of the stable states changes. Here,
one of the motions in the system becomes slow, there
emerges a soft mode with coordinate Q̃, which is a linear
combination of Q and P . The dynamics of this mode is
essentially classical, since it commutes with itself, with

equation of motion of the form ˙̃Q = −∂Q̃U(Q̃) + fQ̃(τ).
The only signature of the quantumness is the noise inten-
sity fQ̃, which is given by Eq. (2) and explicitly contains

~, whereas the form of U(Q̃) is determined by the type
of the bifurcation point. The problem of switching is
then mapped on the Kramers problem of escape of an
overdamped particle. The escape rate is

Wsw = Ωsw exp(−RA/~̃). (3)

The quantum activation energy is RA = ∆U/(n̄ + 1/2),
where ∆U is the height of the barrier to be overcome
in escape; Ωsw is the Kramers prefactor. Both for the
saddle-node and pitchfork bifurcation points, which are
of interest for driven oscillators, RA and Ωsw scale as
powers of the distance to the bifurcation point.1

Of significant interest for the current experiments on
parametrically driven quantum oscillators is the vicin-
ity of the critical point F = Fc, ωF = 2ω0 where there
first emerge period-two vibrations for parametric driving.
The dynamics in this parameter range is significantly dif-
ferent from that near simple (co-dimension one) bifurca-
tion points. We have now developed a method to analyze

10



UPON 2015, BARCELONA, JULY 13-17 2015

Μp=-0.2

Μp=0

Μp=0.2

-2.4 -1.6 -0.8

-7

-5

-3

-2.4 -1.6 -0.8

-7

-5

-3

lnHfp
2
-1L

ln
R�

A

FIG. 1. Scaling of the quantum activation energy R̃A = (n̄+
1/2)RA with the relative driving field amplitude fp = F/Fc

for transitions between the parametrically excited period-two
vibrational states with opposite phases. In the shown range
1.04 < fp < 1.2 the scaled frequency detuning µp ∝ (ωF −
2ω0)/ωF is such that the period-two vibrations are the only
stable states of the oscillator.

this dynamics. There is no simple single scaling law that
would describe the behavior of RA. The results obtained
for RA are shown in Fig. 1.

Of significant interest is the parameter range where
the motion of the oscillator in the rotating frame is un-
derdamped. With no dissipation, the oscillator would
stay in a state with given quasienergy or in a super-
position of such states. Dissipation leads to drift over
quasienergy toward its value in the classically stable vi-
brational state. However, it also leads to diffusion over
quasienergy. Such diffusion occurs even for T = 0 and
is of purely quantum origin. It results in a stationary
distribution ρn over quasienergy states |n〉 of the Boltz-

mann type, ρn ∝ exp[−Rn/~̃]. For small ~ one has
Rn ≡

∫ gn
gst
dgR′(g), where gn = 〈n|ĝ|n〉 and gst is the

value of ĝ at the stable state. Function R′(g) plays the
role of the reciprocal effective temperature, which de-
pends on g.

Remarkably, the small-~̃ approximation breaks down
where T → 0. The value of R′ obtained for T = 0 and
T → 0 are different. We have recently shown2 that the
quasi-Boltzmann form of the distribution does not apply
in a narrow temperature range Tc1 < T < Tc2, where the
critical temperatures are Tc1 ∝ ~2 and Tc2 ∝ ~/| log ~̃|.
One can say that R′(g) has a kink. Such kink is shown
in Fig. 2.2

We will discuss the general conditions for the onset
of fragility and provide an analytical theory of the kink
of R′(g). We will also compare the onset of fragility in
a quantum system and in several models of population
dynamics. So far the effect has been seen in systems with
discrete states, like quasienergy states or the numbers of
species. An important open question is whether fragility

also emerges in continuous systems.

III. SWITCHING IN SYSTEMS WITH DELAY

Delay naturally arises in dissipative dynamical sys-
tems. In such systems, dissipation results from the cou-
pling to a reservoir: motion of the system causes changes
in the reservoir, which in turn affect the motion. The un-
derlying reaction of the reservoir is generically delayed.
Along with the dissipative force, the reservoir exerts a
random force on the system. If dissipation is delayed,
the random force has a finite correlation time.

We will discuss our recent results3 on the probability
distribution and switching rates in systems with delay.
They are related to systems where chaotic motion in the
absence of noise does not play a role. There are several
key elements here. First, even though to find a dynam-
ical trajectory without noise one has to know the whole
dynamical history of the system, the trajectory, which is
most likely to be followed in a large fluctuation to a given
state, is well defined. It is well-defined also for the prob-
lem of escape from a metastable state. The “price” for
having delay is that the functional, which we obtain and
which determines the distribution of fluctuational trajec-
tories, is nonlocal in time. Therefore the equations for
the most probable trajectories, which are the extremals
of this functional, are acausal.

We will present explicit results for the switching rates
close to bifurcation points of the system, and also for the
case of small delay compared to the system relaxation
time. The effect of the finite correlation time of the noise
will be also discussed.

FIG. 2. Effective reciprocal temperature |∂gR| calculated nu-
merically from ln(ρn/ρn−1). The results refer to three tem-
peratures in the range Tc1 < T < Tc2. The total number
of localized quasienergy states in the basin of attraction of
the small-amplitude state of a resonantly driven oscillator is
M = 20. The solid and dashed lines show |∂gR| for n̄ = 0
and for n̄→ 0 but T > Tc2, respectively.2
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Complex systems theory is a conceptual framework for
understanding many phenomena from the nano-scaled
condensed matter to the macroscopic social scale, char-
acterized by emergent properties produced by the non-
linear interactions between the constituent units, in gen-
eral surprisingly different from those of the units them-
selves. Among the many examples known, such as syn-
chronization, phase transitions, and pattern formation,
here we explore some instances of emergent phenomena
induced by disorder. Disorder can mean both noise, i.e.
time-dependent disorder in the form of e.g. a random
force acting on a particle, a noisy background, or ran-
dom fluctuations of some parameter, and heterogeneity,
i.e. quenched disorder affecting some features of the units
composing the system, related to e.g. the different ion-
channels in a cell, neurons with heterogeneous param-
eters in a neuronal network, different individuals in a
social group, heterogeneous economic agents in a market
economy, or species with different fitness in an ecological
system.

The subject of this study is the effect resulting by the
interplay between noise and diversity. For this reason
the focus is on systems that present both stochastic res-
onance, that takes place at intermediate amplitudes of
noise1, and diversity-induced resonance, that appears for
a suitable (i.e. neither too high nor too low) level of
quenched disorder in the form of heterogeneity of the con-
stituent units2–4. Previous investigations have concen-

FIG. 1. The coefficient r providing a quantitative estimate of
the quality of a sleep-wake cycle5 presents both a stochastic
resonance when studied in versus the noise amplitude (left)
and diversity-induced resonance versus the diversity level of
the neuronal activation thresholds (right), see Ref. [5] for fur-
ther details.

trated on the study of noise and diversity treated as inde-
pendent phenomena. For instance, some of the authors
showed that a multi-neuronal model of the wake-sleep
cycle presents stochastic resonance as well as diversity-

induced resonance (with a clear evidence of diversity-
induced resonance and a milder level of stochastic res-
onance)5, see the example in Fig. 1. On the other hand,
here we consider the actual interplay between noise and
diversity.

A first question that we consider and try to answer
is related to the way noise and diversity should interact
with each other in order to produce the optimal response
of a system, e.g. which parameters it is best to diversify
and which parts of the system should undergo random
fluctuations. In turn this depends on the specific type
of dynamical system under study. To this aim we review
previous work on this topic and presents the results of nu-
merical studies of multicomponent systems with bistable,
excitable, and other types of constituent units.

A second question is whether there exists a general
connection between stochastic resonance and diversity-
induced resonance, enabling one to predict the possible
appearance of diversity-induced resonance in a system
when the (corresponding noisy single-particle version of
the) system is known to present stochastic resonance.

At a general level, this research is motivated by the
well known fact that an appreciable level of both noise
and quenched disorder is naturally present in all biolog-
ical and social systems. It is a natural question to ask
whether there is a reason for the evolution of different
types of system toward a similar state with a combined
level of noise and diversity, that are both known to be
able to play a relevant role in e.g. improving the re-
sponse, resilience, or performance of a system subject to
external perturbations and interactions4.

FIG. 2. The prototypical diversity-induced resonant system2

(right) can be considered as a generalization of the prototyp-
ical stochastic resonant system1 (left) obtained by replacing
the Brownian particle by a heterogeneous polymer.

Finally, this work is related to and extends the im-
plications of the links between stochastic resonance and
diversity-induced resonance that have been pointed out
or implicitly demonstrated by different authors. The
original introduction of the concept of diversity-induced
resonance is in fact in the perspective of an analogy with
a stochastic resonant system2. The analogy can be vi-
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sualized by constructing the diversity-induced resonant
system from the famous example of a stochastic reso-
nant system of a Brownian particle in a quartic bistable
potential through the replacement of the Brownian par-
ticle by a heterogeneous polymer, see Fig. 2. As a dif-
ferent example, the studies of the phenomenon of supra-
threshold stochastic resonance6 employed some partic-
ular model of multi-component system that can be re-
interpreted as a heterogeneous systems that in principle
presents diversity-induced resonance, see Fig. 3.

FIG. 3. This supra-threshold stochastic resonant system6

with input signal F (t) and output signal x =
∑

i Θ(F (t)−Zi),
where Θ(.) is the step function, can represent a stochastic
resonant or a diversity-induced resonant system depending
whether the thresholds Zi are assumed to be diversified by
independent noises ξi(t), Zi = 〈Z〉+ ξi(t)), or extracted from
a suitable distribution P (Z).

1 L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni,
Stochastic Resonance, Rev. Mod. Phys. 70, 223 (1998).

2 C.J. Tessone, C.R. Mirasso, R. Toral, J.D. Gunton:
Diversity-induced resonance, Phys. Rev. Lett. 97, 194101
(2006).

3 R. Toral, C. J. Tessone, J. Viana Lopes, Collective effects
induced by diversity in extended systems, Eur. Phys. J.-
Special Topics 143, 59 (2007).

4 L.F. Lafuerza, R. Toral, On the effect of heterogeneity in
stochastic interacting-particle systems, Sci. Rep. 3, 1189

(2013).
5 M. Patriarca, S. Postnova, H.A. Braun, E. Hernndez-Garca,

R. Toral, Diversity and Noise Effects in a Model of Homeo-
static Regulation of the Sleep-Wake Cycle, PLoS Comput.
Biol. 8 (8), e1002650 (2012).

6 M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Ab-
bott, Stochastic Resonance. From supra-threshold Stochas-
tic Resonance to Stochastic Signal Quantization, Cam-
bridge University Press (2008).
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I. HISTORICAL INSPIRATION

In 1962 Dyson suggested an inspiring way to under-
stand the joint probability distribution (jpd) of the eigen-
values of random matrices. In order to find the jpd, he
was inventing an auxiliary dynamics undergoing in some
fictitious ”time”, which, at the static limit, will lead to
the stationary state (Gibbs state), representing the de-
sired jpd. As he pointed1, ”after considerable and fruit-
less efforts to develop a Newtonian theory of ensembles,
we discovered that the correct procedure is quite different
and much simpler. The xi [eigenvalues] should be inter-
preted as positions of particles in Brownian motion. The
resulting stationary distributions (originally for hermi-
tian or for unitary random matrices) were obtained as an
effect of Ornstein-Uhlenbeck diffusion with a drift force
coming from electrostatic-like repulsion of eigenvalues.
The success of this description has contributed to multi-
ple applications of random matrix models in practically
all branches of science. The notion of ”time” has evolved
as well, so nowadays the ”time” can be a physical dy-
namical parameter, representing either the real time or,
e.g., the length of the mesoscopic wire, area of the string
or external temperature. The idea of noisy walk of eigen-
values led also recently to such concepts as the study of
determinantal processes, Loewner diffusion, fluctuations
of non-intersecting interfaces in thermal equilibrium and
the emergence of pre-shock spectral waves and universal
scaling at the critical points of several random matrix
models.

Three years after Dyson, Ginibre2 has considered
for the first time strictly non-hermitian random matrix
modes, whose spectrum does not need to be confined
either to real line (hermitian operators) or to unit cir-
cle (unitary operators), but can be located on the two-
dimensional supports on the complex plane. Original mo-
tivation for the study of complex, random spectra was
purely academic. Today, however, non-hermitian ran-
dom operators play role in quantum information process-
ing, in financial engineering (when lagged correlations
are discussed) or in identifying clusters in social or bi-
ological networks using non-backtracking operators, to
name just a few recent applications. Additionally, sta-
tistical properties of eigenvectors of non-hermitian oper-
ators contribute to understanding scattering problems in
open chaotic cavities and random lasing.

II. MAIN RESULTS

In this contribution, following our recent work3, we
combine the original ideas of noisy random walk with
the strict non-hermiticity of the operators, studying an
evolution of Ginibre matrices whose elements undergo
Brownian motion. The non-hermitian character of the
Ginibre ensemble binds the dynamics of eigenvalues to
the evolution of eigenvectors in a non-trivial way, lead-
ing to a system of coupled nonlinear equations resembling
those for turbulent systems. We formulate a mathemat-
ical framework allowing simultaneous description of the
flow of eigenvalues and eigenvectors, and we unravel a
hidden dynamics as a function of new complex variable,
which in a standard description is treated as a regulator
only. We solve the evolution equations for large matrices
and demonstrate that the non-analytic behavior of the
Green’s functions is associated with a shock wave stem-
ming from a Burgers-like equation describing correlations
of eigenvectors.

III. CONCLUSIONS AND OPEN PROBLEMS

We have proven that a consistent description of non-
hermitian Gaussian ensemble requires the knowledge of
the detailed dynamics of co-evolving eigenvalues and
eigenvectors. Moreover, the dynamics of eigenvectors
plays the superior role and leads directly to the inference
of the spectral properties. This is dramatically differ-
ent scenario comparing to the standard random matrix
models, where the statistical properties of eigenvalues are
of primary importance, and the properties of eigenvec-
tors are basically trivial due to the their decoupling from
the spectra. We conjecture that the discovered by us
hidden dynamics of eigenvectors, that we have observed
for the Ginibre ensemble, is a general feature of all non-
hermitian random matrix models.

Our formalism could be exploited to expand the area of
application of non-Hermitian random matrix ensembles
within problems of growth, charged droplets in quantum
Hall effect and gauge theory/geometry relations in string
theory beyond the subclass of complex matrices repre-
sented by normal matrices.

One of the challenges is an explanation, why, despite
being so different, Smoluchowski-Fokker-Planck equa-
tions for hermitian and non-hermitian random matrix
models exhibit structural similarity to simple models of
turbulence, where so-called Burgers equation plays the
vital role, establishing the flow of the spectral density of
eigenvalues in the case of the hermitian or unitary en-
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sembles and the flow of certain eigenvector correlator in
the case of non-hermitian ensembles.

We believe that our findings will contribute to under-
stand several puzzles of non-hermitian dynamics, alike
extreme sensitivity of spectra of non-hermitian systems
to perturbations4,5.
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I. INTRODUCTION

Brownian motion is one of the most fundamental phe-
nomena of physics, and its discovery and study con-
tributed to the birth of contemporary statistical physics
and theory of stochastic processes. It finds wide appli-
cations in many branches of science, including physics,
chemistry, biology and economics.

A long series of studies, however, indicates that trans-
port in condensed matter and living systems is often far
from random. As an example, many cellular compo-
nents exhibit anomalous diffusion, i.e., a mean-squared
displacement MSD∼ tβ with β 6= 1, and recent works
even evidenced clear signatures of nonergodic behavior.
Presently open are many questions on what are the phys-
ical mechanisms generating non-ergodicity, what are the
implications of anomalous diffusion for biological func-
tion, and more generally how complex environments af-
fect Brownian motion.

II. CLASSICAL BROWNIAN MOTION

A celebrated model yielding anomalous, subdiffusive
and nonergodic dynamics, widely used in biology and
condensed matter is the so-called Continuous-Time Ran-
dom Walk (CTRW), whose underlying assumption is that
particles, while diffusing, wait at random positions for
anomalously long times. However, transient trapping is
not the only possible source of transport anomalies, as
spatial and temporal disorder may have important con-
sequences in this direction.

In a recent theoretical work, we introduced models
which describe particles diffusing in a complex and in-
homogeneous medium consisting of patches with random
sizes and random diffusivities1. The particles are never
trapped, but rather perform continuous Brownian motion
with the local diffusion constant. Under simple assump-
tions on the distribution of diffusivities D in each patch,
such as

PD(D) =
Dσ−1e−D/b

bσΓ(σ)
, (1)

and of the traversal times τ of each patch, such as

Pτ (τ |D) =
Dγ

k
e−τD

γ/k, (2)

with b and k appropriate dimensionful constants, we find
that the mean squared displacement displays subdiffusion
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FIG. 1. Subdiffusion exponent β. Lines are the analytic
predictions for different values of σ. Symbols are numerical
simulations of various annealed models with spatial or tempo-
ral disorder. Lines and symbols vary from dark to light with
increasing σ. The inset shows a density plot of β vs. both γ
and σ.

due to non-ergodicity for both annealed and quenched
disorder, see Fig. (1). Our model is formulated as a walk
continuous in both time and space, similar to the Lévy
walk.

In a complementary experimental work, we used sin-
gle particle tracking on living cells to demonstrate that
the motion of the transmembrane receptors DC-SIGN re-
veals nonergodic subdiffusion on living cell membranes,
see Fig. (2). In contrast to previous studies, this behav-
ior resulted incompatible with transient immobilization,
and therefore it can not be interpreted according to con-
tinuous time random walk theory. We show instead that
receptors undergo changes of diffusivity, consistent with
the current view of the cell membrane as a highly dy-
namic and diverse environment. Simulations based on
the above mentioned theoretical model of ordinary ran-
dom walk in an inhomogeneous medium quantitatively
reproduce all our observations, pointing towards diffu-
sion heterogeneity as the cause of DC-SIGN anomalous
behavior. By studying different receptor mutants, we
further correlated receptor motion to its molecular struc-
ture, thus establishing a strong link between nonergod-
icity and biological function. Our results highlight the
fundamental role of disorder in cell membranes, and its
connection with function regulation.
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FIG. 2. DC-SIGN diffusion shows weak ergodicity
breaking and aging. (A) A quantum-dot-labeled wtDC-
SIGN molecule diffusing on the cell membrane. (B) The
time-averaged MSD for individual trajectories scales linearly
in time, compatibly with pure Brownian motion. (C) The
ensemble-averaged MSD shows marked subdiffusion. (D)
The time-ensemble-averaged diffusion coefficient shows non-
stationarity (aging) of the process as a function of the total
observation time T.

III. QUANTUM BROWNIAN MOTION

Quantum Brownian motion, although studied since
half a century, has not yet found convincing experimen-
tal realizations and observations. Recent experiments on
trapped ultracold atomic gases provide unprecedented
precision and control that allow us to hope to observe
effects of quantum Brownian motion in a very near fu-
ture. But the presence of the external trapping potential
introduces a novel complexity level into the well stud-
ied problem. In a recently published work, we revise
the standard theory of quantum Brownian motion and
consider in detail the case when a quantum Brownian

particle is moving in a spatially inhomogeneous environ-
ment, such as the one provided by a trap3. This leads
to spatially dependent diffusivity and, consequently, to
spatially dependent decoherence and damping rates. As
a result of these intrinsically nonlinear relations novel
quantum effects occur: the interaction of the quantum
Brownian particle with such environment might induce
effective cooling of its state, and even squeezing of the
fluctuations of its motion, see Fig. (3).

FIG. 3. Shape of the stationary distributions. Aspect
ratio of the impurity wavefunction, ln(δ2x/δ

2
p), for the case

of a quadratic coupling with the environment, as a function
of spectral density cut-off Λ and temperature T ; left (right):
weak (strong) damping. The impurity shows “cooling” (i.e.,
δ2x < δ2p) below the black dashed line, and “quantum squeez-
ing” (i.e., δ2x < 1) below the magenta dotted-dashed line.
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I. INTRODUCTION

Chromatin remodeling motors translocate nucleosome,
with which they are associated, on DNA1. A class of
these motors translocate nucleosomes in the direction ei-
ther the chain length of the DNA is longer or shorter.
In order to accomplish such a translocation, these mo-
tors need to detect the length of the DNA strands to the
neighboring nucleosomes.

One such mechanism could be to use a molecular scale.
That appears to be the case for the yeast ISW1a chro-
matin remodeler2. This remodeler places itself between
two nucleosomes. Another mechanism must be at work
for the human ACF complex because its dimer is closely
associated with a single nucleosome3. It has been shown
that this motor can detect the length of DNA and moves
the nucleotide to the center, using a system in which
a single nucleosome is associated with a single DNA
molecule3. What is the biophysical basis for such a sen-
sitivity?

The simplest possible mechanism would be that the
motor makes contact with the end of the DNA strand.
However, that is unlikely because the persistence length
of DNA is about 50 to 60 nm, much larger than the di-
mension of the motor. Thus, it must detect the differ-
ences in the local property of DNA, which depends of
the chain length. We hypothesize that local fluctuation
of DNA near the motor provides information on the DNA
chain attached.

These motors are large dimers, covering the surface
of histone octamers. These subunits may interact each
other rather than fighting each other in such a way that
they do not waste energy. Here we focus only on the way
how these molecules can detect the length of DNA and
do not address how two subunits need to interact each
other.

II. CHAIN FLUCTUATION

The binding of DNA to a nucleosome is not static but
undergoes thermal fluctuation4. Given the stiffness of
DNA chain, this mode of motion corresponds to a pivot-
ing motion of the DNA chain if the chain length is less
than the persistence length of about 50 nm. To describe
such a motion in a simple manner, it would be useful to
assume a quadratic potential well with respect to the rel-
ative orientation of the chain formed by a holding spring
with relatively shallow local minima at two positions off

U

B

FIG. 1. Pivoting motion of DNA chain on a nucleosome

center.

If these local minima are shallower than the thermal
energy, pivoting motion of the polymer is described by
the stiffness of the holding spring, which in turn deter-
mines the transition rates between two states, one of
which is “bound” and “unbound.” These states are as-
sociated with wrapping and unwrapping of DNA on a
nucleosome. If one of these states is a starting point of
an ATP-dependent sliding motion between the DNA and
nucleosome, movement of the nucleosome on the DNA is
realized. The dependence on the chain length is intro-
duced through the drag on the chain during transitions
between “bound” and “unbound” states, which require
movement of the chain assuming that the nucleosome
is stationary. The angular fluctuation amplitude shows
little length dependence. If the rotational drag of the
nucleosome is smaller than that of the DNA, those tran-
sitions take place mainly by a rotation of the nucleosome,
insensitive to the chain length of DNA.

Rotational diffusion coefficient Dr of short DNA chains
is well approximated by assuming short DNA chains as
a rod-like conformation5. The analytical expression is

πηL3Dr/(3kBT ) = ln(L/2r) + δ (1)

where δ ≈ −0.7 + O(2r/L). The rotational drag coeffi-
cient ζr of a DNA chain is thus,

ζr ≈
1

3
πηL3/(ln(L/2r)− 0.7), (2)

using Einstein’s relationship. The terms O(2r/L) could
be ignored if L� 2r.

For the chain length of the DNA to be important for
angle fluctuation at the supporting point, the rotational
motion of the nucleosome must be less than chain fluc-
tuation of the DNA, namely the rotational drag of the
nucleosome must be larger than that of DNA chain. We
can show that this factor imposes a detection limit.
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III. THE MODEL

We have already discussed two states, “unbound” and
“bound.” For describing a motor, we need to provide an-
other state that describes motile activity. The proposed
model consists of the following assumptions.

1. The binding site of the motor has three states,
bound (B), unbound (U), and advanced (A).

2. Transitions between B and U depends on the con-
tact of DNA to the site and thus depends on the
movement of DNA.

3. Transitions from U to A and from A to B involves
ATP binding and hydrolysis. For this reason these
transitions are unidirectional.

4. Transition from U to A produces unidirectional
movement of DNA relative to the nucleosome.

The transitions between these three states are repre-
sented schematically:

Bound
γ
�
γ
Unbound

ν ↑ ↓ µ
Advanced

The transition rates between U and B are γ and in both
directions because this reflects fluctuation of the DNA.
The rate γ is a decreasing function of the chain length
L. The differential equations that govern the transitions
between these states are,

dB

dt
= −γB + γU + νA, (3)

dU

dt
= γB − (µ+ γ)U, (4)

dA

dt
= µU − νA, (5)

where µ and ν are transitions, in which ATP binding and
its hydrolysis are involved. The rotation rate of the motor
is proportional to νA for normalized A, i.e. B+U+A = 1.

The eigenvalues are 0 and 1/2 − (2γ − µ − ν) ±√
4γ2 + (µ− ν)2 − 4γν. The eigenvalues other than 0

correspond to transient modes. The eigenvector for

eigenvalue 0 is then given by (γ+µ, γ, γµ/ν). After nor-
malization of this vector, we obtain for the rotation rate
of the motor,

νA =
γµ√

γ2 + (γ + µ)2 + (γµ/ν)2
. (6)

The last term of the denominator diminishes for large
ν. If u is the unit distance the motor travels per cycle,
the speed of the motor, which is expressed as νAu, is
an increasing function of γ expect for large values of ν,
where it behaves as a constant.

If we assume γ ∼ L−2, the advance of the motor has
the dependence of the chain length as shown in Fig. (2).
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FIG. 2. The advance νA of the motor plotted against the
chain length L for µ = 1 and ν → ∞.

IV. DISCUSSION

The present model predicts that the speed of the motor
is an increasing function of the frequency, at which DNA
chain “breathes” near the nucleosome. Since shorter
polymer chain oscillates at a higher frequency than longer
ones, a shorter chain produces a greater speed of uncoil-
ing. In other words, the direction is away from the short
end, consistent with the experimental observation.

The saturating behavior to chain length is obvious
from Fig. 2. In addition, for long chains, the rotational
drag of nucleosome becomes comparable to that of the
DNA chain, reducing the dependence on the chain length.

The motor is unable to function if the DNA is too
short. This could be explained by the reduced slope at
small L. Since the motor is a dimer and works in a
pair, the difference in the preference is small for short
chains. This may lead to the insensitivity of the motor for
detecting the difference in length of short DNA chains, in
addition to the detection limit imposed by the rotational
diffusion of the nucleosome.
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I. INTRODUCTION 

In the last decades new experimental techniques have allowed 

the study of single molecule processes1,2,3. This allows in 

particular to explore in real time the operation of molecular 

motors. Molecular motors are proteins that are able to do work, 

and they operate to perform different task in the cell, which range 

from DNA replication to transport of compounds inside the cell, 

or even transport of the whole cell. 

Stochastic processes are very present in single molecule 

experiments with molecular motors. Molecular motors have 

stochastic dynamics, with binding energies, typically, of the order 

of the energy of thermal fluctuations,    , or only an order of 

magnitude greater. In addition, thermal fluctuations also affect the 

measurement adding unwanted thermal noise, which partially 

mask the signal of the system dynamics. 

In addition, single molecule experiments allow only to monitor 

one or a few distances of the system, and from the limited 

information contained in these distances and their time evolution 

one has to infer which the system dynamics was, determining the 

correct model and its parameter values. We will review all these 

questions with examples from our recent works in this field. 

II. DETERMINATION OF DNA 

REPLICATION SPEED MASKED 

BY PAUSES 

A mutated DNA polymerase (a molecular motor that replicates 

DNA) was observed to have a lower replication speed than its 

wild type counterpart (the one present in nature).  

Our study of experimental polymerase trajectories for different 

forces applied to separate the two strands of DNA showed that the 

mutation induced additional pauses in the replication4,5, see Fig. 

(1). The lower speed was due to the transition of the polymerase 

to a long pause state, while during the polymerization state the 

speed was the same. The force dependency of the entry and exit 

rates to this pause state, which we determined, were compatible 

with a transition to the long pause state induced by the interaction 

of the polymerase with the DNA fork, where the two strands of 

DNA merge. 

This example shows how the detailed analysis of the single 

molecule trajectories can help to determine the mechanism 

underlying some effect, as in this case was the speed reduction. 

 
FIG. 1. Top diagram shows experimental configuration, in this 

configuration the force aids the separation of the two strands of 

DNA. At the left, previous to polymerase addition; at the center, 

on the strand displacement (s.d.) phase where the polymerase both 

unwinds the double strand of DNA and replicates one of the 

strands; and at the right, during the primer extension (p.e.) phase 

where the polymerase only replicates the remaining single strand 

of DNA. Bottom plot shows typical trajectories for the wild type 

and strand displacement deficient (ssd) mutant during both the s.d. 

and the p.e phases of the dynamics. Sdd mutant trajectories clearly 

show the appearance of long pauses during the s.d. phase. 

III. DETERMINATION OF STEPPING 

PROCESS IN THE DNA 

REPLICATION CYCLE 

We have studied the experimental trajectories of a DNA 

polymerase in the presence of aiding and opposing forces and for 

different abundances in the solution of the nucleotides needed for 

the replication6, see Fig. (2). Our analysis shows that experimental 

results are incompatible with any of the two chemical steps that 

can lead to power stroke mechanisms leading the stepping 

process, while they are compatible with a Brownian ratchet 

mechanism for the polymerase advance.  
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FIG. 2. Top diagram shows experimental configuration, in this 

configuration the force acts directly on the polymerase aiding or 

opposing the displacement associated with replication. Bottom 

plot shows replication velocity as a function of nucleotide 

concentration in the solution, for forces of 20, 5, -5, -10, -15 and -

20 pN (from top to bottom curve, positive forces are aiding 

forces). 

IV. OPEN PROBLEMS 

We also want to point examples of open problems that are 

expected to be solved through appropriate analysis of 

experimental trajectories combined with an appropriate 

experimental design: 

 Determination of the step size when it is below the 

experimental resolution. We have a proposal to solve this 

problem which is expected to work for certain 

polymerases. 

 Determination of possible transitions between fast and 

slow pause states, for the ssd mutant studied or for other 

molecular motors with two pause states.  

 Detailed determination of whether stepping distributed 

among several of the processes in the chemical cycle can 

be excluded and in which cases, for the DNA polymerase 

studied or for other molecular motors. 

The two last points share in common that they imply the 

introduction of additional parameters in the model making more 

difficult to determine their values, and giving rise to degeneracies, 

i.e., several sets of values or even a region of the parameter space 

lead to good fits to the experimental data. Application of statistical 

inference methods can help to extract further information from the 

physical trajectories, and to combine the information of different 

experiments in a rigorous way. This combination of different 

experiments has already been done successfully in other fields of 

Science, as Cosmology, to successfully determine the values of 

models with a large number of parameters7.   

V. CONCLUSIONS 

Single molecule experiments provide very detailed information 

of one or several of the distances involved in the system 

dynamics. From this partial information a lot of knowledge can be 

extracted mainly because it contains the temporal evolution of the 

distance which reflects transition processes. 

Close and strong collaboration with biochemists and biologist is 

recommended to be able to do relevant contributions, structural 

details and bulk experiments give additional constraints to models, 

complementing the information from single molecule 

experiments. (Bulk experiments are traditional experiments 

performed in the test tube involving a macroscopic number of the 

molecules under study, in this case molecular motors.) 

Molecular motors have a rich stochastic dynamics and its 

understanding challenge statistical physicist and stochastic 

dynamics mathematicians. Biochemists provide their ability to 

completely inhibit certain processes or to block them with a 

certain probability, providing experimental data with more 

information in particular aspects of the involved dynamics. This 

provides abundant data to challenge our modelling ability and our 

statistical physics understanding.   

We expect with this talk to attire more interest from the 

stochastic dynamics community to this area, where relevant and 

challenging problems are waiting for solutions, and will have a 

fast and strong impact in the development of Science.  
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Fluctuation theorems allow to relate the work per-
formed along non-equilibrium processes to thermody-
namic free-energy differences. In the past years, fluc-
tuation theorems have been used to obtain the free-
energy of formation of DNA and RNA structures from
force-spectroscopy measurements1. More recently, an ex-
tended version of the Crooks fluctuation relation has been
used to recover free-energies of intermediate and mis-
folded structures2,3. However, so far this method has
only been applied to unimolecular reactions. In this
work, we have developed a novel methodology based on
fluctuation relations to determine the free energy of bind-
ing of peptides and proteins to nucleic acids, so essential
in many regulatory processes and drug targeting. We
performed pulling experiments of DNA hairpins contain-
ing a binding site for a given DNA binding ligand (Fig-
ure 1) and measured the irreversible work done in the
experiments. We then used a new fluctuation theorem to
extract the affinity of binding of the ligands (i.e. single
DNA peptides, DNA restriction enzymes, and an RNA
binding protein), finding a new method to extract chem-
ical potentials. Using this fluctuation relation we have
also measured the binding energy of low solubility com-
pounds difficult to characterize with bulk techniques and
that find application as anticancer agents4. Finally, this
methodology should also be useful to determine the bind-

ing affinities of protein-protein interactions, so essential
in multiprotein assembly.

FIG. 1. Detection of binding events one-at-a-time (a) Pulling
curves of a DNA hairpin in the absence of binding enzyme.
Hairpin unfolding (green) and refolding (purple) is reversible
and happens at a force range 13-14 pN. (b) Pulling curves of
a DNA hairpin in the presence of an enzyme that binds at the
hairpin stem. In the presence of protein the unfolding of the
hairpin happens at a much higher force range of 21-26 pN due
to the stabilizing effect of protein binding. When the force is
released, the hairpin refolds at the typical hairpin coexistence
force of 13 pN.
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Abstract 

Fluctuation phenomena in biological systems are 
mainly related to diffusion phenomena inside living 
cells. Brownian diffusion of freely moving 
biomolecules is usually considered to drive the 
dynamics of the molecular machinery maintaining 
cellular functions and thus life. However, the high 
efficiency and rapidity of the encounters between 
cognate partners of biochemical reactions  inside 
living cells calls for a more convincing explanation 
with respect to purely thermal-fluctuations-driven 
random walk. In fact, it has been surmised that a 
suitable interplay between Brownian diffusion and 
selective electrodynamic interactions acting at a long 
distance (up to thousands Angstroms) could make the 
job of significantly accelerating the encounter times of 
interacting biomolecules in living matter [1]. 

The present contribution consists of a report on 
ongoing experimental proof of concept of the 
possibility of activating the mentioned electrodynamic 
interactions between biomolecules, and that the 
excitation level can be sufficient to compete with 
Brownian diffusion. The ongoing experiments are 
performed in vitro by studying how diffusion is 
affected by the alleged activation of    electrodynamic 

interactions. Diffusion is detected by means of 
Fluorescence Correlation Spectroscopy. 

This kind of experiments are crucially 
complemented by TeraHertz spectroscopic studies of 
the activation of collective oscillations of the 
biomolecules used in the Fluorescence Correlation 
Spectroscopy experiments; these collective molecular 
oscillations are accompanied by large dipole moment 
vibrations entailing the activation of electrodynamic 
long-range interactions [2]. 
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I. INTRODUCTION 

Electrochemical noise (EN) analysis, defined as the evaluation 

of the spontaneous fluctuations of current generated by 

electrochemical processes1, has been used over the years to study 

kinetic effects in biological systems like neuronal networks2 or 

biomembranes3. In particular, EN has been successfully employed 

in protein ion channels to investigate the transport mechanisms 

that control the channel function2,4,5. In this work we use EN to 

assess the different transport mechanisms occurring in the 

bacterial porin OmpF, a wide and weakly selective channel in the 

outer membrane of E. coli.  

Noise analysis has been previously used in OmpF to investigate 

the pH titration of the channel residues4. It was shown that the 

power spectral density could be represented by a sum of 

Lorentzians plus the background spectrum, demonstrating that the 

conductance dynamics follow a two−state Markov process. 

Although the use of simple Markov models provides in principle 

all the kinetic constants and the number of independent residues 

participating in the process6,7, the study in this case was seriously 

complicated by the pH dependence of the current steps between 

substates, which should be constant to allow this kind of analysis. 

Here we follow a complementary approach based on the noise 

studies of Hoogerheide et al. in synthetic nanopores8. We pay 

attention to the appearance of an additional white noise in the low 

frequency range, as shown in Fig. (1). The level of this constant 

region changes with the applied voltage bias so that higher 

potentials yield higher values of the white noise. The current 

fluctuations SI obtained from the framed region of the PSD in Fig. 

(1) (right) can be related to the conductance fluctuations, SG, by SI 

= (SG/G2)·I2. The parabolic coefficient SG/G2 contains relevant 

physicochemical information of the intrinsic system fluctuations. 

In particular, it has been related to the number of particles that 

fluctuates at the pore walls8. 

 

 
FIG. 1. Right: Power spectral density (PSD) calculated from 

single-channel current recordings at 2 M KCl electrolyte solution 

and different voltages. Left: parabolic dependence of the averaged 

PSD with current (open squares) obtained from the low frequency 

region (0 - 20 Hz band) framed in the right. The parabolic 

coefficient SG/G2 is obtained from a parabolic fit (solid line). 

Consequently, we performed a parabolic fit of the averaged low 

frequency noise    plotted versus the current   (Fig. (1), left) to 

obtain the parabolic coefficient SG/G2 from each EN analysis. We 

performed this analysis with different electrolytes and studied how 

these fluctuations, altogether with the measured conductance, 

depend on ionic concentration to disclose the different transport 

mechanisms occurring in the OmpF channel.  

II. MATERIAL AND METHODS 

We analyze the current fluctuations from single-channel 

measurements performed using the V-clamp technique. The 

detailed experimental protocol can be found elsewhere4. The lipid 

membrane was created with 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC) lipid. The electrolyte (monovalent or 

divalent) solution was kept at pH 6.  The bacterial porin OmpF 

was kindly provided by Dr. S. M. Bezrukov (NIH, Bethesda, 

USA). Single-channel current recordings were obtained using an 

Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA) 

with an in-line low-pass Bessel filter at 10 kHz. Data were 

digitalized with a sampling frequency of 50 kHz using a Digidata 

1440 (Molecular Devices, Sunnyvale, CA). The chamber was 

isolated from external noise sources with a double metal screen 

(Amuneal Manufacturing Corp., Philadelphia, PA). 

III. RESULTS AND DISCUSSION 

Fig. (2) displays the results obtained for both the (normalized) 

conductance (a) and the parabolic coefficient (b) as a function of 

ion activity, for the different electrolytes used. The use of 

electrolyte activity instead of concentration is necessary to 

separate the role of the channel from the intrinsic properties of the 

electrolyte that become important for salts of divalent cations at 

high molarity9. Fig. (2a) demonstrates that the channel 

conductance measured in salts of monovalent and divalent cations 

displays common trends. This is consistent with the lack of 

specificity of the OmpF channel reported in previous studies4. In 

all electrolytes under study the conductance scales as G ~ a3/4 for 

low activities. In the high activity regime we find saturation or 

even a slightly decrease in conductance that scales as G ~ a-1/4. In 

the case of KCl this late regime is not attained because of the 

solubility limit. To rationalize these results, we used a simple 

theoretical model that accounts for: i) The effect of the charged 

residues of the pore walls -that induces the accumulation of 

counterions and the exclusion of coions to preserve local 

electroneutrality-, through the Donnan formalism. ii) The 

experimental dependence of diffusion coefficients on ion activity, 

which shows different variants distinctive of each electrolyte 9. iii) 

The variation in the concentration of mobile ions inside the 

channel due to adsorption processes, using the Langmuir 

adsorption isotherm10. 
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FIG. 2 a) Normalized OmpF channel conductance versus 

electrolyte activity for different salts. The dashed lines show the 

qualitative trends observed. The solid lines are calculated applying 

a theoretical model as described in the main text. b) Dependence 

of the parabolic coefficient SG/G2 on electrolyte activity, for 

different salts. The dashed lines show the two regimes observed. 

The solid lines are drawn to guide the eye.  

 

The existence of adsorption processes in OmpF has been 

suggested by a number of different approaches that pointed to the 

existence of a binding site for cations located around the central 

constriction of the OmpF channel11. In spite of all this 

information, the functional role of that binding site remained 

unclear since no blocking events have been observed and the 

channel displays Ohmic conduction in all conditions studied.  

The theoretical model developed has only two free parameters: 

the channel fixed charge concentration, X, and the binding 

constant Kd of the binding model. Despite the simplicity of this 

approach, the model reproduces the two trends observed in the 

experiments, as reported in Fig. (2a) (solid lines). The parameters 

used for the calculation, X ~ 50−100 mM and Kd ~ 70 M, are of 

the order of magnitude expected. In any case, the qualitative 

message is clear: the fixed charge of the pore exerts a control of 

the ion transport and this control is enough to explain the behavior 

of conductance at the low activity regime, regardless the type of 

ions present in the system. In addition, the existence of a binding 

site for cations, altogether with the solution effects, explains the 

trend at high activities.  

The information obtained from the parabolic coefficient, shown 

in Fig. (2b), can be understood using the same theoretical 

approach. For all electrolytes under study, the parabolic 

coefficient exhibits two different regimes, SG/G2 ~ a-3/2 at low 

activities and SG/G2 ~ a3/2 at high activities. Interestingly, the 

inflection point is observed around     M, similarly to the onset 

of conductance saturation in Fig. (2a). From SG/G2 we calculated 

the number of particles that contribute to the conductance noise, 

  , yielding SG ~ a0 at the low activity regime. This means that the 

number of fluctuating particles remains constant when increasing 

the activity. Having in mind that only for surface-bound 

fluctuations does the parabolic coefficient SG/G2 scale as a-3/2 8, 

the fluctuating particles could be just the counterions screening 

the channel charges located in the pore surface as explained by 

Donnan equilibrium. This result is consistent with a transport 

regime in which the electroneutrality requirements arising from 

the channel fixed charge dictate the channel conductance. In the 

case of high activities, SG ~ a1. This result can be understood 

invoking again the binding processes that dominate the channel 

conductance in the high activity regime as shown in the analysis 

of Fig. (2a). We can assume that the fraction of occupied sites is 

directly related to the quantity of fluctuating particles that 

contributes to the noise. Using the Langmuir adsorption 

isotherm10 to account for that binding, the fraction of occupied 

sites varies linearly with solution activity when the activity of 

cations is lower than the effective dissociation constant Kd. 

Accordingly, the conductance fluctuations are expected to follow 

SG ~ a1, which is what we actually observe in Fig. (2b). This 

explanation is consistent with the high Kd values obtained.  

Therefore, by means of a particular EN analysis technique 

combined with conductance experiments we have demonstrated 

the existence of two main ion transport regimes in the OmpF 

channel, both for salts of monovalent and divalent cations.  

IV. CONCLUSIONS 

The analysis of EN provides direct functional evidence of the 

transport mechanisms occurring in the protein channel OmpF 

showing features that may appear undetected in the current traces. 

This is especially evident at high salt concentration. In contrast to 

conductance experiments, EN analysis show a well-defined 

common trend clearly visible in all electrolytes under study. The 

adsorption processes related to the binding site for cations that are 

hardly visible in conductance experiments can be detected and 

elucidated using EN analysis. 
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I. INTRODUCTION

Although the passage of ions through ion channels1

in the bilipid membranes of biological cells clearly in-
volves thermally-driven Brownian diffusion in an elec-
trostatic field, there remain many unsolved problems of
long standing. The central conundrum is that a channel’s
powerful selectivity – whereby it may allow a particular
ion species to pass while barring others by a factor of up
to 1000:1 – is combined with a speed of passage compara-
ble to the rate of free diffusion, i.e. as though the channel
were just an open hole.

Other unsolved problems include: (i) the role played
by the fixed charge Qf known to exist inside the channel
at its selectivity filter; (ii) why mutations that change
Qf can alter the selectivity (e.g. convert a Na+ to a
Ca2+ channel) or eliminate conduction altogether; (iii)
the anomalous mole fraction effect (AMFE), whereby
Na+ ions can pass easily through a Ca2+ channel in a
pure NaCl electrolyte, but are blocked by tiny traces of
Ca2+ in the bath. Brownian dynamics simulations of
a very simple model of the permeation process reveal2

that the current and selectivity exhibit the unexpected
pattern of conduction bands and stop bands as a function
of Qf shown in Fig. 1(a).

We now propose that the conduction bands and, quite
generally, the permeation and selectivity of biological ion
channels may be governed by ionic Coulomb blockade3,
an electrostatic phenomenon closely analogous to its elec-
tronic counterpart in quantum dots4,5, but with stochas-
tic dynamics rather than quantum tunnelling as the un-
derlying mechanism, and we show that several hitherto
unsolved problems of ion channel conduction can appar-
ently be explained on this basis. We will refer to Ca2+

ion channels, but the underlying ideas can have wider
applicability.

II. MODEL TO BE ANALYSED

We analyse the properties of a self-consistent electro-
static model2 of the selectivity filter of a generic calcium
channel considered as a negatively-charged, axisymmet-
ric, water-filled, cylindrical pore through a protein hub in
the cellular membrane. The pore is taken to be of radius
R = 0.3 nm, length L = 1.6 nm, and the x-axis coincides
with the channel axis, with x = 0 at the center of the
channel. A centrally-placed ring of fixed negative charge
0 ≤ |Qf | ≤ 7e is embedded in the wall at RQ = R. A
potential difference of 0 − 75 mV is applied between the
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FIG. 1. Brownian dynamics simulations of multi-ion Ca2+

conduction and occupancy in the Ca2+/Na+ channel model
vs. the effective fixed charge Qf ; (a),(b) are reworked from2.
(a) Plots of the Ca2+ current JCa for pure Ca2+ baths of
concentration 20, 40 and 80mM. (b) The occupancy PCa. (c)
Plots of electrostatic energy Un (blue, dashed) and resulting
oscillations of ground state energy (red, solid) vs. Qf for
channels with n = 0, 1, 2.. Ca2+ ions inside. The conduction
bands M0, M1, M2 stop bands Z1, Z2, Z3 (indicated by labels)
are discussed in the text.

left and right channel boundaries to represent the mem-
brane potential. The mobile Ca2+ ions are described as
charged spheres of radius Ri ≈ 0.1nm , with a diffusion
coefficient6 of DCa = 0.79 × 10−9 m2/s. We assume an
asymmetrical ionic concentration: CL > 0 on the left,
and CR = 0 on the right and take both the water and
the protein to be homogeneous continua describable by
relative permittivities εw = 80 and εp = 2, respectively,
together with an implicit model of ion hydration the va-
lidity of which is discussed elsewhere. The Brownian dy-
namics simulations (Fig. 1) involved the self-consistent
numerical solution of Poisson’s equation for this model,
coupled with a Langevin equation for the moving ions.

III. IONIC COULOMB BLOCKADE

The alternating conduction and stop bands as Qf is
increased (Fig. 1(a)) can be considered as oscillations.
We propose that both they and the occupancy steps
(Fig. 1(b)) are attributable to ionic Coulomb blockade3,
an electrostatic phenomenon closely similar to electronic
Coulomb blockade in quantum dots5.

The discreteness of the charge allows us to introduce
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exclusive “eigenstates” {n} of the channel for fixed inte-
ger numbers of ions inside its selectivity filter, with total
electrostatic energy Un. The transition {n} → {n + 1}
corresponds to entry of a new ion, whereas {n} → {n−1}
corresponds to escape of a trapped ion. The n eigenstates
form a discrete exclusive set of {n}-states:

n = {0, 1, 2, ...}
∑
n

θn = 1; Pc =
∑
n

nθn, (1)

where θn is the occupancy of the state {n} and Pc is the
average selectivity filter occupancy. In equilibrium an
electrostatic exclusion principle (1) leads to Fermi-Dirac
statistics for θn (and Pc):

θn =

(
1 + exp

(
Un − µ
kBT

))−1

, (2)

where µ is the chemical potential. The total energy Un

for a channel in state {n} is Un = Un,s + Un,a + Un,int,
where Un,s is the self-energy, Un,a is the energy of attrac-
tion, and Un,int is the ions’ mutual interaction energy.
We approximate Un as the dielectric self-energy Un,s of
the excess charge Qn, assuming that both the ions and
Qf are within the central part of the selectivity filter,
leading to a quadratic dependence of Un on Qf ,

Un =
Q2

n

2Cs
(Electrostatic energy ) (3)

Here, Cs is the geometry-dependent channel self-
capacitance and Qn = zen+Qf is the excess charge.

With (3) we arrive at the electronic Coulomb blockade
equation and our further consideration follows standard
Coulomb blockade theory4. Remarkably, however, the
ionic version of phenomenon exhibits valence selectivity.

Strong Coulomb blockade oscillations appear in low-
capacitance systems on account of quantization of the
quadratic energy in (3) on a grid of discrete states (1),
provided that the ground state {nG} is separated from
its neighbouring {nG±1} states by large Coulomb energy

gaps ∆U = z2e2/(2Cs)� kBT . This is the applicability
condition for the strong electrostatic exclusion principle.

Fig. 1(c) shows the ground state energy UG(Qf ) =
minn(Un(Qf , n)), as functions of Qf . It follows from (3)
that Un vs. Qf for given z is described by an equidis-
tant set of identical parabolæ of period equal to the ionic
charge ze, providing oscillations in UG. We note that
UG(Qf ) exhibits two different kinds of ground state sin-
gular points, marked as Mn and Zn. The positions of
these singular Qf points can be written as:

Zn = −zen (Coulomb blockade) (4)

Mn = −ze(n+ 1/2) (Resonant conduction) (5)

We propose that the stop bands in Fig. 1(a) correspond
to neutralisation points Zn where the total charge at the
selectivity filter Qn = 0, while the conduction bands cor-
respond to crossover points Mn allowing barrier-less con-
duction between different n-states. The occupancy plots
in Fig. 1(b) can therefore be interpreted as a Coulomb
staircase.

IV. CONCLUSIONS

Our identifications of the Brownian dynamics-
simulated conduction bands (Fig. 1(a)) that appear
with increasing |Qf | as Coulomb blockade conductance
oscillations4, and of the corresponding occupancy steps
(Fig. 1(b)) as a Coulomb staircase5, represent a fresh
vision of conduction in biological ion channels. It offers
immediate explanations of the fast conduction and muta-
tion shifts and, because the pattern is valence-dependent,
it can also account for valence selectivity and AMFE.

We point out that the Coulomb blockade model should
also be applicable to other ion channels as well as to
artificial nanopores.
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I. ABSTRACT 

Self-diffusion of colloidal particles arises due to continuous 

transfer of momentum by the solvent molecules, and it is 

characterized by a mean square displacement (MSD) proportional 

to time.1 In complex environments, like in crowded suspensions of 

hard spheres, granular materials, viscoelastic media, and in many 

biological systems, diffusion is often anticipated by subdiffusion, 

where the exponent of the power law in the MSD is less than one. 

Subdiffusion is usually attributed to trapping or obstruction, and 

understanding its origin is crucial in both fundamental and applied 

research.  

When dealing with individual colloids in simple fluids, the 

absence of interacting neighbors excludes subdiffusion a priori, 

which, however, can be observed by placing traps or obstacles 

along the particle path via chemical modification or physical 

actuation. In the first case, for instance, one can functionalize the 

particle surface and a nearby substrate with complementary 

strands of DNA making them ‘‘sticky’’ at a temperature close to 

the melting of the DNA.2 On the other hand, there are many ways 

to manipulate colloidal particles via external fields that may be 

employed to confine or release the particles via remote control. In 

particular, magnetically patterned substrates have shown such 

capabilities with magnetic colloids,3 opening up the possibilities 

to induce anomalous kinetics in systems showing otherwise 

conventional diffusion. 

In this talk I will report on the (sub-)diffusive behavior of 

paramagnetic colloids moving through a flashing potential 

obtained via external modulation of the stray field of a magnetic 

bubble lattice. Depending on the applied field parameters, we 

observe different regimes of motion ranging from trapping to 

enhanced (non-thermal) diffusion. In particular, we observe robust 

subdiffusive motion, with MSD growing as √  and lasting in some 

cases, up to three orders of magnitude in time. In the subdiffusive 

regime, the particles perform an antipersistent random walk with 

an astonishing similarity to the random walk on a random walk 

(RWRW) model introduced in,4 as a nontrivial example of 

correlated RW. Our results also demonstrate that flashing 

potentials, which often have been employed to ratchet molecules 

and colloids in the presence of non-negligible thermal 

fluctuations, can be used to induce and conveniently control the 

diffusive properties of the particles.5 
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I. ABSTRACT 

The giant acceleration (GA) of diffusion is one of the modern  
diffusion theories in the field of non-equilibrium statistical 
mechanics, and was predicted by the theoretical analysis given in 
Ref. [P. Reimann et al., Phys. Rev. Lett. 2001].  In this study, we 
applied the theory of the GA of diffusion to a single-molecule 
experiment on a rotary motor protein, F1, which is a component 
of FoF1 adenosine triposphate (ATP)-synthase. The energetic 
properties of F1 were discussed on the basis of the above 
mentioned theory and the high energy barrier of the rotary 
potential was estimated to be 20kBT for the first time, with the 
condition that the adenosine diphosphates (ADPs) were tightly 
bound to the F1 catalytic sites. 

II. INTRODUCTION 

 
The diffusion phenomena of microscopic particles, heat energy, 

electrons, etc., are common mechanisms that are routinely 
observed. They occur in solids, liquids, gases, and even in super-
critical fluids, as a result of the thermal motion of the atoms and 
molecules which constitute these media. Many diffusion theories 
exist in the field of non-equilibrium statistical mechanics,  one of 
which is the giant acceleration (GA) of diffusion [1-3]. According 
to Ref. [1], when a constant force is applied to a colloidal particle 
in a periodic potential, the diffusion of the particle is greatly 
enhanced. An increase of up to 14 orders of magnitude can occur, 
compared to free thermal diffusion for a realistic experimental 
setup. The diffusion coefficient as a function of an applied force 
exhibits a resonance peak at the force value near the critical tilt 
of the potential, which becomes increasingly pronounced as the 
environmental temperature decreases or as the energy barrier 

(E) of the periodic potential rises (Fig. 1(a)(b)). Previously, giant 
enhancement of the free thermal diffusion has been observed in 
an experiment on metal nanoparticles in the force field of an 
optical vortex lattice [4].  

In this study, we present an effective application of the GA of 
diffusion to a single-molecule experiment on a rotary motor 
protein, F1-ATPase (F1), which is a component of FoF1-adenosine 
triphosphate (ATP) synthase [5].  

The minimum complex in F1 that can act as a motor is the 

33-subcomplex (Fig. 2(a)). When F1 is isolated from Fo, the -

subunit (rotor) rotates in the 33-subunit (ring), hydrolyzing ATP 

into ADP  (adenosine diphosphate) and  Pi (phosphate).  In a cell, 
F1 is forced to rotate in the reverse direction by the Fo-motor to 
synthesize ATP from ADP and Pi. In order to enhance the 
efficiency of the ATP synthesis, F1 has a mechanism, such as ADP 
inhibition, to inhibit the ATP hydrolysis caused by the 
spontaneous rotation of F1 itself [6]. In fact, we often observe 
long pauses during a single-molecule assay during which F1 falls 
into the ADP inhibition state. At this point, ADP is tightly attached 
to a catalytic site of F1 and is not released.  

 
 
 
FIG.1. Theoretical results obtained in Ref. [1] and applied to our 

F1 experiments. The dimensionless expression of the diffusion 

coefficient D(f)/kBT as a function of f/fmax for (a) a sinusoidal 
potential and for (b) a triangle potential with the energy barrier 

height E=5, 10, 15, 20, and 25 kBT (from bottom to top). fmax is 
the force at which D(f) reaches its peak. 

 
 
In our study, the application of the GA of diffusion to F1 made it 

possible to estimate the high energy barrier of the rotary 
potential for the first time, under the condition that the ADPs 
were tightly attached to the catalytic sites of F1.  We forced a rigid 
F1 to rotate by applying an external torque using a single-
molecule technique (Fig. 2(b)), and found that the diffusion 
coefficient of a probe attached to F1 (as a function of the external 
torque) shows a resonance peak. The energy barrier was 
estimated from this peak and found to be approximately 20 kBT at 

25C (where kB is the Boltzmann constant and T is the 
environmental temperature).  
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FIG. 2. (a) Because the structure of F1 has three-fold symmetry,its rotary potential has a period of 120. (b) Electro-rotation method [7]. 

A duplex of polystyrene beads (460-nm diameter), which is a dielectric, is attached to the -subunit of F1. F1 is fixed on the top glass 
surface (Ni-NTA-coated coverslip). At the center of the four electrodes, a rotating electric field with the frequency of 10 MHz is generated 

by applying sinusoidal voltages with a /2 phase shift. The phase delay between the electric field and the dielectric moment of the duplex 
generates a constant torque, Nex. 

 
 
 
 

III.   THE CONFERENCE GOAL 

In the conference, we would like to offer the opportunity to 
discuss the way to extract energetic information from noise, 
which is useful for single-molecule experiments. Because bio-
molecules work subject to thermal noise, the measurement 
method based on a noise analysis is significant for single-
molecule experiments. A development of  methods using a new 
theory on noise is surely an open problem. 
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I. INTRODUCTION

Let us elaborate on the notion of thermodynamic en-
tropy S (Clausius 1865) and its consequences within its
statistical mechanical description1. The celebrated Clau-
sius relation identifies the inverse thermodynamic tem-
perature T as the integrating factor for the second Law
in the form that dS = δQ/T , with δQ being the qua-
sistatic and reversible infinitesimal heat exchange. We
first address the most fundamental statistical equilibrium
ensemble, namely the microcanonical ensemble (MCE).
Please bear in mind that the canonical and the grand
canonical ensemble follow from this MCE. – It was J.W.
Gibbs who first put forward two notions of thermody-
namic entropy for an isolated MCE-system that I com-
monly will refer to as (i) volume entropy, i.e.

Svolume := SG = kB ln Ω(E,Z) , (1)

where kB is the Botzmann constant and the dimen-
sionless quantity Ω(E,Z) is the integrated, non-negative
valued density of states (DoS) ω(E,Z) over energies not
exceeding E. Z denotes the set of external control pa-
rameters such as the available volume, particle numbers,
magnetic field, etc.. Note that within classical statistical
mechanics Ω(E,Z) equals the properly normalized, di-
mensionless total available phase space volume up to the
energy E. In this context, Gibbs also considered a second
expression, namely the (ii) surface entropy, reading

Ssurface := SB = kB ln[εω(E, λ)] . (2)

This entropy expression is also known (incorrectly) as
the Boltzmann entropy. Here ε denotes a small energy
constant required to make the argument of the logarithm
dimensionless. The fact that the definition of SB requires
an additional energy constant ε is conceptually displeas-
ing, but bears no relevance for physical quantities that
are related to derivatives of SB .

Historically1, Boltzmann’s tombstone famously carries
the formula S = kB logW , although, following the dis-
cussion by Sommerfeld in his book [reprinted, Vorlesun-
gen über Theoretische Physik (volume V): Thermody-
namik und Statistik (Verlag Harri Deutsch, Frankfurt
am Main, 2011), pp. 181 - 183] it was Planck, and not
Boltzmann, who established this equation. As described
in many textbooks, the entropy expression SB defined in
Eq. (2) is heuristically obtained by identifying log = ln
and interpreting W = εω(E,Z) as the number of mi-
crostates accessible to a physical system at energy E.
Perhaps it is for this reason that the entropy Ssurface is
commonly termed ‘Boltzmann entropy’ nowadays.

The problem thus arises: Which entropy should we
use? The consistency with the thermodynamics of iso-
lated systems yields a unique answer: The validity for
the celebrated 0-th, 1-st and 2-nd thermodynamic Law
then uniquely singles out the microcanonical Gibbs en-
tropy SG

1. A different reasoning2 yielding this very same
finding uses the two thermodynamic pillars that for the
validity of the (i) Clausius relation as an exact differ-
ential the inverse temperature of the (ii) ideal gas law
must fix the integrating factor. A profound recent find-
ing is that any microcanonical entropy expression other
than the Gibbs volume entropy, – such as for example
the Boltzmann entropy –, can lead to thermodynamical
inconsistencies1,2.

The thermodynamic temperature is a derived quantity:
Given an entropy expression it is given by

T−1 = ∂S/∂E . (3)

J.W. Gibbs considered yet another entropy expression
SN = −kBT r[ρ ln ρ], where ρ is the corresponding ther-
mal equilibrium density function for a N-particle system.
One should stress here that Gibbs used this definition
mainly when describing systems weakly coupled to a heat
bath within the framework of the canonical ensemble.
Nowadays, SN is commonly referred to as the canonical
Gibbs entropy in classical statistical mechanics, as von
Neumann entropy in quantum statistics, or as Shannon
entropy in information theory.

The most salient results in Ref. [1] and in Ref. [2] are:

• Demanding additivity of S under factorization of
Ω(E,Z) (which in turn implies energetically de-
coupled systems that prevent an energy exchange)
uniquely selects the logarithm ln to yield the mi-
crocanonical Gibbs temperature TG, reading

kBTG(E,Z) = kB [∂SG/∂E]−1 = Ω(E,Z)/ω(E,Z). (4)

Because the DoS ω(E,Z) is non-negative, the ‘vol-
ume’ Ω(E,Z) is a monotonically increasing func-
tion of E. Thus, the Gibbs temperature necessarily
has a definite sign, being always non-negative!

• Only for the Gibbs entropy SG does the thermo-
dynamic temperature obey classical equipartition;
i.e., kBT = [∂SG/∂E]−1 = 〈ξk∂H/∂ξk〉 with ξk a
phase space degree and H the microscopic Hamilto-
nian. This feature rules out already the Boltzmann
expression SB as a consistent thermodynamic en-
tropy. The same remark applies to the thermody-
namic generalized forces pi. These must obey the
consistency relation

pi := TG

(
∂SG/∂Zi

)
E

!
= −

〈
∂H/∂Zi

〉
E
, (5)

31



UPON 2015, BARCELONA, JULY 13-17 2015

for any system of arbitrary size. This consistency
relation is violated for the Boltzmann entropy. For
a elucidative demonstration of this breakdown of
consistency for SB see the results for the magneti-
zation of a system of N >> 1 distinguishable and
non-interacting spin 1/2 systems in Ref.2

• Although SG and SB and other entropy candidates
often yield practically indistinguishable predictions
for the thermodynamic properties of normal sys-
tems (see in: R. Kubo, Statistical Mechanics: An
Advanced Course with Problems and Solutions (El-
sevier B. V., Amsterdam, 1965), Sec. 1.6 therein),
such as quasi-ideal gases with macroscopic parti-
cle numbers, they can produce substantially differ-
ent predictions for mesoscopic, finite systems and
ad hoc truncated Hamiltonians with upper energy
bounds. This being so, the microcanonical descrip-
tion is thus generally not equivalent with a canon-
ical description.

• Neither the Gibbs temperature nor the Boltzmann
temperature do predict the energy flow between
weakly coupled systems which were prepared before
coupling at initially different temperatures. The
naive formulation of the second law that heat al-
ways flows from ‘hot’ to ‘cold’ is thus in general
not valid; i.e., it does not always (for example, with
the DoS exhibiting local maxima) present a strict
formulation of the second Law of thermodynamics.

II. FINITE SYSTEMS: INEQUIVALENCE OF
ENSEMBLES AND OPEN PROBLEMS

Shortcomings that relate to the thermodynamics of
isolated small systems are illustrated when sticking to the
(Boltzmann)-surface entropy3,4. Most of all, the uncriti-
cal use of Boltzmann entropy for microcanonical systems
may formally yield negative values for the absolute tem-
peratures. This is not only physically incorrect for the
concept of an absolute temperature, but also would vio-
late thermodynamic stability if the system is brought into
(weak) contact with an omnipresent sort of environment
of radiation source or otherwise with no upper bound in
energy.

We further address canonical ensemble entropy for

quantum systems that interact strongly with an environ-
ment. Then, the canonical (!) specific heat can assume
negative values away from absolute zero temperature5.
Likewise, the thermodynamic entropy for a strongly cou-
pled system, assuming a form close to the quantum condi-
tional entropy, but not quite, can be negative away from
absolute T = 06.
One unsolved problem is the case for quantum sys-

tems with discrete spectra. Here too the volume Ω(E,Z)
is well defined as the sum over the number of energy
eigenvalues, accounting also for the degeneracy of cor-
responding eigenstates En, so that the quantum Gibbs
entropy has a well defined meaning. A small grain of
salt occurs nevertheless: All the considerations thus far
relied on the technical assumption that the integrated
density of states Ω(E,Z) is continuous and piecewise dif-
ferentiable, the latter assumed particularly so with re-
spect to energy E. As a working principle one may
use analytic continuations of the discrete level count-
ing functions Ω(En, Z) and ω(En, Z) that are, however,
defined strictly speaking only on the discrete set En of
isolated points of the spectrum1. This procedure yields
in parts astonishingly reasonable results. As tempera-
ture approaches zero, however, difficulties occur, such as
the failure of microcanonical specific heat not approach-
ing zero as T −→ 0, this despite the fact that SG does
obey the 3-rd Law at its lowest energy E = Egroundstate.
In distinct contrast, coupling the system weakly to a
heat bath yields the canonical description of these quan-
tum systems for which the canonical partition function
Y (β, Z), i.e. the Laplace transform of the DoS at the
canonical parameter β := (kBTcan)−1 (being the corre-
sponding integrating factor2) becomes well defined at all
temperatures. The corresponding canonical specific heat
values now vanish for T −→ 0. This again reflects the
non-equivalence between the two ensemble descriptions
for finite size quantum systems.
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I. INTRODUCTION

The dynamics at avoided level crossing is an intrigu-
ing topic since the early days of quantum mechanics. As
early as in 1932, Landau, Zener, Stückelberg, and Majo-
rana independently of each other derived the well-known
formula for the corresponding transition probability. To-
day in the realm of quantum dots, adiabatic transitions
motivated both theoretical and experimental investiga-
tions on the control of solid state qubits. Here we discuss
two applications for which noise plays a crucial role: In
the first one, shot noise of an electric current is used as
signal; in the second one, we analyze how quantum noise
stemming from substrate phonons influences of repeated
adiabatic passages.

II. COHERENT TRANSFER BY ADIABATIC
PASSAGE

Adiabatic passage of an electron in a triple quantum
dot from the first to the last dot without ever occupy-
ing the middle dot recently attracted much attention.
This coherent transfer by adiabatic passage (CTAP) rep-
resents an all-electronic version of stimulated Raman adi-
abatic passage. A major experimental obstacle for the
implementation of this protocol is the impossibility of di-
rectly measuring the non-occupation of the middle dot,
because the unavoidable backaction would influence the
effect that it should substantiate. It will be shown that
an indirect verification is possible by attaching electron
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FIG. 1. Upper panel: Sequence of Gauss pulsed tunnel ma-
trix elements that induce adiabatic electron transfer from the
first to the third quantum dot1. Lower panel: Resulting oc-
cupation of each quantum dot. The middle dot (dot no. 2)
exhibits only a small occupation which changes considerably
less than the occupation of dots 1 and 3.

source and drain to the triple dot. Then the protocol can
be repeated such that a steady state current flows. The
noise properties of this current hint on the proper course
of the protocol.

III. LANDAU-ZENER INTERFEROMETRY

Quantum dots with long coherence times also allow
the implementation of tunnel phenomena under the in-
fluence of AC driving. In a comprehensive picture, one
may study the average current as function of the static
level detuning and the driving amplitude. This yields
a so-called Landau-Zener-Majorana-Stückelberg (LZSM)
interference pattern similar to one found with supercon-
ducting qubits. The experimentally observed fading of
this interference pattern with increasing temperature is
explained in terms of a transport calculation for which a
Caldeira-Leggett-like coupling to bulk phonons is consid-
ered. The comparison with experimental data allows one
to determine the parameters of the system-bath model
and to draw conclusions on the coherence time of charge
qubits.
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FIG. 2. Measured LZSM pattern as a function of the
DQD detuning and the driving amplitude for two different
temperatures2. A comparison with corresponding theoretical
data allows one to determine the coherence times T2 and T ∗

2 .
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IV. ADIABATIC PASSAGE IN THE PRESENCE
OF A CHARGE MONITOR

Many recent realizations of quantum dots include a
charge monitor, i.e., a quantum point contact whose con-
ductivity is affected by the capacitive interaction with
the dot electrons. Measuring the current through the
point contact implies monitoring the dot occupation. In
the case of coherently coupled quantum dots, such mea-
surement entails backaction on delocalized quantum dot
states. It can be shown3 that if the measurement is suffi-
ciently strong to provide useful information, the inter-dot
tunneling becomes essentially classical. Since adiabatic
passages rely on quantum coherence, one must assume
that it is strongly affected by such detector backaction.
So far, only the basic measurement effects have been in-
vestigated, while the impact of the charge monitor on

a more complex quantum dynamics such as CTAP or
LZSM interference requires the development of a proper
formalism for the full setup including the monitor. This
is particularly challenging for a point contact with trans-
mission close to unity, because it must combine a for-
malism suited for quantum dots (weak dot-lead coupling,
strong interaction) with a scattering formalism which ad-
dresses the opposite limit. This would also allow testing
fluctuation theorems along the lines of Ref. 4, but beyond
the regime of intermediately strong wire-lead coupling.
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I. INTRODUCTION

Is it possible to detect two electrons at the same posi-
tion with the same energy? Initially one would answer
negatively due to the Pauli principle1. However, strictly
speaking the Pauli principle, which is just a consequence
of the exchange interaction (for the indistinguishability of
quantum particles), only forbids common positions when
electrons share exactly the same state. Therefore, if two
particles are described by slightly different states, one
cannot neglect the possibility of detecting both at the
same location.

The modeling of quantum noise in mesoscopic sys-
tems is normally studied within the (energy) scattering
(eigen)states2, where only one state is available for each
energy, precluding the detection of two particles at the
same position. However, in this conference we show that
quasi-particle wave packets do not preclude such possi-
bility. The detection of two particles with identical en-
ergies at the same position are possible with such time-
dependent states, because transmitted and reflected wave
packets are not exactly identical. These new two-particle
scattering probabilities leads to new terms in the usual
Landauer-Büttiker2 quantum noise expression.

II. TWO-PARTICLE SCATTERING

A new quantum noise formalism is developed for many-
electron systems described by quasi-particle wave pack-
ets. For simplicity, the relevant effects are discussed in
the two-particle scenario depicted in Fig. 1. The gener-
alization to a realistic many-particle system will be men-
tioned in the conclusions. We analyze two identical wave
packets that are located at each side of the barrier (at
the same distance) and with opposite momentum (i.e.
same central energy). During the interaction with the
barrier, the initial wave packets split into a transmitted
and a reflected part. At the final time, apart from the
obvious probabilities of detecting a particle at each side
of the barrier (see Fig. 1a and b), the time-dependent
numerical solution constructed from quasi-particle wave
packets shows that it is possible to find both electrons at
the same place, i.e. both at the left side or at the left
side (see Fig. 1c and d). The ultimate reason of these un-
expected probabilities is the fact that the reflected and
transmitted wave packets are not equal at the final time,
even if they have identical energy at the initial time3,4.
It is remarkable that our many-particle wave packet for-
malism provides simple physical explanations for some
relevant and still unexplained experimental results5,6.

FIG. 1. Two identically injected wave packets from the left
xa and from the right xb of a scattering barrier. Solid regions
represent the barrier region and shaded regions represent the
particle detectors. (a) and (b) each particle is detected on a
different side of the barrier at final time t1 when the interac-
tion with the barrier has almost finished. (c) and (d) both
particles are detected on the same side of the barrier.

For example, the possibility of finding both quasi-
electrons at the left side (PLL) is

PLL =

∫ 0

−∞
dx1

∫ 0

−∞
dx2 |Φ|2 = RaTb − |Ir,ta,b|2. (1)

where Φ is the antisymmetric two-particle wave func-
tion. Ra and Tb are the reflection and transmission co-
efficients of the single wave packets. The term |Ir,ta,b|2
accounts for the overlapping among the reflected wave
packet a and the transmitted wave packet b.

As mentioned above, the probabilities PLL and PRR
are different from zero and their values fluctuate between
PLL = 0 and PLL = RT . This is seen in Fig. 2, where the
usual zero probability is recovered for large spatially ex-
tended wave packets (close to time-independent scatter-
ing sates) with energies far from the resonant energy. On
the contrary, the maximum values of PLL are achieved for
not infinitely-extended wave packets with energies closer
to the resonance.

Obviously, in scenarios with more scattering probabil-
ities (the ones showed in Fig. 1c and d for both electrons
at the same place), the quantum noise is enlarged. This
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FIG. 2. Probability of detecting two electrons at the same side
of the barrier (PLL and PRR) and of detecting one electron
at each side (PLR) depending on the wave packet initial size
for three different energies.

is reflected in the following expression for quantum noise
which has a new term in our two-particle scenario (in a
many-particle scenario more terms are added):

〈S〉 = 4q2

h

∫ ∞

0

dE {T [fa(1− fa) + fb(1− fb)]

+ T (1− T )(fa − fb)
2 + 2PLLfafb}. (2)

The new term 2PLLfafb shows that the well-
established Landauer-Büttiker2 expression (obtained us-
ing scattering states) can be violated in same scenarios.
On the contrary, when wave packets are close to scatter-
ing states, then PLL = 0, and usual results are recovered.

III. CONCLUSIONS AND DISCUSSIONS

We generalize the Landauer-Büttiker noise expression
by considering many-particle states constructed from an
antisymmetric combination of quasi-particle wave pack-
ets. In the particular two-particle scenario, the results
in equation (2) recover also the usual scattering states
results when using infinitely-extended states.

A realistic scenario for quantum transport implies the
consideration of a many-particle case. Then, new more
terms appear in the quantum noise expression account-
ing for two-, three-, etc wave packets correlations. At

low temperatures, when the phase-space is full, the men-
tioned new terms added in the quantum noise expression
tends to zero (see Fig. 3) and the quantum noise is zero,
satisfying the fluctuation-dissipation theorem7,8. Never-
theless, at high temperatures, these news terms can not
be neglected and quantum noise is increased over what
is usually predicted. We emphasize that the formalism
presented in this conference provides a physical expla-
nation for surprising experimental results5,6, which are
normally attributed to spurious effects. Finally, we re-
mark that the increment of quantum noise discussed here
is very robust and it is present (even magnified) when
time-dependent potentials or (non-separable) Coulomb
interactions are considered3.
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FIG. 3. Each curve reflects the new term added in the quan-
tum noise expression for different number of involved elec-
trons. The phase space gets filled as we increase the number
of electrons and we decrease the dimensionless distance d. We
see how probabilities decrease.
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I. INTRODUCTION

Realization of devices displaying quantum behavior is
within the reach of present day experimental capabilities.
Experimental and theoretical results on superconducting
quantum devices has made them among the main can-
didates for the realization of quantum computing1. In
these devices the magnetic flux quantum associated to
the current of the superconducting circuit is usually sub-
ject to a bistable potential. Bistability is also present
in systems such s single high-spin molecule magnets2.
These molecules tunnel through the potential barrier of
the effective bistable potential given by the interaction of
the spin with the molecular field. Both single molecule
magnets and superconducting devices are subject to envi-
ronmental fluctuations. In quantum regime the dynamics
of a particle interacting with the environment can be de-
scribed by the celebrated Caldeira-Leggett model3, which
allows to analyze the dynamics of a particle coupled by a
linear interaction to a reservoir of N independent quan-
tum harmonic oscillators. The interaction with the bath
can affect the system dynamics in a significant way since,
even if the coupling with the individual oscillator is weak,
the dissipation regime may be strong. In the thermody-
namical limit N → ∞ the reservoir is called a heat bath
and its spectral density function J(ω), describing the fre-
quency dependence of the coupling to the system, is taken
to be of the form J ∝ ωs, with a high-frequency cut-off.
The special case s = 1 describes the so-called Ohmic dis-
sipation. The quantum Langevin equation for the parti-
cle’s coordinate in the Ohmic case is characterized by a
memoryless damping kernel (frequency independent fric-
tion) and in the classical limit ~→ 0 corresponds to the
case of white noise source.

Despite the circumstance that in most cases the Ohmic
dissipation gives a good description of the effects exerted
by the thermal bath, super-Ohmic environments (s > 1)
are of interest on both the theoretical and the experimen-
tal point of view. Moreover, the system dynamics can be
significantly affected by the value of the cut-off frequency
present in J ∝ ωs.

In this work we intend to answer two questions: i)
how the dynamics of a M-level quantum particle changes
when a heat bath with a super-Ohmic spectral density is
present instead of an Ohmic reservoir; ii) how varying the
cut-off frequency in the spectral density function affects
the system dynamics. The study is carried out by using

an integro-differential equation within the path integral
formalism, following the approach used in Refs.4,5.

II. THE MODEL

The model of dissipation used here is the Caldeira-
Leggett model. It allows for a microscopic derivation of
dissipation in the reduced dynamics. The system, a par-
ticle of mass M , coordinate q̂, and momentum p̂ subject
to a potential V0, is linearly coupled to the environment,
a reservoir of N independent quantum harmonic oscilla-
tors of masses mj , frequencies ωj , coordinates x̂j , and
momenta p̂j . The reservoir is also called, in the ther-
modynamical limit N → ∞, bosonic heat bath, since its
excitations obey the Bose-Einstein statistics. The full
Hamiltonian is the sum of a free system term, a free
reservoir term and a system-reservoir interaction term

Ĥ =
p̂2

2M
+ V0(q̂) +

N∑
j=1

1

2

 p̂2j
mj

+mjω
2
j

(
x̂j −

cj
mjω2

j

q̂

)2
 .

(1)
The bistable asymmetric potential V0 used in this work is
depicted in Fig. 1. In the general case of continuous bath
the spectral density function is modeled as a power of
ω, characterized by the exponent s, with an exponential
cutoff at ωc

J(ω) = Mγω1−s
ph ωse−ω/ωc . (2)

The bath is said sub-Ohmic for 0 < s < 1, Ohmic for
s = 1 and super-Ohmic for s > 1. The so-called damp-
ing constant γ is a measure, in the continuous limit, of
the system-bath coupling. The phonon frequency ωph is
introduced in such a way that γ has the dimension of a
frequency also in the non-Ohmic case (s 6= 1).

The dynamics of the reduced density matrix (RDM)
ρqq′ = 〈q|ρ|q′〉 is given by the exact formal expression

ρqq′(t) =

∫
dq0

∫
dq′0G(q, q′, t; q0, q

′
0, t0)ρq0q′0(t0), (3)

where the propagator G is a double path integral in the
left/right coordinate q/q′. The amplitudes in this sum-
over-paths are weighted by the Feynman-Vernon influ-
ence functional FFV , which accounts for the effects of
the environment.
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FIG. 1. Potential V0, energy levels considered, and position
eigenstates. The frequency ω0 is the oscillation frequency
around the minima and is of the order of the average inter-
doublet spacing: ~ω0 ∼ (E4 + E3 − E2 − E1)/2.
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FIG. 2. Population difference P (t) = PR − PL, where PL =
ρ11 + ρ22 and PR = ρ33 + ρ44 at damping strength γ = 0.1 ω0

and temperature T = 0.2 ~ω0/kB . Comparison between the
Ohmic and the super-Ohmic (s = 1.2) regime.

Here we consider the so-called double-doublet system,
where only the first 4 levels of the potential V0 are con-
sidered. The continuum of position states turns into a
discrete set of states localized around a grid of 4 posi-
tion eigenvalues q1, . . . , q4, where q̂|qj〉 = qj |qj〉. The
set {qi, |qi〉} constitutes the discrete variable representa-
tion (DVR). The system dynamics is studied through the
time evolution of the populations ρii = 〈qi|ρ|qi〉. Finally,
within a NIBA-like approximation scheme the general-
ized master equation (GME) for the populations in the

DVR reads4

ρ̇ii(t) =
4∑

j=1

∫ t

t0

dt′Kij(t− t′)ρjj(t′). (4)

Solving Eq. (4) in the intermediate tempera-
ture/damping regime, with the initial condition
ρ0 = |q1〉〈q1|, we obtain the results shown in Fig 2
(Ohmic and sub-Ohmic case with a high frequency cut-
off at ωc = 50ω0) and Fig. 3 (Ohmic regime for different
cutoff frequencies). We notice that the equilibrium con-
figuration in the super-Ohmic case is reached later with
respect to the Ohmic case, even if the time evolution of
the individual populations (not shown) displays similar
features (transient intra-well oscillations and incoherent
tunneling). Changing the cutoff frequency in the Ohmic
regime has an influence both on the relaxation dynamics
and on the stationary configuration.

A major unsolved problem in the context of the in-
fluence of quantum noise on multi-state systems is the
description of the decoherence in this intermediate dissi-
pation regime, using a fully non-Markovian approxima-
tion scheme.
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FIG. 3. Population difference P (t) = PR − PL, where
PL = ρ11 + ρ22 and PR = ρ33 + ρ44 at damping strength
γ = 0.1 ω0 and temperature T = 0.2 ~ω0/kB . Ohmic regime
with different cutoff frequencies.

ACKNOWLEDGMENTS

This work was supported by MIUR through Grant.
No. PON02 00355 3391233, ”Tecnologie per l’ENERGia
e l’Efficienza energETICa - ENERGETIC”.

1 M. H. Devoret and R. J. Schoelkopf, Science 339, 1169
(2013).

2 C. Schlegel, et al., Phys. Rev. Lett. 101, 147203 (2008).

3 A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211
(1981).

4 M. Thorwart, M. Grifoni, and P. Hänggi, Ann. Phys. 293,
15 (2001).
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I. INTRODUCTION

In recent years a great attention has been devoted to
the study of strong correlations in low dimensional sys-
tems. Among them the fractional quantum Hall effect
(FQHE) plays a major role, in which correlations can in-
duce the emergence of excitations with fractional charges
and fractional statistics.1,2 Several works focussed on the
experimental detection of these peculiar features. In par-
ticular, fractional charges can be revealed by means of
shot noise measurements in a quantum point contact
(QPC) geometry.3 Indeed, the zero frequency current-
current correlation, in the weak-backscattering regime,
is predicted to be proportional to the induced backscat-
tering current via the fractional charge associated to the
tunnelling excitation between the opposite edges of the
Hall bar. Clear experimental signatures of this fact have
been reported for the Laughlin sequence. In the case of
composite edges, such as in the Jain sequence the situ-
ation is more involved since at low energies, various ex-
citations with different fractional charges can contribute
to the transport.4,5 Moreover, zero frequency noise may
be not enough in order to extract in a univocal way the
values of the fractional charges when many of them con-
tribute, with comparable weight to QPC transport. A
possible way to overcome this limitation is to look at
the finite frequency (f.f.) properties.6–8. In particular,
for quantum Hall QPC transport, the f.f. noise is pre-
dicted to show resonances in correspondence of Joseph-
son frequencies, which are proportional to the fractional
charges.

II. PROPOSED DETECTION SCHEME

In the context of current-current correlations Lesovik
and Loosen9 introduced a model based on a resonant
LC circuit as prototypical scheme for f.f. noise measure-
ment. It has been shown that the measured quantity
for the LC detector setup can be expressed in terms of
the non-symmetrized f.f. noise which reflects the emis-
sion and adsorption contributions of the active system
under investigation, i.e. the QPC. The non-symmetrized
noise has been considered in literature for different sys-
tems as the ultimate source of information of quantum
noise properties.10–12

Here13 we consider the f.f. detector output power of
a resonant circuit coupled to a QPC in the fractional

quantum Hall regime. A schematic view of the proposed
setup is shown in Fig.(1). The measurable quantity, in

!

!

"#

FIG. 1. Schematic view of the proposed setup.

this scheme, is the variation of the energy (at frequency

ω =
√

1/LC) stored in the LC circuit before and after
the switching on of the LC-QPC coupling, i.e. the circuit
element in the dashed line of Fig.(1). We will indicate it
as measured noise Smeas. At lowest perturbative order
in the coupling K � 1 it can be expressed in terms of the
non-symmetrized noise spectrum of the QPC.9,10 Finally,
this quantity may be eventually expressed in terms of the
difference of the output LC power, at finite bias V , sub-
tracted with the same quantity measured at equilibrium,
V = 0.13

III. RESULTS

Hereafter we will discuss this detector model coupled
with a QPC kept in the fractional Hall regime in the
limit of weak back-scattering. This realistically measur-
able noise power will be analyzed, at fixed frequency
ω, as a function of QPC bias V , measured in terms
of the Josephson frequency ω0 = e∗V/~ associated to
the fundamental fractional charge e∗ of the considered
Hall state. We will assume that the temperature Tc of
the detector could be controlled and kept, eventually,
at different temperature from the QPC circuit T . We
will mainly consider the quantum limit for the detector,
~ω � kBTc, where the output power is proportional to
the non-symmetrized noise. The QPC, will be investi-
gated by scanning the bias out of equilibrium (shot noise
limit e∗V � kBT ). These limits represent the best con-
ditions to extract information about fractional multiple
quasiparticles (qps), in particular, their charge me∗ and
their scaling properties.14

First of all, we will analyze the well known case of non-
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FIG. 2. Measured noise Smeas as a function of external bias
for ν = 1 (left panel) and ν = 1/3 (right panel) (in units of
S0 = e2|t1|2/(2πα)2ωc). Bias measured as ω0/ω, with ω0 =
e∗V . Temperatures are: T = 0.1 mK (black), T = 5 mK
(blue), T = 15 mK (green) and T = 30 mK (red). Other
parameters are: Tc = 15 mK, ω = 7.9 GHz (60 mK), ωc = 660
GHz (5 K).

Multiple quasiparticle Hall spectroscopy investigated with a resonant detector 19

Ssym(!, !0) Ssym(!, !0)
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c) d)

Smeas(!, !0)/K Smeas(!, !0)/K

Figure 6. Ssym(!, !0) for a) ⌫ = 2/5 and b) ⌫ = 2/3 and Smeas(!, !0)/K for c) ⌫ = 2/5

and d) ⌫ = 2/3. All quantities are in units of S0 and as a function of !0/!. Temperatures

are: T = 0.1 mK (black), T = 5 mK (blue), T = 15 mK (green) and T = 30 mK

(red). Other parameters are: ! = 7.9 GHz (60 mK), Tc = 0.1 mK, !n = 6.6 GHz (50

mK), !c = 660 GHz (5 K) and |t2|2/|t1|2 = 1. The dashed lines correspond to the rate

contributions of the 2-agglomerate and the single-qp for T = 0.1 mK. They are calculated

separately and fitted only by changing their prefactor. The dashed-dotted line is the sum

of the two contribution and returns exactly the behaviour of Smeas.

following, without loss of generality, we will assume |t2|2/|t1|2 = 1 as the ratio between the

single-qp and 2-agglomerate tunnelling amplitudes.

Fig. 6 a) shows Ssym as a function of the bias voltage !0/!. The neutral mode cut-o↵

!n ⌧ !c has been chosen in a range compatible with previous fitting of real experimental

data.[15, 16, 28].

At extremely low temperature T = 0.1 mK it is still possible to observe two little peaks at

|!0/!| = 1/2 related to the presence of the 2-agglomerate and two dips at |!0/!| = 1 due to

the single-qp. These di↵erent behaviours are due to the di↵erent bias dependence of Ssym

around !m = e⇤Vm = !/m: Ssym / |!0�!m|4�(m)
⌫ �1 showing peaks (dips) depending on the

scaling dimension �
(m)
⌫ < 1/2 (�

(m)
⌫ > 1/2).[23, 24] Increasing the QPC temperature these

features are rapidly washed out.

FIG. 3. Measured noise Smeas as a function of ω0/ω for
ν = 2/5 (left panel) and ν = 2/3 (right panel). All quantities
are in units of S0. The temperatures are the same of Fig.2.
Other parameters are: ω = 7.9 GHz (60 mK), Tc = 0.1 mK,
ωn = 6.6 GHz (50 mK), ωc = 660 GHz (5 K). The dashed lines
correspond to the rate contributions of the 2-agglomerate and
the single-qp for T = 0.1 mK. They are calculated separately
and fitted only by changing their prefactors. The dashed-
dotted line is the sum of the two contribution and returns
exactly the behaviour of Smeas.

interacting Fermi liquid (ν = 1) and Laughlin (ν = 1/3)
to show some important and useful properties of the mea-
surement setup. Differently from what usually considered
in other theoretical papers, where the noise is shown at
finite bias as a function of the frequency, here we will dis-
cuss the opposite case in which the bias is moved at fixed
frequency. This allows us to be closer to realistic exper-

imental situations representing by far the simplest mea-
surement protocol for the system. We discuss in details
the advantages of considering this measurement scheme
in comparison to the simpler symmetrized noise.

In Fig.(2). we report the measured noise Smeas for
the cases ν = 1(left panel), 1/3(right panel) for different
temperatures. It is easy to recognise in the behaviour of
the output power directly the shape of tunnelling rates
for the dominant excitation e (electron) and single-qp
e∗ = νe (single-qp). Indeed in the Laughlin case the
line-shape return immediately information of the investi-
gated excitation, such as the scaling dimension from the
shape of the peaks centred at ω0. This information can
be accessed in this setup and it may be crucial in order
to validate the edge states theories.

The detector response will give the unique possibility
to selectively address the emission contribution of QPC
noise or its adsorptive part only by acting on the detec-
tor temperature. We also discuss the range of the detec-
tor temperatures in order to access the non-symmetrized
noise contributions. In particular it is convenient that Tc
is smaller than the considered frequency ω.

Finally, see Fig.(3), we apply the previous concepts to
the measurement of multiple qps for two values of the
Jain sequence (ν = 2/5 and ν = 2/3). In all cases we
demonstrate how this setup is able to clearly address
the different qps contributions separately and to quan-
titatively validate the hierarchical edge state models. In
such cases we could distinguish the contribution of single-
qp (e∗) or 2-agglomerate (2e∗) from the position of the
corresponding Josephson resonances. From this we can
separately address the contribution of the two excitations
fitting their tunnelling rates and identifying their funda-
mental properties, such as the scaling dimensions. From
these knowledges it is possible to validate various edge
state models which in general differ in the prediction of
these quantities. This possibility to separately address
the different excitation contribution on the base of their
different charges is unique resource of this setup and is
deeply connected to the fact that analysis is done at finite
bias (out-of-equilibrium) and at finite frequencies.

The same analysis can be repeated for other fractions,
such as ν = 5/2, with the factual possibility to identify
which edge state model apply to the observed Hall state
(Abelian, Pfaffian or anti-Pfaffian).7,8
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I. INTRODUCTION

Gravitational Waves detectors based on laser interfe-
rometry like Advanced Virgo, Advanced LIGO and KA-
GRA, are expected to be limited by mechanical thermal
noise in the frequency band where the sensitivity is the
highest. A first series of detectors, based on mechanical
resonators, have been developed in the forty years after
the pioneering work of Josef Weber in 1960. The current
generation is based on the laser interferometry used to
monitor the length changes on a Michelson interferome-
ter arms. These detectors have an optical readout able
to measure displacements of the order of 10−20 m/

√
Hz

from 10 Hz to 10 kHz. With such performance they can
be seen as gigantic amplifiers of mechanical and ther-
mal noises and actually these noises are thought to be
limiting the detection of GW in the advanced detectors.
During the 30 years of interferometric detector develop-
ments many sources of noises have been studied, some of
them have led to other questions, some other have not
completely explained or investigated yet. A view on these
standing challenges on GW detector noise will be given.

II. THE MECHANICAL NOISES

The Seismic Noise is the first of all the mechanical
noises to cure in a GW detector. It’s typical amplitude
is 10−7 m/

√
Hz at 1 Hz and falls roughly as 1/f2 up to

few tens of Hz. The seismic noise is able to shortcut the
suspension system designed to filter the Earth vibrations
before they reach the mirrors: the density fluctuations
of the soil are directly coupled to the mirrors through
the Newtonian law of gravity. The effect is irrelevant
in most of the experiments but in future GW detectors
which are designed to work at frequencies as low as 1
Hz. Following some models, this noise could be detected
even by the present generation of detectors. What is
still under discussion is how to mitigate the effect of this
noise: will the measurement of the seismic motion by
an array of accelerometers be a solution good enough
to mitigate this noise or the underground operation is
an avoidable caveat for the third generation of GW
detectors?

One of the most long standing question in the mecha-
nical noise domain is whether or not stress in structures
can trigger sudden relaxations of elastic energy that can
be seen as either burst signals or a continuous shot noise
on the GW detectors. In the GW community such noise
is called creep noise or cracking noise. Relatively high

stress that is able to trigger relaxations close enough to
the test masses (i.e. the mirrors) is present on the metal
cantilever blades used to vertically filter the seismic noise,
on the mirror suspension fibres made of silica and on the
silicate bonding layer used to attach the connecting ele-
ments between the thin fibres and the large mirrors. In
the latter the stress is not particularly high (few MPa)
but the bonding layer is thought to have plenty of relaxa-
tion centres. An overview of the investigations conducted
and ongoing around this subject will be given.

III. THE THERMAL NOISES

Thermal noise is indeed the most reach source of
”troubles”, and hence of research interest, among all
the fundamental noises in GW detectors all along the
history of their development. In the first generation of
GW detectors suspension thermal noise was the most
severe limit to the instrument sensitivity but in the last
15 years, since the technology of fused silica suspension
replaced the one based on steel wires, the focus has
moved onto the mirror coatings thermal noise: any
tiny reduction of this noise level is translated in an
equivalent increase of the maximum distance at which a
GW detection can be made.

The observable, whose fluctuations are picked up by
the interferometer output, is the phase of the laser beam
reflected by the Bragg structure of coatings deposited
on each mirror. This fact together with the uncorrelated
fluctuations of temperature and density make the study
of coating thermal noise rather complicated and at the
same time reach of phenomena.

The materials used so far are amorphous (glasses) in
both the forms of bulk and thin films. The greatest
unsolved problem in this subject is to understand the
origin of structural relaxations that represent the highest
source of thermal noise in coatings. A review of the
structural studies and modeling of glasses will be given.

In recent years people have started to develop Bragg
reflectors made of III-V semiconductors. These materi-
als have shown a considerable reduction of thermal noise
level as compared to the amorphous counterpart. A brief
description of the new type of thermal noise mechanisms
affecting these devices will be presented.
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IV. OTHER WELL KNOWN UNSOLVED
PROBLEMS

As a possible way to reduce thermal noise, a design of
a detector operated at cryogenic temperatures has been
made1. In this design the mirror suspension fibres work
with a large thermal gradient. The mirrors itself have a
thermal gradient due to the laser power dissipated in the
mirror substrates or on the coatings. These facts trig-
gered the interest on studying the thermal noise under
steady state heat flux. No theory has been made that is
able to treat systems like those and only very few peo-

ple in the GW community have done an investigation on
that. In the near future the situation might change.
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I. INTRODUCTION

Equipartition principle plays a central role in the un-
derstanding of the physics of systems in equilibrium: the
mean potential and kinetic energy of each degree of free-
dom equilibrates to kBT/2, with kB the Boltzmann con-
stant and T the temperature. This equality is linked to
the fluctuation-dissipation theorem: fluctuations of one
observable are proportional to the temperature and dissi-
pation in the response function associated to that observ-
able. In non equilibrium situations however, such rela-
tions between fluctuations and response are not granted,
and excess noise is usually expected to be observed with
respect to an equilibrium state3.

In this presentation, we show that the opposite phe-
nomenon can also be experimentally observed: a system
that fluctuates less than what would be expected from
equilibrium ! Indeed, when we measure the thermal noise
of the deflexion of a micro-cantilever subject to a strong
stationary temperature gradient (and thus heat flow),
fluctuations are much smaller that those expected from
the system mean temperature.

We first present the experimental system, an atomic
force microscope (AFM) micro-cantilever in vacuum
heated at its free extremity with a laser. We show that
this system is small enough to have discrete degrees of
freedom but large enough to be in a non-equilibrium
steady state (NESS). We then estimate its temperature
profile with the mechanical response of the system, and
observe that equipartition theorem can not be applied
for this NESS: the thermal noise of the system is roughly
unchanged while its temperature rises by several hundred
degrees ! We conclude with a widely open question of the
origin of this missing noise.

II. EXPERIMENT

Using a differential interferometer2, we measure the
thermal noise induced flexural deflexion of an AFM can-
tilever, a micro-mechanical beam clamped at one extrem-
ity and free at the other – see sketch in the inset of Fig.
(1). No external forces are applied to the 500µm long
cantilever. As illustrated in Fig. (1), the power spectrum
density (PSD) of the deflexion in vacuum is characteris-
tic of a collection of independent quasi-harmonic oscilla-
tors corresponding to the normal modes of the cantilever.
The resonance frequencies and spacial mode shapes are
well described by an Euler-Bernoulli model for an elas-
tic beam1. In equilibrium, the amplitude of the thermal

noise can be used to deduce the stiffness kn of each mode
n using equipartition:

1

2
kn〈d2

n〉 =
1

2
kBT (1)

with 〈d2
n〉 the mean square deflexion measured for that

mode (integral of the PSD around the resonance).
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FIG. 1. Power spectrum density (PSD) of thermal noise in-
duced deflection of a silicon micro-cantilever as a function of
frequency, for various incident light power I on the lever in
vacuum. The flat base line of the PSD is due to the shot
noise on the photodetectors, it decreases for larger I. All the
resonant frequencies of the cantilever decrease when I grows,
as illustrated in the 2 bottoms figures for modes 1 and 3. The
inset of the top figure illustrate the principle of the measure-
ment: the fluctuations of deflection are recorded through the
interference of two laser beams, one reflected on the cantilever
free end, the other on the chip holding the cantilever2.

To lower the contribution of the shot noise of the pho-
todetectors to the measured spectrum, we increase the
laser intensity. The sought noise reduction is obtained
as illustrated in Fig. (1), but we also observe a lowering
of the resonant frequencies of the normal modes. A sim-
ple argument can be used to understand this red shift:
each mode can be pictured as an harmonic oscillator of
mass m, whose stiffness kn is proportional to the Young’s
modulus E of silicon (the cantilever material). The in-
crease of temperature, due to light absorption, induces a
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softening of the cantilever: the temperature coefficient of
E is negative

αE =
1

E

dE

dT
≈ −64× 10−6 K−1 (2)

The resonant frequencies fn of the normal modes should
therefore decrease as light intensity I increases:

2πfn =

√
kn
m
∝ E1/2 (3)

∆fn
fn
≈ 1

2

∆E

E
≈ 1

2
αE∆T ∝ I (4)

In the presentation, a careful treatment of the interplay
between the temperature profile and the spatial shape of
the modes will show how we deduce from the frequency
shifts the temperature gradient in the cantilever.

The deduced temperature at the free end of the can-
tilever is plotted in Fig. (2): we reach huge temperature
gradients for a few tens of mW of the measuring laser.
We could even melt silicon cantilevers in vacuum for
I = 20 mW, when the melting point of silicon is 1410 ◦C !
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FIG. 2. Temperature increase at the free end of the cantilever
deduced by two methods: upper curves (dashed) from the
frequency shift of the resonances (Eq. 4), lower curves (plain)
from an extension of the equipartition theorem to this NESS
(Eq. 5). The latter is clearly under evaluated.

III. EFFECTIVE TEMPERATURE

Though the cantilever is in a NESS due to the heat
flowing along its length, it is tempting to extend equipar-
tition as in Eq. (1) to define an effective temperature of
each mode. Indeed, the mean square deflection can be
measured from the PSD, and the stiffness of the modes
is known from a calibration in equilibrium and the fre-
quency shift already discussed. We may thus extend Eq.

(1) to define an affective temperature T eff
n of each mode:

T eff
n =

kn
kB
〈d2

n〉 (5)

Again, in the presentation, a careful treatment of the
interplay between the temperature profile and the spatial
shape of the modes will show how to define the effective
temperature gradient in the cantilever from the measured
thermal noise.

The deduced effective temperature at the free end of
the cantilever is plotted in Fig. (2): though T eff rises
with I, its value is far smaller than that inferred from the
response of the cantilever (frequency shift). The equipar-
tition clearly fails for this NESS, but in a completely un-
expected way: the level of noise is below what one would
expect. And indeed, the area under the resonance peaks
in the thermal noise spectra in Fig. (1) looks constant
while the maximum temperature in the lever increases
from 300 K to 1100 K. On the contrary, one would ex-
pect the fluctuations to rise even more due to the non
equilibrium situation.

IV. OPEN PROBLEMS

Our system offers a nice and carefully controlled out of
equilibrium system, where fluctuation and response can
be measured with a high accuracy for several indepen-
dent degrees of freedom. We demonstrate that in such a
NESS, the thermal noise of all modes is close to the one
expected for the lower temperature of the system, when
one would expect it to be higher (of at least equal) to
that of its mean temperature. This result is in strong
contradiction with other experiments of mechanical sys-
tems subject to a stationary heat flow, where excess noise
is observed3.

In our quest for this missing noise, we have identified a
few leads that will be discussed during the presentation,
for instance:
> effect of a spatially non-uniform damping mechanism ?
> absence of coupling between longitudinal heat trans-
port and flexural deflexion ?
Other suggestions will be welcomed during the discus-
sion !

ACKNOWLEDGMENTS

We acknowledge the support of ERC project OutE-
FLUCOP and ANR project HiResAFM.

1 P. Paolino, B. Tiribilli and L. Bellon, Journal of Applied
Physics 106, 094313 (2009)

2 P. Paolino, F. Aguilar Sandoval and L. Bellon, Rev. Sci.
Instrum. 84, 095001 (2013)

3 L. Conti, P. De Gregorio, G. Karapetyan, C. Lazzaro,
M. Pegoraro, M. Bonaldi and L. Rondoni, J. Stat.
Mech.,P12003 (2013)

44



UPON 2015, BARCELONA, JULY 13-17 2015

Noise Thermal Impedance: a way to access electron dynamics.

E. Pinsolle1 and B. Reulet1
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I. INTRODUCTION

In good conductors the frequency dependence of the
conductance and the noise is given only by charge screen-
ing. To have access to inelastic processes or diffusion
times in such samples one need to measure small quan-
tum corrections to the conductance1 or tunneling prop-
erties on materials with which tunnel junction can be
made2. Those are inderect measurements of interactio-
nis and diffusion time and are sometimes hard to access.
Recently B. Reulet and D.E. Prober have proposed a new
technique based on Johnson noise measurement to di-
rectly access the dynamic of electrons in normal metals3.
They named it Noise Thermal Impedance (NTI).

II. EXPERIMENTAL PRINCIPAL AND
RESULTS

In the case of Johnson noise the current noise density
S2 is determined directly by the electron gaz temperature
T by: S2 = 4kBTG. It’s interesting to generalize this
link by defining the noise temperature TN = S2/(4kBG).
The NTI measure the fluctuations of the noise temper-
ature δTω

N of an electron gaz heated by an oscillating
power δPω

J at frequency ω. This complex response func-
tion is define as R(ω) = δTω

N/δP
ω
J .

B. Reulet and D.E Prober calculated3 the expected form
of this response function for a metallic diffusive wire
for several limiting cases. In those kind of samples one
can distinguish between three regimes depending on the
sample length and the temperature. For long sample
L � Le−ph the energie relaxation of the electron gaz is
dominated by electron-phonon interactions, this is called
the macroscopic regime. In this case the energie relax-
ation occurs in a time τe−ph given by the mean electron-
phonon interaction time and the NTI have the form:

R(ω) =
δTω

e

δPω
J

=
G−1

e−ph

(1 + iωτe−ph)
(1)

For smaller samples L � Le−ph electron-phonon
processes are ineficient and the energie relaxation is
dominated by diffusion of hot electrons into the leads.
The time scale associated is given by the diffusion time
τD. In this length scale one can discriminate between a
case Le−e � L where electrons exchange energie, called
hot electron regime, and a case where electrons don’t
interacte with each others, called independent electron
regime. In those two regimes the time scale of energie

relaxation is given by the diffusion time τD. We have
applied this technique to different metallic wires to
measure directly the electron-phonon interaction times
and the diffusion time in function of temperature and
length to go throught hot electron regime to macroscopic
regime.
“In Fig. (1)” we present the noise thermal impedance for
a 50 µm long aluminum wire at different temperatures.
Those curves are in good agreement with the equation 1
superposed to the experimental data. We have repeted
this experiment for different wire lenghtes from 5µm to
50µm and extract the cutoff frequencies.
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“FIG. 1. Amplitude of the normalised noise thermal
impedance in function of frequency for a 50 µm long
aluminum wire. The different curves correspond to dif-
ferent electron noise temperatures from around 30 mK
to 1.5 K. Those curves are fitted with the equation 1
which permit to extract a cutoff frequency ”

“In Fig. (2)” we present those cutoff frequencies in
function of temperature for the different wires. At high
temperature we observe a power law caracteristic of an
electron-phonon interaction time (τ−1

e−ph = A ∗ T 3)4.
When we decrease the temperature we acess a regime
where the energy relaxation is dominated by diffusion.
As we expected, this diffusion time is independant of tem-
perature which gives rise to a plateau at law temperature.
The different curves as been fited by assuming that, in
presence of different relaxation processes, the frequencies
add up τ−1

relaxation = τ−1
D + τ−1

e−ph. We checked that the
diffusion time is proportionnal to the sample length in
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agreement with a diffusion law L2 = DτD. This permit
us to extract the diffusion coefficient.
This experiment demonstrate that a NTI measurement
is of great interest to access dynamics of electron gazes.
This could be applied to probe diffusion times in new
materials such as h-graphene or to investigate electron-
phonon interaction in High Tc superconductors. One
could also imagine to study diffusion law in more fancy
sample with a fractal dimention5.
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“FIG. 2. Energy relaxation frequencies in function
of electron noise temperature for aluminum wires of
different lengthes.”
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I. INTRODUCTION

The Allison Mixture1 is a process formed by random
sampling of two parent processes, and which can have the
unintuitive property of being autocorrelated, despite all
its values being drawn from uncorrelated processes. How-
ever, this correlation vanishes if the parent processes are
of equal mean, suggesting the use of autoinformation2,3

as an alternative to correlation, providing a canonical
measure of the strength of the memory of the Allison
mixture. We apply this measure to the Allison mixture,
producing analytic expressions for the k-step autoinfor-
mation of its sampling process.

II. THE ALLISON MIXTURE

The Allison mixture1 is a process in which samples are
drawn from one of two distributions, the choice deter-
mined by the state of a Markov chain, shown in Fig. (1).
The marginal distribution of this process is a mixture
of the two source distributions, the mixing constant de-
termined by the stationary distribution of the Markov
chain.

Definition II.1 (Allison mixture1). An Allison mixture
Xt of two processes Ut and Vt is given by

Xt = StUt + (1− St)Vt (1)

where the sampling process St is a Markov chain, shown
in Fig. (1), having states {0, 1} and transition probabili-
ties α0 and α1 when in states 0 and 1 respectively.

0 1

0

1

1 11 0

FIG. 1. The Markov chain defining the sampling process St

of the Allison mixture. It is parametrised by the probabilities
α0 and α1 of leaving states 0 and 1 respectively.

The stationary distribution of St is given by

π0 =
α1

α0 + α1
(2)

π1 =
α0

α0 + α1
. (3)

We use a spectral decomposition of the transition ma-
trix P in order to compute the k-step probability matrix
P k and so the k-step transition probabilities α0,k and
α1,k.

Theorem II.1. The sampling process St has k-step tran-
sition probabilities

α0,k = π0

[
1− (1− α0 − α1)

k
]

(4)

α1,k = π1

[
1− (1− α0 − α1)

k
]
. (5)

III. AUTOINFORMATION OF THE ALLISON
MIXTURE SAMPLING PROCESS

The autoinformation function is an alternative to the
autocovariance function as a measure of dependence, de-
fined as follows:

Definition III.1 (Autoinformation function3). The au-
toinformation function of a stochastic process St is the
mutual information

Ixx[t, k] = I(St, St−k) (6)

= H(St, St−k)−H(St)−H(St−k). (7)

If St is stationary, then we may omit t as a parameter,
leaving us with

Ixx[k] = I(St, St−k) (8)

= H(St, St−k)− 2H(St). (9)

The autoinformation improves on the autocovariance
function as a measure of dependence by providing a con-
dition both sufficient and necessary—whereas a lack of
correlation does not necessarily indicate independence,
two variables will have zero mutual information only if
they are statistically independent; this is vital when the
processes Ut and Vt of the system being modelled have
identical means but differing variances, such as particle
velocities in statistical mechanics.
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FIG. 2. Single-step autoinformation of the Allison mixture
sampling process as a function of α0 and α1. Note the lines of
zero autoinformation along α0 = 0, α1 = 0, and α0 + α1 = 1.

Lemma III.1. Let St be a binary-valued random pro-
cess with transition probabilities and a stationary dis-
tribution equal to that of the Markov chain in Defini-
tion II.1. Then, in the fully-mixed regime the single-step
autoinformation is given by

Ixx[1] =
α1(1− α0) log2

1−α0

α1

α0 + α1

+
α0(1− α1) log2

1−α1

α0

α0 + α1
(10)

+ log2(α0 + α1),

where both α0 and α1 are nonzero, zero if exactly one of
α0 and α1 is equal to zero, and undefined if both are equal
to zero.

Thus the autoinformation is equal to zero when α0 = 0,
α1 = 0, or α0+α1 = 1, and so these previously-described1

conditions for decorrelation of the sampling process imply
zero mutual information and therefore genuine indepen-
dence.

Importantly, we have not assumed the Markov prop-
erty, instead directly demanding that the formulae for
the stationary probabilities hold. This weakening is in-
tended to allow us later to generalise to the Allison mix-
ture proper.

The mutual information as a function of (α0, α1) is
shown in Fig. (2). As one would expect, we see a peak
near (α0, α1) = (0, 0), where consecutive states are highly
dependent. Similarly, we see a large autoinformation
near (1, 1), where the strong anticorrelation makes con-
secutive states highly predictable. Between these two
extremes lies a valley, its nadir falling along the line

α0 + α1 = 1; along this line, consecutive states of the
sampling process are completely independent.

Theorem III.1. The k-step autoinformation of a fully
mixed two-state Markov chain with exit probabilities α0

and α1, as in Fig. (1), is given by Lemma III.1 under
the substitution

α0 −→ π0

[
1− (1− α0 − α1)

k
]

(11)

α1 −→ π1

[
1− (1− α0 − α1)

k
]
. (12)

This final theorem allows us to extend our single-step
results to arbitrary time-lags, completing our character-
isation of the Allison mixture sampling process.
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FIG. 3. Exponentially-decaying autoinformation of an Allison
mixture sampling process with α0 = 0.1, α1 = 0.1.

We show the autoinformation in Fig. (3) as a function
of lag; it can be seen to decay at a roughly exponential
rate.

IV. OPEN QUESTIONS

The theorems that we have presented allow computa-
tion of the autoinformation function of the Allison mix-
ture sampling process, and can be readily extended to
binary-valued Allison mixtures. However, many phys-
ical systems are described by continuous-valued pro-
cesses, and their autoinformation cannot be calculated
by Lemma III.1. It remains to be seen whether the au-
toinformation can be computed by transformation of the
sampling process autoinformation in a similar fashion to
that of the autocovariance function1.

Furthermore, the information-theoretic approach that
we have presented provides the starting point for an in-
vestigation of the transfer entropy4 between the sampling
process and the Allison mixture; previous works on trans-
fer entropy have focussed on complex systems, leaving
room for the analysis of simpler and analytically tractable
models in order to better probe its properties.
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4 T. Schreiber, Physical Review Letters 85, pp. 461–464
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I. INTRODUCTION 

Smoluchowsky1 proposed the concept of Brownian Ratchets 

about a century ago as nonequilibrium devices where fluctuations 

can be rectified to produce directional transport of particles along 

a periodic asymmetric potential. Later, Feynman, in his famous 

lecture on the ratchet-and-pawl setup, discussed the Brownian 

motor, which is a Brownian ratchet with a load2, 3. About 20 years 

ago, the flashing ratchet with scheduled On/Off switching of an 

asymmetric potential was discussed4-7. Later the flashing ratchet 

inspired the invention of Parrondo’s game
8
 in which two losing 

games can be combined to become a winning game. Since then, 

much research has been conducted on different switching 

strategies for Parrondo Game. The optimal periodic sequence that 

maximizes the expected payoff was computed by Dinis9, and more 

complex sequences by Tang et al.10 and for long sequence by Wu 

and Szeto11 using Genetic Algorithm. Other types of Parrondo 

Games have also been constructed, such as the Quantum Parrondo 

Game and history dependent games12,13. Here we address the 

possible gain by player with finite memory in various switching 

strategies when playing the original Parrondo Game. We expect 

player with memory can implement a feedback control so as to 

switch his game plan at appropriate time to improve his gain, 

since in control theory the feedback control can generally improve 

the performance of an open-loop system. We find for player with 

one-step memory, certain switching strategy can lead to optimal 

winning. 

II. ORIGINAL PARRONDO GAMES 

The original Parrondo Game contains two independent games:  

A and B. Game A can be thought as a coin-tossing game, which 

has probability 1/ 2p    to win, where ε is a small nonnegative 

number. If the average yield of a game is  X t , then the 

expected gain is    1g X t X t   and for a long sequence of A 

game, it is    1     2 1X t X t p    . Thus, game A is fair if ε is zero, 

and is a losing game if ε is larger than zero. Game B can be 

thought of as a complicated game with two biased coins: a good 

coin and a bad coin. The good coin's winning probability is 

0.75gp    , and the bad coin's winning probability is 0.1bp   . 

If the player's capital is multiple of 3, the bad coin is used, 

otherwise the good coin is used. Therefore the expected capital 

gain for game B is          0 01     2 1 1n gX t X t t p t p        , 

where  0 t   is the probability that the player's capital is multiple 

of 3 at time t  . We can find the values of  0 t by using discrete 

Markov Chain, and define the probability vector as 

        0 1 2, ,t t t t  π , where  1 t and  2 t  is the probability 

that player’s capital is multiple of 3 plus 1 and plus 2 respectively, 

therefore we can write the transition matrix of Game A and B as  

 

0 1 0 1

1 0 ;   1 0

1 0 1 0

b b

A B g g

g g

p p p p

p p p p

p p p p

     
  

       
         

Π Π   (1) 

   

A stochastic mixture of A and B game can be represented as 

  1A B     Π Π Π    (2) 

where γ is the probability of playing game A. The time evolution 

of the probability vector is    1t t π π Π . 

III. PARRONDO GAME WITH ONE 

TIME STEP MEMORY 

If the player has one-step memory, he has some extra 

information in his decision of game to be played, rather than 

random switching or deterministic switching in a preset sequence. 

This extra information from his memory of the result of the last 

game enables him to make a more informed decision, which 

hopefully yields better performance in the long run. This is the 

feedback control implemented by the player due to his ability to 

remember.  Note that during the whole process, the player does 

not know which game he played is A or B, otherwise the problem 

is trivial. He can simply play game A if his capital is multiple of 3 

and play game B otherwise, so as to maximize his payoff. In the 

setting of our Parrondo game, we assume that the player has one 

step memory, and plays two kinds of game, call C and D, without 

knowing whether C is A or D is A, while the other is B. The finite 

memory of the player in general cannot be used to identify the 

nature of game C and D. The state of the player is represented by 

the vector               0 1 2 0 1 2C , , , , ,t t C t C t D t D t D tU , here C/D means 

that the player play game C/D at time t  . The subscripts 0, 1, 2  

denote that the player’s capital being a multiple of 3 plus 0, 1, 2 

respectively. Thus,  0C t  means that the player’s current capital 

is multiple of 3 and he will play game C for at time t . For one 

step memory, we need only to consider the conditional probability 

 1|t tP G G 
 for switching, as defined below, 

    1 1| ; | 1t t t tP D C P C C       (3) 

    1 1| ; | 1t t t tP C D P D D        

Here α, β are the probabilities of switching as illustrated in Fig.1.  
 

 
FIG. 1. At each time step, the player switch from C to D with 

probability α and switch from D to C with probability β. 

 

Under this hypothesis of conditional probability for one step 

memory and using the switching scheme in Fig.1, we can 
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represent the game for player with one step memory by a 6 6  

transient matrix 
sΠ , with element written as    1|t t win tP G G P G

 

and     1| 1t t win tP G G P G   if the game is winning or losing 

separately and 
tG is one of the six elements in  tU . An 

illustration of the expected gain for particular sets of winning 

probability is shown in Fig.2. One of the interesting results we 

derive and verified numerically is that the stochastic mixture of 

game C and game D with the mixing parameter γ in Eq. (2) can be 

related to player with one-step memory playing games with the 

special switching parameter α, β when 1 and .        

 

 
FIG. 2. Contour plot for the expected capital gain (in grey code) 

for the original Parrondo game. The parameters are 0.5p   ,

0.75gp   , 0.1bp   , and 0.003  . The optimal value of  and

 for this set of parameters is 1, 0.5907   . Note that the capital 

gain for stochastic mixing of game is along the line 1   .  

 

Let’s now consider the special case of   . This is to say that 

the player, although endowed with one-step memory, does not 

know much about the nature of the game C and D and their 

association with game A and B, so that he simply switch with one 

parameter   in the conditional probability in Eq.(3). In this 

case the matrix 
sΠ can be separate into two matrices and be 

written as  1s    Π X Y  , where X can be viewed as a new 

game which plays game C and game D alternatively, Y can be 

thought as a new game that always following the previous games. 

If the player plays game X alone, the game sequence will 

be …CDCD…; if the player plays game Y alone, the game 

sequence will be either …CCC… or …DDD…, the interesting 

point is that both game X and game Y are losing game, and 

stochastic combination of X and Y can win. This type of game 

works because the new switching game is also formed by a 

convex linear combination. The solution for the optimal value α 

for highest expected gain can be found analytically   

 

 
  2

2 2

1 2 1

4 2 4 3 3 2

g

g g g

p p p

p p p pp p p


  


    
          (4) 

 

for 1/ 2gp  . Note that this optimal α is independent of bp . For 

fair game C, 1/ 2p   , and α in Eq.(4) becomes 0.75. Thus, 

switching with probability 0.75 is an optimal way if the player 

cannot distinguish the game A and B.  

IV. DISCUSSION  

For the game with one-steps memory, the optimization question 

can be interpreted as finding the frequency of switching that 

generates the highest capital gain. For particular sets of winning 

probabilities illustrated in Fig. 2, it suggests that 1, 0.5907   is 

the optimal values, which means that in optimal sequence the 

game A should not appear continuously since now

   1 1| 1; | 0t t t tP B A P A A   . In this case, the optimal periodic 

sequence ABABB9, 11 meets the requirement set by this choice of

1, 0.5907   . We should point out that this gives higher gain 

than the gain obtained by  , as now we have some additional 

knowledge of the A and B game so that we bias towards the 

switching from A to B for 1, 0.5907   . Without this additional 

knowledge, the yield obtained by setting 0.75   is optimal. 

Our switching scheme can be generalized to player with n-steps 

memory by setting the conditional probability   1|
n

t tP G G   for 

different history condition, where  
1 1 2...

n

t t t t nG G G G    is the game 

history with length n. For example in two-step memory, there are 

four kinds of combination,  1 2 1 2 1 2, 1 2, , ,t t t t t t t tA A A B B A B B        , the 

matrix’s dimension is 4 3 12  . In general, the dimension for n 

steps memory requires a    3 2 3 2n n   transition matrix. 

Extension to extended Parrondo games14 with two types of B 

games can also be treated in a similar way. In the context of 

flashing ratchet, the question of switching protocol can be viewed 

as the ON/OFF timing of the saw-tooth asymmetric potential so as 

to provide a highest particle transport velocity.  In conclusion, we 

have extended the random switching scheme in Parrondo Game to 

one time step memory switching and found the optimal value of 

switching is different from random switching. For some special 

case where two switching probabilities are the same, the optimal 

value of switching probability is independent of the winning 

probability of the bad coin of game B. Game involving n-steps 

memory can also be generalized. 
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I. INTRODUCTION 

Genetic code table summarizes how the basic unit of protein – 

amino acid is encoded from sequences of three nucleotide triplet 

known as codon. Based on a set of simple rules, codons can be 

translated into amino acids and thus protein.  

 

Standard genetic code table, as shown in Fig. (1), is arranged in 

a way that provides insight into physicochemical and biological 

properties of amino acid that are generated from the DNA/RNA 

codons. However, the standard genetic code table is oriented in 

such a manner that overlook the big picture that nature wish to 

convey to us – symmetry and asymmetry of life and the potential 

implication of asymmetry. Standard genetic code table can be put 

under mapping to result in a reconstructed genetic code table that 

show more clearly the symmetry and asymmetry of life code.  

 

The reconstructed genetic code table, as shown in Fig. (2), 

shows slight asymmetry embedded in general symmetry, a pattern 

happens too many a time in nature. Human is a good example –

mirror symmetry outside but internally, some of the organs are 

arranged in an asymmetrical manner. Total symmetry signifies 

stability, stagnant and eventual death while asymmetry means 

instability, constant movement and eventual breakthrough to life.  

 

The reconstructed genetic code table shows mirror symmetry 

except for the small highlighted region in the center. The 

asymmetrical region is highlighted in Fig. (3). The reconstructed 

genetic code table is symmetrical around U – C and A – G of the 

third letter of codon except the above mentioned region, with U 

and A at the left column while G and C at the right column. Left 

and right column are symmetrical except for the highlighted 

region, giving a binary outcome – “left” versus “right”. 

 

Codons in the asymmetrical region encode for three amino 

acids – Tryptophan, Isoleucine, Methionine and one termination 

codon. The focus here is Methionine. Several studies have found 

out that restricting Methionine consumption extends lifespans of 

some animals and affect their fecundity1, 2.  

 

It is believed that asymmetry in genetic code table might have 

something to do with 3rd order path-dependent Parrondo’s 

paradox. Parrondo’s paradox is a counter-intuitive phenomenon 

whereby two individually losing games – game A and game B, 

can be mixed to produce a winning combine game. 

In this case, noise can be seen as game A – a random process, 

while protein translation process can be seen as game B. Wobble 

base pair or the surrounding environment can serve to provide the 

noise component. The translation process can be biased into 

depressing methionine codon expression or promoting methionine 

codon expression. Parrondo’s paradox will get in depending on 

whether noise is present or not.  

 

In the scenario where the translation process is designed to 

promote the expression of methionine, introduction of noise has 

the paradoxical effect of decreasing the expression of methionine. 

Perhaps this is the design of nature, that in stable time, when there 

is no noise or less noise, the normal process of promoting 

expression of methionine take place, where individual reduce their 

life span in exchange for reproducing more rapidly.  

 

On the other hand, in turbulent period where the situation is 

unsuitable for raising offspring, it would be better to increase 

individual survivability at the expense of reproduction capability. 

During unstable period, there will be an increase in the amount of 

noise and as a result of noise introduction, Parrondo effect will 

come in. The normal translation process (game B) will couple 

with noise (game A) and result in the outcome of suppressing the 

expression of methionine (Combine game), thus increasing the 

lifespan and survivability of individual while restricting 

reproduction.  

 

 In conclusion, 3rd order path dependent Parrondo’s paradox and 

asymmetry in life code have both been independently developed. 

The study proposes a possible linkage between Parrondo’s 

paradox and life code but the exact mechanism has yet to be 

firmly established. Evidence has been pointing towards that 

direction but the mystery remains determined not to be unraveled.   

 

II. RESULT 

3rd order path-dependent Parrondo’s paradox can be seen as an 

extension of history dependent Parrondo’s paradox3. Game A and 

game B both has binary outcome – “Win” and “loss”. Game A has 

winning probability of p and losing probability of (1 – p) while 

game B has winning probability    and losing probability of 

       depending on the result of previous three games.  
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The winning probabilities of game B can be summarized in the 

table below.  

 

State 
k 

Result of 
game at 

   –     

Result of 
game at 

   –     

Result of 
game at 

   –     

Winning 
Probability,  
  , at time t 

1 Loss Loss Loss    
2 Loss Loss Win    
3 Loss Win Loss    

4 Loss Win Win    

5 Win Loss Loss    

6 Win Loss Win    

7 Win Win Loss    

8 Win Win Win    

 

 

One of the many possible sets of winning probabilities used in 

game A and game B are as shown:  

 

Game A Winning 
Probability 

Game B Winning 
Probability 

  0.499    0.899 

     0.499 

     0.499 

     0.249 

     0.249 

     0.499 

     0.499 

     0.699 
*Note: Losing probability = 1 – winning probability 

 

 

The result of two individually losing game A and game B with 

a winning combine game, using the set of probabilities above, is 

as shown below: 

 
 

III. FIGURES 

 

 
FIG. 1. Standard Genetic Code Table. 

 

 
FIG. 2. Reconstructed Genetic Code Table 

 

 
FIG. 3. Asymmetrical region in genetic code table 
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Game A

Game B

Combine Game

Phenylalanine Serine Tyrosine Cysteine

Phenylalanine Serine Tyrosine Cysteine

Leucine Serine Stop Stop

Leucine Serine Stop Tryptophan

Leucine Proline Histidine Arginine

Leucine Proline Histidine Arginine

Leucine Proline Glutamine Arginine

Leucine Proline Glutamine Arginine

Isoleucine Threonine Asparagine Serine

Isoleucine Threonine Asparagine Serine

Isoleucine Threonine Lysine Arginine

Methionine/Start Threonine Lysine Arginine

Valine Alanine Aspartic acid Glycine

Valine Alanine Aspartic acid Glycine

Valine Alanine Glutamic acid Glycine

Valine Alanine Glutamic acid Glycine

Nonpolar

polar

basic

acidic

Stop

Phenylalanine Leucine Leucine Phenylalanine

Tyrosine Stop Stop Tyrosine

Cysteine Stop Tryptophan Cysteine

Serine Serine Serine Serine

Isoleucine Isoleucine Methionine/start Isoleucine

Asparagine Lysine Lysine Asparagine

Serine Arginine Arginine Serine

Threonine Threonine Threonine Threonine

Valine Valine Valine Valine

Aspartic acid Glutamic acid Glutamic acid Aspartic acid

Glycine Glycine Glycine Glycine

Alanine Alanine Alanine Alanine

Leucine Leucine Leucine Leucine

Histidine Glutamine Glutamine Histidine

Arginine Arginine Arginine Arginine

Proline Proline Proline Proline

Stop Stop

Stop Tryptophan

Serine Serine

Isoleucine Methionine/start 
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I. INTRODUCTION 

Thermochromism in VO2 is associated with a first-order metal–

insulator transition (MIT) at Tc ≈ 68 ºC,1 and VO2 is capable of 

transforming between a low-temperature (monoclinic, M1) 

semiconducting state and a high-temperature (rutile, R) metallic-

like state. Thin films are of intense current interest for numerous 

applications such as glazings for energy-efficient buildings and a 

large number of (opto)electronic, bolometric, and sensing 

devices.2–5 

In single crystals of VO2, the MIT is characterized by sharp 

real-space phase boundaries between the R and M1 structures and 

by the fact that these boundaries can propagate along the 

crystallographic c-axes,6 i.e., the transition is non-percolating in 

nature. Thin films of VO2 are normally distinctly different, 

however, and the MIT is gradual with metallic-like regions 

growing in extent as the sample temperature Ts approaches Tc 

from below and with semiconducting regions disappearing as Ts 

becomes increasingly larger than Tc.
7,8–13 The percolative 

character of the MIT in VO2 films has been emphasized several 

times.9,14–17 The percolation is not only of theoretical interest but 

also relevant for the energy-savings potential for VO2-type films 

used in energy-efficient fenestration.18 

Percolation enhances macroscopic resistance fluctuations, as is 

well known,19 and such fluctuations have been investigated in 

some prior studies20–23 especially with regard to bolometer 

performance.  

 

II. EXPERIMENTS 

VO2 films with grain-like features at the 50 nm length scale 

were prepared by reactive DC magnetron sputtering onto heated 

sapphire substrates and were used to make 100-nm-thick samples 

that were 10 μm wide and 100 μm long.  

The thermochromic properties of the VO2 micro-bridge was 

verified by measurements of electrical resistance Rs during heating 

and cooling in the 20 < Ts < 80 ºC interval. The temperature 

recording had to rest at least for 10 minutes at each setting in 

order to stabilize the Ts and resistance readings. Figure 1 shows 

that Rs changes by a factor ~2000 in the range between ~50 and 

~70 ºC and that the transition displays thermal hysteresis 

amounting to ~7 ºC. The origin of the hysteresis may be stress 

build-up and release and associated effects of super- and sub-

cooling. Energetically, this can be represented by a system of 

microscopic double-potential wells connected with pinning forces 

via interactions with the substrate. 

After installing a home-made temperature control that provided 

about a million times less temperature fluctuations (in the nano-

Kelvin range) than commercial units (in the milli-Kelvin range), 

we were able to measure power density spectra S(f) of resistance  

 

noise around Tc and to demonstrate unambiguous 1/f  behavior, 

thus proving that the measured noise was not due to temperature 

fluctuations.  

 

 
 

FIG. 1. Resistance hysteresis upon heating and cooling of a 

VO2 film.a) 
 

 

 
 

FIG. 2. Resistance noise spectrum of a VO2 film. The data show 

1/f-like performance even at the middle of the resistive transition.a) 

 

At 10 Hz, we performed a scaling analysis of the normalized 

noise versus the resistance, where temperature was a hidden 

parameter. The normalized spectrum scaled as  

 

SR

Rs
2

µ Rs
x  ,     (1) 

 

where SR  is the resistance noise spectrum and Rs  is the sample 
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resistance. The noise exponent x was –2.6 for Ts < Tc and +2.6 for 

Ts > Tc. 

 
FIG. 3. Scaling plot of the normalized resistance noise spectrum 

for a VO2 film.a) 
 

III. UNSOLVED PROBLEMS 

Theoretical models and experiments of conductor–insulator and 

conductor–superconductor transitions fail to produce the empirical 

noise exponents at both19 or one side24 of the transition, except for 

the Pennetta–Trefan–Reggiani (PTR) model25 where the positive 

exponent was empirically obtained by computer simulations25 and 

the negative exponent follows 

a from duality arguments in two 

dimensions. But there are open questions: 

 

(i) How is the 1/f noise spectrum generated, especially near the 

percolation threshold, in such small systems? 
 

(ii) Is there an analytic solution of the PTR model to produce these 

exponents? 
 

(iii) Are the noise exponents universal in periodic lattices, or do 

they depend on the type of resistor lattice? 
 

(iv) Which assumptions of the healing–recovering dynamics are 

essential to get these noise exponents? 
 

(v) Is duality indeed enough to explain the negative exponent in 

two dimensions or extra assumptions are needed? 
 

(vi) What are the exponents in three dimensions, i.e., can we 

expect a dimensional crossover in thicker films?  
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I. INTRODUCTION 

Silicon quantum dot (QD)-based single-electron devices, in 

particular single-electron transistors (SETs), can now operate at 

room-temperature, thanks to the recent progress in nanofabrication 

techniques, scaling QDs down to 5 nm1, then paving the way to 

various applications for logic or memory circuits, or random 

number generator.  

Meanwhile, the detection of single-electron processes is 

available experimentally thanks to quantum point contacts, giving 

access to current fluctuations2. In particular, interests are focused 

on the shot noise (SN), consequence of charge granularity, that 

gives more information about electronic transport, thus has been 

intensively studied during the past decades3. The SN is often 

characterized by the ratio of the current spectral density of the 

device S(f) to the spectral density of a Poissonian process 2qI 

where I is the mean current. At zero-frequency, the ratio 

 0 2F S qI  is called Fano factor. Most of the theoretical 

studies of the SN are performed at zero-frequency, using the full 

counting-statistics tool (FCS), which calculates current-

correlations from probability distributions of number of electrons 

transferred during a long period of time4. For example, it has been 

shown that in a case of a multi-level QD, the noise can be 

enhanced up to super-Poissonian noise5 (F > 1).  

The time- and frequency-dependent SN, through 

autocorrelation functions (AFs) and current spectral density 

respectively have been less explored. Recently, a new method 

emerged called waiting time distribution (WTD), focusing on the 

distributions of times between two single-electron events6.  

The aim of this work is to present the close link between WTDs 

and AFs, thus the current spectral densities in a Si-QD-based 

double-tunnel junction (DTJ), shown in Fig. (1), in order to 

understand the specific dynamics of the electronic transport in this 

device. The structure is simulated through the homemade 3D self-

consistent code SENS7 (Single-Electron Nanodevices Simulation).  

II. SENS CODE 

To take into account the quantization effects in Si-QD, the first 

stage of the simulation relies on the calculation of the electronic 

structure of the QD according to the bias voltage and the number 

of electrons inside it by solving the Poisson-Schrödinger coupled 

equations within the Hartree and effective mass approximations.  

The resulting wave functions are then used to compute the 

tunnel transfer rates source-to-dot Γin (N) and dot-to-drain Γout (N) 

depending on the number of electrons N in the QD by means of 

the Fermi golden rule and Bardeen formalism.  

Finally, the transfer rates are introduced in analytic expressions 

or a Monte-Carlo algorithm to reach all electrical characteristics, 

such as current, AFs and current spectral densities. The WTDs are 

also obtained from tunnel transfer rates. 

III. RESULTS AND DISCUSSION 

The simulated DTJ consists in an 8-nm-diameter Si-QD; with 

source and drain tunnel barriers of 1.2 nm and 1.8 nm thicknesses, 

respectively. The current and Fano factor, F, are shown in Fig. (2). 

The current shows a positive differential conductance in the first 

two Coulomb stairs, while a negative differential conductance is 

observed in subsequent stairs. F decreases on the two first stairs, 

reaching its minimum just before the third step, and then increases 

until reaching its maximum value at the beginning of the fourth 

step. The behavior of the current and F are explained in previous 

articles7,8. 

The current spectral densities for three different regimes (sub-, 

super- and Poissonian Fano factor) as well as their corresponding 

autocorrelation functions are plotted in Fig (3) and (4), 

respectively. In the case of a super- (sub-)Poissonian Fano factor, 

the spectral density remains higher (lower) than the Poissonian 

spectral density 2qI with frequency, which is the consequence of 

an always positive (negative) AF with time lag. However, we 

notice that in the case of a Fano factor slightly higher than 1, the 

spectral density goes below the Poissonian value in the [106 107] 

frequency range, thus indicating specific dynamics. This peculiar 

behavior is also noticeable on the corresponding AF, the 

correlation going from negative to positive values before reaching 

the uncorrelated value.  

This specific dynamic occurs in the third step of the Coulomb 

staircase (V = 0.95V), i.e., when 4 states are available (0, 1, 2 or 3 

electrons in the dot). To clarify the understanding of this behavior 

around Poissonian SN, we have simulated the same device with 

only 3 states available. In this case, looking at the source junction, 

only two tunnel events are adding one electron in the QD: the 

transitions 0→1 (01) and 1→2 (12). In Fig. (5), the WTDs and 

auto- and cross-correlations between those two tunnel events are 

shown. We see that the autocorrelation of (12) events C12-12 is 

responsible of the behavior global autocorrelation CII. At low 

times, the WTD between two 12 events is zero, due to the fact that 

another transition (21 – the second electron is exiting the QD 

through the drain junction) is necessary to reach an other (12) 

event. Therefore, it is very unlikely to have two (12) events within 

such low time lag, and C12-12 is negative. Then, the AF increases 

with its corresponding WTD, and eventually reaches positive 

value around the maximum of WTD. The WTD and AF decrease 

then accordingly, to finally reach the uncorrelated value. 
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FIG .1. Schematic view of a DTJ. 

 

 
FIG. 2. Current (dashed) and Fano factor (solid) as a function of 

the applied voltage. 

 

 
FIG. 3. Current spectral density as a function of frequency for 

three different biases corresponding to different transport regimes. 

 

 

 

 
FIG. 4. Current autocorrelation functions as a function of time lag 

for three different biases corresponding to different transport 

regimes 

 

 
FIG. 5. (a) WTDs and (b) Auto- and cross-correlation functions 

between (01) and (12) current pulses as a function of time, for a 

bias corresponding to Poissonian Fano factor F ~ 1 in the 3-state 

case. 
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I. INTRODUCTION 

Silicon nanowires (NWs) are among the most promising building 

blocks for emerging devices and novel applications in 

nanoelectronics1,2. Although reconfigurable transistors that 

explicitly avoid the use of dopants have been demonstrated3, the 

modulation of the conductivity by impurity doping is still the most 

common design strategy for Si NW based devices. Dopants in 

NWs are a very special class of impurities: they are added on 

purpose to provide free carriers that allow tailoring the 

conductivity, but at the same time they act as scattering centers, 

decreasing the mobility. Besides the intrinsic difficulty in 

obtaining radially4 and axially5 uniform doping profiles, ultrathin 

NWs pose a fundamental problem related to the variability of the 

performances of the resulting devices6,7. 

In bulk Si, all lattice sites are equivalent. In a NW, this is true only 

when moving along the wire axis and lattice sites are radially 

inequivalent, i.e., substitution of an impurity at a site in the 

innermost part of the wire results, in principle, in different 

energetics and properties from substitution at a site close to the 

surface. 

Several studies have already shown that dopant impurities exhibit 

a mild to strong tendency (depending on surface defects) to 

surface segregation8,9 and that the scattering induced by an 

impurity depends strongly on its exact (radial) position10,11. 

Clearly, this is a serious problem from the design viewpoint. Due 

to their reduced diameter, achieving a doping concentration of 

1018 cm-3 means having one dopant every 50 nm in a NW with a 5 

nm diameter, which amounts to 196 impurities in a 10 m-long 

NW. 

Infinitely long NW tends to some average properties, because in 

the limit of many dopants all the possible impurity configurations 

are sampled. However, in many cases, it is desirable to have NW-

based devices operating in the ballistic regime, a condition 

fulfilled by NWs shorter than the phonon mean free path.  

 

II. RESULTS 

In this talk I will present the results obtained in our group on the 

conductance fluctuations in Si nanowires studied from first-

principles electronic structure methods. 

We combine the ideas of scaling theory and universal conductance 

fluctuations with density-functional theory to analyze the 

conductance properties of doped Si nanowires12. Specifically, we 

study the crossover from ballistic to diffusive transport in boron or 

phosphorus doped Si nanowires by computing the mean free path, 

sample-averaged conductance <G>, and sample-to-sample 

variations std(G) as a function of energy, doping density, wire 

length, and the radial dopant profile. Our main findings are (i) the 

main trends can be predicted quantitatively based on the scattering 

properties of single dopants, and (ii) the sample-to-sample 

fluctuations depend on energy but not on doping density, thereby 

displaying a degree of universality. 

We use this approach to calculate the conductance distribution of 

up to 200 nm long SiNWs with different distributions of 

impurities, showing that that the radial distribution of the dopants 

influences the conductance properties significantly: surface doped 

wires have longer mean-free paths and smaller sample-to-sample 

fluctuations in the cross-over from ballistic to diffusive 

transport14. 

These findings can be quantitatively predicted in terms of the 

scattering properties of the single dopant atoms [see Fig.(1)], 

implying that relatively simple calculations are sufficient in 

practical device modeling. 

 
FIG.1. Ballistic conductance of some selected single-dopant 

configurations. All the point defects studied, nine bulk 

substitutionals (S1–S9), three subsurface substitutionals (SS1–

SS3), and two interstitials (I1–I2), are shown in the inset (from 

Ref.15). 

 

We further exploit these ideas to study how the variability of the 

conductance associated with single-dopant configurations affects 

the overall conductivity of long, realistic ultrathin Si nanowires 

(NW)15. In particular, we quantify the doping dose threshold at 

which ultrathin nanowires like those investigated here acquire 

some kind of average properties for lengths L> 15 m, though at 

lower dopant concentration, variability of the conductivity 

persists, and is significant, up to 50 m. 

At larger diameters, the fluctuations are expected to decrease, 

because there will be a much larger fraction of the allowed dopant 

configurations that yield very similar scattering resistances. For 

57



UPON 2015, BARCELONA, JULY 13-17 2015                                                                                                                           

 

 

such thicker wires, it might be possible to suppress the most 

significant conductance fluctuations and stay within the length 

limit of ballistic transport, without needing to go to extremely 

high dopant doses. Yet, variability induced by conductance 

fluctuations will have to be monitored and is likely to be among 

the factors that limit the performances of devices based on Si NW 

with diameters thinner than 10–20 nm. Even a few interstitial 

defects would significantly degrade the overall conductance, but 

luckily their expected concentration is negligible and they can be 

disregarded. 
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I. INTRODUCTION

Complex, fluctuating dynamics abounds in nature.
With the fast sensors available today, large numbers of
time-series are continuously being measured and anal-
ysed. To characterise the underlying dynamics one needs
models. Although there are no strict boundaries, two
general approaches coexist: stochastic and deterministic,
as illustrated in Fig. (1). Of course, the same time series
can be characterised either as stochastic or as determin-
istic. In the stochastic approach we do not make any
assumptions about the properties or values of parame-
ters involved in generating the dynamical behaviour and
we analyse the time series using probability theory. But
often, in real problems, we need to know the reason for a
change in behaviour, for example from a healthy state to
a diseased one. In this case we try to generate hypothe-
ses or models and describe the causal relationship using
deterministic systems.

FIG. 1. A simplified representation of dynamical systems with
typical examples. Although the chronotaxic systems are fully
deterministic, unless influenced by stochastic perturbations,
they have been usually treated as stochastic.

Generally, deterministic systems are considered within
the theory of autonomous systems. In the last decades,
much research has been devoted to chaotic systems,
which are a special class of deterministic systems. Of
course, as soon as they are perturbed by being coupled
to a stochastic system their characteristics change as in-
dicated in Fig. (1).

But many living systems, as well as man-made ones,
are thermodynamically open because they exchange en-
ergy and matter with the environment. For such sys-
tems, the mathematical theory of non-autonomous sys-
tems is necessary. Motivated by these needs, recent de-
velopments have resulted in advances in non-autonomous
dynamical systems theory1, and in the theory of random
dynamical systems2.

Furthermore, only when a system is described as non-
autonomous, and not transformed into autonomous by
adding an extra dimension to account for the time-
dependence, can one explain the stability of its time-
dependent dynamics: such stability does not allow the
time-variable dynamics to be changed easily by exter-
nal continuous perturbation, a feature that provides a
foundation for the newly-established theory of chrono-
taxic systems3–5. The ability of such systems to sustain
stability in the amplitude and phase of oscillations un-
der continuous perturbation are key features that were
used in naming them chronotaxic (from chronos – time
and taxis – order). Chronotaxic systems possess a time-
dependent point attractor provided by an external drive
system. This allows the frequency of oscillations to be
prescribed externally through this driver and response
system, giving rise to determinism even when faced with
strong perturbations.

It can be shown5 that the existence of such stability can
cause their non-autonomous dynamics to look stochastic-
like, and very complex, perhaps leading to their misiden-
tification as stochastic or chaotic. In fact, because the
underlying deterministic dynamics of such systems re-
mains stable, we can decompose the dynamics into a de-
terministic part and a component due to the external
perturbations.

We will now briefly introduce the basic properties of
chronotaxic systems and discuss some open questions.

II. CHRONOTAXIC SYSTEMS IN BRIEF

A chronotaxic system3–5 is a non-autonomous oscilla-
tory dynamical system x generated by an autonomous
system of unidirectionally coupled equations

ṗ = f(p), ẋ = g(x,p), (1)

where p ∈ Rn, x ∈ Rm, f :Rn → Rn, g :Rm×Rn → Rm;
n and m can be any positive integers. The system (1)
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may also be called a drive and response system6, or a
master-slave configuration7. Considered in the context
of non-autonomous dynamical systems1,8, the system (1)
can be viewed as a skew-product flow or as a process.

Importantly, the solution x(t, t0,x0) of Eqs. (1), de-
pends on the actual time t as well as on the initial condi-
tions (t0,x0); whereas the solution p(t− t0,p0) depends
only on initial condition p0 and on the time of evolution
t − t0. The subsystem x is nonautonomous in the sense
that it can be described by an equation which depends
on time explicitly, e.g. ẋ = g(x,p(t)). A chronotaxic sys-
tem is described by x which is assumed to be observ-
able, and p which may be inaccessible for observation,
as often occurs when studying real systems. Rather than
assuming or approximating the dynamics of p; we focus
on the dynamics of x and use only the following sim-
ple assumption: that system p is such that it creates a
time-dependent steady state in the dynamics of x.

Therefore, the whole external environment with re-
spect to x is divided into two parts. The first part
is given by p which is the part that makes the sys-
tem x chronotaxic. The second part contains the rest
of the environment and is therefore considered as exter-
nal perturbations. The theory for the case where am-
plitudes and phases are separable have been introduced
by Suprunenko et al3,4, and it has subsequently been ex-
panded to include the generalized case of chronotaxic sys-
tems where such decoupling is not required5.

Thus, when perturbations do not destroy the chrono-
taxic properties of a system, the stable deterministic
component of its dynamics can be identified, as shown
by Clemson et al9. This reduces the complexity of the
system, enabling us to filter out the stochastic compo-
nent and focus on the deterministic dynamics and the
interactions between system x and its driver p, as shown
in3,9. For complex and open systems it has the potential
to extract properties of the system which were previously
neglected.

III. OPEN PROBLEMS

The theory of chronotaxic systems could facilitate
more realistic insight into the underlying dynamics of
systems whose time-evolution is recorded. As chrono-

taxic systems are inevitably non-autonomous, inverse
approach methods, developed for analysis of time-
series with time-dependent characteristics10, can safely
be applied to gain initial insights. Specific meth-
ods have already been proposed for the detection of
chronotaxicity9,11. However, they are applicable to sys-
tems in which the amplitude and phase dynamics are
separable, as they are applied directly to the extracted
phases of the system, while the amplitude information is
discarded. Such an approach is valid given that the am-
plitude dynamics of a chronotaxic system corresponds to
the convergence of the system to a limit cycle, influenced
only by a negative Lyapunov exponent and external per-
turbations, while the phase dynamics corresponds to con-
vergence to a time-dependent point attractor9,11. As it is
the point attractor in the phase dynamics in which we are
primarily interested, the separation into amplitude and
phase follows naturally. Using this approach, an example
of chronotaxic dynamics has already been demonstrated
in a real system, in the case of heart rate variability under
paced respiration9.

However, in generalized chronotaxic systems5, the am-
plitude and phase are not required to be separable, pro-
viding an even greater applicability to real systems, al-
lowing for amplitude-amplitude and amplitude-phase in-
teractions, in addition to the phase-phase dynamics con-
sidered hitherto3,4. Therefore, the incorporation of the
ability to identify these new possibilities for chronotaxi-
city will be crucial to the further development of inverse
approach methods. These will then provide the means
to detect chronotaxicity in systems where the amplitude
and phase are not separable, as e.g. is the case of brain
dynamics. However, this is an open problem, as yet
awaiting a solution.
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I. INTRODUCTION

Active matter refers to systems driven out of equilib-
rium by internal or external energy sources. They are
characterized by many peculiar properties not present
in their passive counterparts, like clustering, anoma-
lous diffusion, giant fluctuations, unexpected rheological
properties1–3. An open question for these systems is a
coherent definition of an effective temperature4.

We consider here a two-dimensional system of active
dumbbells5. Each dumbbell is composed by two colloids
kept together by an elastic potential, with an excluded
volume interaction modeled through a Weeks-Chandler-
Anderson (WCA) potential. They are immersed in an
implicit solvent modeled by the Langevin equation. The
activity is modeled by a constant force acting along the
main axis of the dumbbell. The model can be intended
as a coarse-grained description of the behavior of simple
bacteria. Hydrodynamic interactions are ignored, being
much more demanding computationally.

The two goals of this work are the following. First
we want to analyze the diffusion and fluctuation prop-
erties of the dumbbell system. At strong enough activ-
ity, or small enough temperature, and at sufficient high
density, dumbbells segregate into a concentrated and a
dilute phase. We focus on the regime without cluster-
ing, when the system is globally homogeneous. We find
four different regimes for the translational and angular
mean square displacement, and show the dependence of
the diffusion coefficient of the late-epoch diffusion regime
from the temperature, activity and density. We find for
example, that for sufficiently high activity, the rotation
diffusion is enhanced from increasing density which is
different from what usually happens in passive colloidal
systems6. For what concerns the behavior of the distri-
bution functions of the displacements, at strong activity,
we find significant deviations from the gaussian behavior
in the superdiffusive regime found before the last usual
diffusive regime. At small activity, the initial inertial
regime is followed by a subdiffusive regime and also in
this case we find slowly decaying codes of the distribu-
tions not corresponding to gaussian behavior.

Second, we want to investigate about the definition of
the effective temperature in this system, usually defined
by a dynamic fluctuatuon-dissipation relation. For this
purpose, we introduce spherical tracers, kinetically cou-
pled with the dumbbells, in order to test the notion of

effective temperature. The effective temperature of the
tracers will be compared with that obtained by study-
ing the active dumbbell system by alone. In general, the
study of the dynamics of tracers, more accessible exper-
imentally than that of the non-equilibrium system itself,
is a convenient way to analyze non-equilibrium systems.

For a single active dumbbell we analytically calculate
the diffusion coefficient for its center of mass together
with the displacement induced by a pulling force, arriv-
ing to a definition of an effective temperature through
a fluctuation-dissipation relation. Then we numerically
evaluate the above quantities for systems with different
densities, temperature and activity. We show how the
non trivial non monotonic behavior of diffusion and mo-
bility, at varying activity, is reflected in the behavior of
the effective temperature.

On the other hand, we calculate the effective tempera-
ture of the active system by analysing the velocity distri-
bution function and a fluctuation dissipation relation for
the tracers. The tracer velocity distributions is gaussian
and a temperature can be evaluated by the variance of
the distribution. We find that the tracer effective tem-
perature, calculated by both methods, for high values of
the mass of the tracers, converge to the value of the ef-
fective temperature found in the system without tracer.

In the next sections we show selected results for the
translation and rotational mean square displacements
and for the effective temperature in the system without
tracers.

II. MEAN SQUARE DISPLACEMENT

Fig.1 shows the mean square displacement of the center
of mass (upper panel) and rotational angle (lower panel)
of dumbbells for a high Péclet number and different den-
sities. The Péclet number represents the ratio between
active advective contribution to transport rate and dif-
fusive contribution. Different regimes can be observed,
depending on the combination of the random noise, the
activity and the density of the system.

These regimes correspond to those found analytically
in the case of a single dumbbell, where a first ballistic
inertial regime is followed by a diffusive regime, then by
another ballistic regime due to activity and at the end
by the late epoch final diffusive regime. It is interesting
to observe that, while the single dumbbell mean square
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rotational displacement only exhibits an initial inertial
regime followed by the diffusive final regime, at final den-
sities four regime can be observed also for this quantity.

Fig.2 shows the dependence on the density of the ro-
tational diffusion constant, at a fixed value of the Péclet
number, varying the temperature T and the active force
Fact simultaneously5. The behavior is independent on
the value of T, Fact chosen. Clustering effects induce
unusual higher rotational diffusion when the density in-
creases, for φ < 0.5.
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FIG. 1. Translational and rotational mean square displace-
ment of active dumbbells at different densities.
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FIG. 2. Rotational diffusion coefficient at same Peclet num-
ber and different set of active force and temperature.

III. EFFECTIVE TEMPERATURE

Fig.3 suggests the dependence of the effective tempera-
ture on the square of the Péclet number. The theoretical
line and tha data at different densities are shown. Further
analysis would show a non-monotonic behavior as a func-
tion of the density. TJeff is calculated by a fluctuation-
dissipation relation involving the mean square displace-
ment in the last diffusive regime and the integrated linear
response. At the value Fa = 0.1 we compared the value
of the effective temperature shown above with that com-
ing from the velocity distribution of tracers at different
increasing masses. We found that the temperature of the
tracer reached the one calculated from the system itself
when the ratio between the mass of the tracer and that
of the dumbbells is of the order of 104.

0.01

0.10

1.00

10.00

100.00

0.00 0.01 0.10 1.00

T
e
ff

Fact

φ=0.1
0.2

0.3

0.4

0.5
Teff(Fact,φ=0)

FIG. 3. Effective temperature as a function of the active
force.
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The identification and characterization of heteroge-
neous populations of biomolecular systems (e.g. cells,
proteins, nucleic acids) has aroused a great interest in
molecular biology. For instance, the state of the art in
cancer research are the targeted and personalized thera-
pies. Such therapies require to identify and characterize
with extremely high accuracy the healthy cells and the
cancer cells. Thus, it is clear the importance of under-
standing and characterization of heterogeneous molecular
systems.

Thanks to the recent advances in single-molecule
experiments1 we can manipulate with high precision
and sensitivity individual molecules, providing us a
formidable tool to study and characterize an ensemble
of different molecules at the nanoscopic scale.

An essential step in this project is to answer the fol-
lowing question:

Is it possible to discriminate the folding free energies
of different structures of a mutational ensemble of DNA
hairpins?

To answer this question, we have taken a standard and
well-known canonical DNA hairpin, such as CD42, which
consists on a stem of 20 base-pairs ending in a tetraloop
(see figure 1-A), and we randomized 4 base-pairs (blue
circles in figure 1-A) so that several populations of hair-
pins are obtained. Any of the four nitrogenous bases
presents in DNA (adenine, guanine, thymine and cyto-
sine) may be found in each mutated location, so we have
48 = 216 different populations.

This purpose cannot be done in bulk measurements
where only an average behavior of the system is mea-
sured. Thus, the context of single-molecule experiments
is the perfect scenario to characterize a sample composed
by mutated DNA hairpins.

To this end, we carry out pulling experiments using a
miniaturized dual-beam laser optical tweezers apparatus3

that allows us to stretch an individual molecular con-
struct (i.e. the DNA hairpin). This device is able to
measure the applied force and the end to end distance
(distance λ, see figure 1-B). The thermodynamical prop-
erties of the molecule under study can be inferred from
the resulting force-distance curve. For example, we can
extract the free energy difference between the folded and
unfolded state of the DNA hairpins using Fluctuation
Theorems.

In particular, Crooks Fluctuation Theorem4 allows us
to extract free energy differences of formation of native
molecular structures from bidirectional pulling experi-
ments (that is, combining work measurements along un-
folding and refolding paths):

PF (W )

PR(−W )
= eβ(W−∆G) (1)

Where W is the work exerted on the system that can
be calculated using5:

W =

∫ λf

λi

fdλ (2)

∆G = G(λf ) − G(λi) is the free energy between the
folded and unfolded state and PF (W ), PR(−W ) are the
work distributions along the forward (F, unfolding) and
the reverse (R, refolding) processes, respectively and β =
1/kBT .

In consequence, this method allows us to characterize
the energy spectrum of the mutant ensemble (see figure
1-C). In consequence, we can say that it is possible to
discriminate between the elements of an ensemble using
the free energy of formation at zero force.

Besides, we have find out that the global work distribu-
tions of the mutational ensemble satisfy the Crooks Fluc-
tuation Relation with an effective temperature higher
than the actual temperature (see figure 1-D). In this work
we have developed a theoretical model that, combined
with the previous result, make possible to quantify and
characterize the degree of heterogeneity of a mutant pop-
ulation of nucleic acids.

This work is the previous step that makes clear the fact
that we can study evolution at a molecular scale using
single-molecule techniques.

Since 1859, when Charles Darwin founded the grounds
of evolutionary biology in his work “The Origin of
Species”6, the study of evolution has aroused a great in-
terest within all scientific disciplines. Darwin explained
for the first time how species evolve in time through mu-
tations and selective amplifications of the fittest. In other
words, the main features of evolution are variation and
selection.

On the other hand, we know that evolution does not
only takes place in macroscopic organisms. In fact, evolu-
tion can be regarded as a process where environmental in-
formation is encoded into the genetic code of organisms7.
Therefore, variability (i.e. heterogeneity) and selection
are also present at molecular scale.

Thus, combining our experimental and theoretical
framework with directed evolution methods we can make
feasible to study molecular evolution.
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C) D)

FIG. 1. DNA hairpins, experimental setup and folding free energy distribution A) Sequence and structure of cd4.
Locations randomized are indicated in circles. B) Experimental setup. C) Free energy distribution at zero force in kBT units.
D) Logarithm of the ratio of the global work distributions, linear fit (solid straight line) and comparison to theoretical model
(dotted line). Comparison with actual temperature (dashed line).
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I. INTRODUCTION

It is well-known that various forms of stochastic reso-
nance occur in neural tissue, both in vitro and in living
brains1. An unsolved macro-problem is to what extent
noise facilitates, or is necessary, for the functioning of
various computational tasks accomplished by the brain
in giving rise to perception, cognition, and behaviour1.
This presentation describes the context for three impor-
tant problems within this arena: To what extent may
the oscillatory behavior of individual neurons, or linked
populations of neurons, best be characterized as noise-
driven quasicycles or as noisy limit cycles? What role(s)
does neural noise play in the synchronization of, and in-
formation transmission between, neural populations lo-
cated far from one another in the brain? To what extent
do noise-driven quasipatterns arise in the brain and affect
its overall functioning?

II. NOISY LIMIT CYCLES OR NOISE-DRIVEN
QUASICYCLES?

An influential model of the interactions between pop-
ulations of excitatory and inhibitory neurons in brains
(Fig. 1) is

τEdVE(t) =

[
− VE(t) + g

[
aE

(
SEEVE(t)− SEIVI(t)− θE

+ PE(t)
)]]

dt+ σEdWE(t),

(1)

τIdVI(t) =

[
− VI(t) + g

[
aI

(
− SIIVI(t) + SIEVE(t)

− θI

)]]
dt+ σIdWI(t),

(2)

where VE(t), VI(t) are voltages of excitatory
and inhibitory neuron populations, respectively,
SEE , SII , SEI , SIE are synaptic efficacies, τE , τI are
time constants, g is a threshold function, aE , aI , θE , θI
are constants, PE(t) is input current, and WE(t),WI(t)
are standard Brownian motions. This model is similar
to some models of individual neurons, e.g., the Morris-
Lecar neuron, where a pair of differential equations
models fast and slow processes within the neuron2.
When g(x) = (1 + e−x)−1 and σ = 0, this model yields

deterministic limit cycles with a characteristic frequency,
i.e., neural oscillations3. When σ > 0 the limit cycle is
noisy4, and for very large σ the noise obscures the limit
cycle and there is no oscillation apparent. If we take
g = 1, aE = aI = 1, θE = θI = 0, and P (t) = 0, then the
system exhibits a damped oscillation that goes to a fixed
point with a rate depending on the synaptic efficiacies
and the time constants. If we take σ > 0, however,
then the system exhibits quasicycles, that is, the noise
drives the system away from the fixed point and we see
what appear to be noisy oscillations about that point at
a mean frequency determined by the various synaptic
efficacies and time constants5. Thus, in the limit cycle
version of the model, noise is a nuisance that obscures
the inherent oscillations that may, or may not, play a
significant role in information processing in the brain. In
the quasicycle version of the model, however, noise is an
essential driving force without which neurons or neuron
populations would not exhibit oscillations, or any other
interesting behaviour, at all. This is a quinessential
example of what McDonnell and Ward1 called ‘stochastic
facilitation.’ Although much theoretical work has been
done on the limit cycle model, and some is beginning
on the quasicycle version (e.g.,4–6), it is unknown which
model best captures the characteristics of oscillatory
neural activity in the brain, or indeed whether both
models capture neural oscillations at particular scales.
There are some reasons to believe that quasicycles
dominate at intermediate scales in the brain5 but much
more information is needed. There exist some methods
that may differentiate between noisy limit cycles and
quasicycles7 but these have yet to be applied to a wide
range of neural data at many scales.

FIG. 1. Typical arrangement of an excitatory (E) and in-
hibitory (I) neuron pair. SEE , SII , SEI , SIE refer to the
synaptic efficacies of the connections; see equations (1), (2).
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III. NOISE IN SYNCHRONIZATION AND
INFORMATION TRANSMISSION?

Noise is known to facilitate neural synchronization,
both through studies of models8 and through experi-
ment9. Interestingly, even when deterministic versions of
the Wilson-Cowan equations are studied, noise is added
to the simulation process in order to ‘accelerate’ the pro-
cess10. Importantly, both limit cycle10 and quasicycle11

models of neural interactions exhibit Kuramoto-type syn-
chronization, indicating that for local neural populations
at least, noise could be deeply involved in neural syn-
chronization, and thus could play an important role in
information transmission in the brain. This is because os-
cillatory synchronization of neural populations has been
seen as an important mechanism for improving informa-
tion transmission between those populations12.

There is considerable controversy about the role of neu-
ral oscillations in the brain, however. And there have
been no direct experiments to our knowledge on the effect
of variations in neural noise levels on any information-
transmission related neural computational tasks. More-
over, if quasicycles dominate at the scale of interregional
information transmission, then there is likely an opti-
mal noise level involved, both for the maintenance of the
quasicycles themselves and for the synchronization be-
tween sets of quasicycles. It is unknown whether such
a noise level would be the same for both functions, or
whether different noise sources and levels (synaptic noise
for synchronization and ion channel noise for quasicy-
cles?) would be required.

Finally, it is possible that information can be trans-
mitted between brain regions through a multiplexing-
demultiplexing process that depends on an oscillatory
modulation of noisy firing-rate population codes13. It
is unknown whether such a scheme requires stochastic-
ity (noise) or whether it would work better without any
noise at all.

IV. NOISE-DRIVEN QUASIPATTERNS?

Stochastic differential equation models of neural sys-
tems, like the stochastic equations 1 and 2, describe only
fluctuating temporal oscillations. But several large scale
models of the brain, when simulated, have indicated that
spatial patterns of temporal oscillations can occur, e.g.14.
Recently mathematical methods have been developed to
derive temporal and spatial patterns (indexed by fre-
quency ω and by wave number k)15 from a system of
stochastic partial differential equations. Power spectra,
as in Fig. 2, indicate the existence of temporal-spatial
quasipatterns (Turing patterns) occurring on a lattice.
, as in Potentially such a system could be extended to
describe the types of noise-driven quasipatterns seen in
other models and in the brain itself, providing an account
of the generation and consequences of such noise-driven
quasipatterns. This is yet to be be accomplished.

FIG. 2. Power spectrum showing spatial-temporal stochastic
patterns. Reprinted with permission from16.
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I. ABSTRACT

Despite numerous studies indicating anomalous tem-
poral statistics and scaling in spontaneous human ac-
tivitity and interhuman communication, there is much
on-going discussion on the origin and universality of
observed statistical laws. Behavioral processes are fre-
quently conveniently characterized in terms of stimulus-
response approach1,2, by adapting a systematically re-
peated, the same external sensory protocol which allows
to estimate the statistics of subject’s responses. In a
more general attitude, in which brains are conceived as
information processing output-input systems3,4, the ob-
served self-similar temporal patterns of non-stimulated
spontaneous neuronal activity can be determined by an-
alyzing spatio-temporal statistics of location and timing
of neural signals. Similar to scale-free fluctuations de-
tected in psychophysical time series, also dynamics of
collective neuronal activity at various levels of nervous
systems exhibit power-law scalings. Remarkable scale-
free fluctuations and long-range correlations have been
detected on long time scales (minutes and hours) in data
recorded with magneto and electroencephalography and
have been attributed to the underlying dynamic architec-
ture of spontaneous brain activity discovered with func-
tional MRI (fMRI) and defined by correlated slow fluc-
tuations in blood oxygenation level-dependent signals.

On the other hand, negative deflections in local field
potentials recorded at much shorter time scales (millisec-
onds) have been shown to form spatiotemporal cascades
(neuronal avalanches) of activity, whose size (amplitude)
and lifetime distributions are again well described by
power laws. These power-law scaling behaviors and frac-
tal properties of neuronal long-range temporal correla-
tions and avalanches strongly suggest that the brain op-
erates near a critical, self-organized state3 with neuronal
interactions shaping both, temporal correlation spectra
and distribution of signal intensities. It seems thus plau-
sible to further investigate timing, location and ampli-
tudes of such cascades to gain information about under-
lying brain dynamics and to identify characteristics of

stochastic spatial point processes which can serve as re-
liable models of the ruling dynamics.

Some neurological and psychopathic diseases such as
Parkinson disease, vascular dementia, Alzheimer disease,
schizophrenia, chronic pain and even sleep disorders and
depression are related to abnormal activity symptoms.
So far there are many, non-unique evaluative measures
used in clinical practice to determine severity of these
disorders or the effect of applied drugs. The challenge
thus remain to what extent correlations during resting
state (spontaneous) activity are altered in disease states
and whether a set of characteristic parameters can be
classified unambiguously to describe statistics of healthy
versus unhealthy mind states and spatiotemporal orga-
nization of such disrupted brain dynamics.

Motor activity of humans displays complex tempo-
ral fluctuations5,6 which can be characterized by scale-
invariant statistics, thus documenting that structure and
fluctuations of such kinetics remain similar over a broad
range of time scales. Former studies on humans regu-
larly deprived from sleep or suffering from sleep disor-
ders predicted change in the invariant scale parameters
with respect to those representative for healthy subjects.
In these studies we investigate the signal patterns from
actigraphy recordings5 by means of characteristic mea-
sures of fractional point processes. We analyze sponta-
neous locomotor activity of healthy individuals recorded
during a week of regular sleep and a week of chronic par-
tial sleep deprivation. Behavioral symptoms of sleep lack
can be evaluated by analyzing statistics of duration times
during active and resting states, and alteration of behav-
ioral organization can be assessed by analysis of power
laws detected in the event count distribution, distribu-
tion of waiting times between consecutive movements and
detrended fluctuation analysis (DFA) of recorded time se-
ries. We claim that among different measures character-
izing complexity of the actigraphy recordings and their
variations implied by chronic sleep distress, the expo-
nents characterizing slopes of survival functions in resting
states are most effective in determining biomarkers dis-
tinguishing between healthy and sleep-deprived groups.
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Noise in graphene and carbon nanotube devices
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I. INTRODUCTION

Carbon nano-materials, specifically carbon nanotubes
and graphene, are genuine 1D and 2D systems benefitting
from a wide tunability of carrier density by field effect
doping. As such they constitute a unique platform for in-
vestigating electronic noise in conductors. In increasing
sample current bias I, the current noise spectral density
SI , in reduced units given by the Fano factor F = SI/2eI,
is a faithful tracer of the transition form quantum to clas-
sic behavior. As depicted in Fig.1, the low bias regime
is the realm of quantum scattering where shot noise is
ruled by the nature of impurity scatterers; at interme-
diate bias electron-electron interactions set-in and show
up by a hot electron noise characterized by a universal
Fano-factor F =

√
3/4; at higher biases electron-phonon

relaxation comes into play to cool the hot carriers with
a scenario that is very generic in graphene.

Quantum noise       hot electrons              phonon cooling

FIG. 1. Crossover from quantum to classical world illustrated
by electronic noise.

Due to weak electron phonon coupling, the electronic
temperature strongly decouples form phonon tempera-
ture in biased graphene (see fig.2). The first mechanism
to come are the acoustic (AC) phonons coupling starting
by cold-phonons in the Bloch-Grüneisen regime1, the su-
percollision hot-phonon regime2 and finally the ultimate
non degenerate electron regime3. In the biasing process
the electronic temperature strongly decouples from lat-
tice temperature, reaching several hundreds of Kelvins.
The good understanding of AC-phonon cooling and the
recent availability of high mobility graphene, allow to in-
vestigate the more exotic case of optical (OP) phonon
cooling which sets in above 1000 Kelvin in carbon nano-
materials4,5; few issues are yet unsolved like the role of

substrate surface phonons, a very hot electromagnetic
environment for electrons in nano-carbon materials.
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FIG. 2. a) Electronic temperature in graphene measured by
high-frequency noise thermometry; b) three regimes of hot
electrons in graphene (adapted from Ref.2)

Hot electron thermometry requires high-resolution
high-frequency noise measurements. These are needed
to overcome the spurious contribution of 1/f -noise that
scales quadratically with current and invades gradually
the thermal white noise spectrum (see Fig.3) which has
a sublinear dependence on current (see Fig.3). The 1/f -
noise itself is a long-standing unsolved problems; it be-
longs to the family of flicker noises which may have dif-
ferent origins. Thanks to its wide tunability, graphene
is a unique and versatile material to revisit the basics or
1/f resistance noise and eventually give new clues to the
supposed universality of the Hooge constant αH ∼ 10−3.
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FIG. 3. Principles of hot-carrier noise thermometry (adapted
from Ref.1)

.
A pillar of noise thermometry is the Johnson noise for-

mula SI = 4GnkBTe relating the current noise spectrum
in a resistor to the electronic temperature via a so-called
noise conductance Gn. It is common practice to identify

Gn with the 2-terminal drain-source conductance Gds.
However, as pointed out by A. Van der Ziel back in 1962,
the noise conductance may eventually deviate from the
channel conductance in high-gain field effect transistors
(FETs). This question was recently revisited using single
carbon nanotube FETs as a ultimate single mode nano-
transistor7,8. We could calculate the quantum correction
in Gn which is proportional to the transconductance Gm,
which is enhanced in CNT-FETs as measured by GHz
noise thermometry in Ref.8.

In conclusion graphene and carbon nanotubes have
proved to be a valuable platform to put to test challeng-
ing issues in noise physics. This will probably continue to
takkle more Unsolved Problems on Noise in the future.
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B., Pallecchi, E. Phys. Rev. Lett. 109, 056805 (2012). Hot
electron cooling by acousitic phonons in graphene

2 A.C. Betz, S.H. Jhang, E. Pallecchi, R. Ferreira, G. Fève,
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Is the peculiar behavior of 1/f noise in graphene the result of the interplay between
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I. INTRODUCTION

Flicker noise in graphene based devices has attracted
significant interest1 because of the very peculiar features
it exhibits, in comparison with what is observed in more
traditional materials. In particular, the behavior of the
noise power spectral density (PSD) as a function of car-
rier concentration has turned out to be rather puzzling,
especially in bilayer graphene, and several authors2–6

have made an effort to find an explanation for it. For ex-
ample, it has been observed that the PSD of flicker noise
in bilayer graphene, and sometimes also in monolayer
graphene, has a minimum around the Dirac point, where
charge concentration also reaches a minimum, while in
conductors obeying Hooge’s empirical formula7 the op-
posite is expected. Attempts have been made to jus-
tify the particular dependence of the flicker PSD on car-
rier concentration on the basis of the known presence of
electron and hole puddles in the graphene sheet2, of a
supposed variation3 of the Hooge parameter with gate
voltage, which would prevail on the effect of the carrier
number decrease, of effects linked to mobility fluctua-
tions4, of a charge-noise model5, or of the bandstructure
of single layer and bilayer graphene6. Experiments have
also shown8 that the noise factor in monolayer graphene
nanoribbons is independent of the resistance to length
ratio, while a clear dependence on such a quantity is
observed for bilayer graphene nanoribbons. However, a
comprehensive model, capable of explaining all observed
features, is still lacking. In the present contribution, we
shall try to provide a framework within which a more
general understanding of flicker noise in graphene sheets
and nanoribbons can be derived.

II. CURRENT FLUCTUATIONS

Our aim is to find an expression for the PSD of flicker
current noise in graphene-based devices. We assume that
flicker noise is the result of charges moving into and out of
traps that have an electrostatic coupling with the chan-
nel where the current flows. We also assume that such
fluctuations occur on a time scale much longer than that
of carrier scattering events (such as phonon scattering).
Thus the contribution of each elementary area of the de-
vice is due to the fluctuation of the local value of the drift
current; this can be related to the current at the termi-
nals via the Ramo-Shockley-Pellegrini9–11 theorem. In
particular, if, for the sake of simplicity, we do not enter
into the specific details of the device geometry and as-

sume the electric field E to be somewhat constant across
the device, we can write the current at the terminals, as
long as we are interested just in the low-frequency fluc-
tuations, in the form

I =
1

L

∫
A

µnEdxdy , (1)

where µ is the mobility, A = WL the area of the device,
L being its length and W its width. Let us now move
on to the evaluation of the fluctuations of the current.
We are interested only in the fluctuations due to charges
moving into and out of traps, therefore we can consider
just the action of such traps. In principle, trapping and
detrapping events have an action not only on the num-
ber of carriers available for conduction, but also on the
mobility, and on the local electric field. These two lat-
ter contributions are in general negligible with respect
to the former12, so that the relative fluctuation for each
trap can be written

∆i

I
=

1

A

∫
A

∆nc
nc

dxdy , (2)

where nc = nn +np, i.e. the total concentration of carri-
ers, while we also define n = nn − np, which, multiplied
by the electron charge, gives the total charge density.

Assuming for each trap a random telegraph signal χ
for the occupancy (with a value of 1 when the trap is
occupied and 0 when it is empty), the relative variation
of the current due to a charge moving into the trap can
be written12

∆i

I
= − 1

A

(
ac
anc

)
∆χ, (3)

where ac = ∂nc/∂U (with U being the electrostatic po-
tential energy), a = ∂n/∂U . The superposition of the
Lorentzian spectra associated with the traps leads to a
PSD13

S

I2
=
ntB

A

(
ac
anc

)2
1

fγ
, (4)

where nt is the trap density, B is a proper coefficient, and
γ is usually 1 (flicker noise). We must consider that the
potential is not at all uniform across a graphene sheet,
but, rather, it fluctuates, due to the presence of impu-
rities and of defects. Thus the PSD of Eq. (4) has to
be weighed with the distribution function P (U) of the
potential energy:

〈S〉
I2

=
〈nt〉
Afγ

∫
B

(
ac
anc

)2

P (U)dU , (5)
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where we assume a Gaussian form for P (U), with a stan-
dard deviation σ∗.

III. RESULTS
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FIG. 1. Behavior of the PSD in monolayer graphene as a
function of the applied gate voltage Vg, for three values of the
standard deviation σD.
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The result for single-layer graphene is shown in Fig. 1
for 3 values of σD, where σD = σ∗â, with â ∝ n0 the value
of a for U = 0. The quantity n0 is the reference density,
given by n0 = (1/π)[kBT/(~v)]2 ≈ 7 × 1010 cm−2, with

v being the in-plane velocity. For the lowest value of
the standard deviation we notice a minimum of the noise
around the Dirac point as a result of a suppression of cur-
rent fluctuations resulting from the presence of an equal
concentration of carriers with charges of opposite sign.
We see that, for increasing σD, the behavior of the noise
power spectral density as a function of the applied gate
voltage moves from an M shape to a Λ shape, as a re-
sult of the increasing smoothing effect of P (U). In Fig. 2
we report instead the behavior of the PSD as a function
of the gate voltage for bilayer graphene, for a choice of
3 values of the standard deviation. We notice that now
the shape is always of the V type, as a result of the much
smoother variation of the energy dispersion relationship
around the Dirac point with respect to what happens for
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FIG. 3. Noise factor ψ = 〈S〉L2/R for monolayer (topmost
curve) and for bilayer (lower curves) graphene nanoribbons,
as a function of R/L.

monolayer graphene. The proposed approach can be ap-
plied also to nanoribbons, which are characterized by a
peculiar bandstructure. If we consider armchair nanorib-
bons and compute the quantity ψ = 〈S〉L2/R, where R
is the nanoribbon resistance, we get the results reported
in Fig. 3, as a function of R/L. We notice that for mono-
layer graphene nanoribbons there is no significant vari-
ation (at least in the considered range of resistances) of
the noise factor, while for bilayer graphene, in a semilog-
arithmic scale, there is a clear linear dependence on the
R/L ratio, with a different slope for different nanorib-
bon widths. This is in agreement with the experimental
results by Lin and Avouris8.
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I. INTRODUCTION

Graphene is a two-dimensional carbon allotrope
consisting of a single-atom-thick sheet of carbon atoms
arranged in a hexagonal lattice. Its remarkable prop-
erties have made it become, in the recent years, one
of the most fashionable materials among the industry
and researchers due to its promising aptitudes for a lot
of electronics and optoelectronics applications1–3. The
above described crystalline structure gives rise to an
unusual gapless conic-shaped dispersion relation in the
vicinities of the six K points (i.e. the six points in the
Brillouin zone where EF = 0) which is of tremendous
interest for being the origin of the massless behaviour
that electrons exhibit in this material4. The most direct
implication of this feature is that electrons in graphene
travel with a constant velocity called the Fermi velocity,
vF ≈ 106 cm s−1, and therefore carrier velocity along
a certain direction depends only on its wavevector ori-
entation: vx = vF

kx
|~k|

. As a result, velocity fluctuations

in graphene are limited5 to a maximum value of 2 vF
and velocity relaxation through scattering mechanisms
depends only on the momentum orientation, and it is
strongly affected by the anisotropy of the scattering
mechanisms.
For most of the practical uses, graphene is not used as
separated sheets, but attached to a substrate layer. The
presence of a substrate affects the graphene performance6

by degrading the carrier mobility velocity and diffusion
coefficient at low fields but increasing the saturation
velocity. In this work, we will assess the influence
of h-BN and SiO2 substrates in the transient regime
velocity fluctuations compared to the ideal monolayer
suspended graphene.

As a result of the above mentioned interest in this
material, several works regarding noise in graphene
devices have been carried out7–10. With the purpose
of offering a miscroscopic study of the inherent sources
of noise in the material, we present a study of instan-
taneous velocity fluctuations in graphene by means of
computational simulation performed with the Ensemble
Monte Carlo Method. Our simulator takes into account
the massless Dirac Fermions behaviour related to the
linear dispersion relation. Pauli exclusion principle
is implemented through a rejection technique after
each scattering event. The scattering sources taken
into account in our simulations are optic, intravalley
and intervalley acoustic phonons, and surface polar
phonons in case of graphene on a substrate11,12. In
addition, we include in this work the effect of elastic

scattering with charged impurities, considering a density
nimp = 5 × 1011cm−2 in both suspended graphene and
graphene on a substrate. Given the importance of all
these interactions in the velocity fluctuations, along with
the strong dependence of velocity with the wavevector
orientation, the anisotropy of all these scattering mech-
anisms is treated rigorously.

In previous studies we have used Monte Carlo sim-
ulations to examine velocity fluctuations in graphene13

and diffusion coefficients were calculated from the cor-
relation function of velocity fluctuations5,11. However,
when devices work under switching conditions, the car-
riers are not usually in a steady state, but in a tran-
sient situation of change towards the final stationary
state associated with the applied electric field. In this
work we offer an in-deph study in the transient regime
of the velocity fluctuations for suspended graphene and
graphene on a substrate. For this, we set transient
regimes for low to high electric fields and vice versa. In
the case of graphene, due to its high mobility, we chose
the low field value so that it is away from the values
that produce the saturation velocity. The quantities to
be analysed are the transient correlation function and
spectral density of velocity fluctuations, which are cal-
culated from the Monte Carlo simulator as follows. The
instantaneous velocity fluctuation for a single electron,
is δv(t) = v(t) − 〈v(t)〉, where the brackets indicate the
ensemble average. The autocorrelation function keeps its
traditional definition5. On its behalf, since the study of
velocity fluctuations is performed over finite times during
the transient, the spectral density cannot be obtained as
the Fourier transform of the autocorrelation function.14

Instead, it is calculated at different times with the ex-

pression Sδv(f, τ) = 1
τ

〈∣∣∫ τ
0
δv(t)ejωt dt

∣∣2〉.

II. RESULTS

In Fig. 1 we show the averaged ensemble velocity
during the transient from low to high field and vice
versa. For the low to high field leap (Fig. 1-a) stationary
velocity is reached in a sub-ps time scale. The velocity
overshoot is less pronounced in the graphene on a sub-
strate than in suspended samples. It is to highlight the
difference in the transient times, that are much longer
in high to low field transitions. For the high to low field
transient (Fig. 1-b) the trend of the saturation velocity
is different if we compare the suspended graphene to
graphene lying on a substrate. In the suspended case,
the transient velocity experiments an intense drop until
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FIG. 1. Time evolution of the averaged ensemble velocity for
suspended and supported graphene. The transients are (a)
0.1 to 10 kV cm−1 and (b) 10 to 0.1 kV cm−1

reaching a minimum at t ≈ 1 ps and afterwards there is
a progressive increase until reaching the stationary state
at around 15 ps. For graphene on a substrate, the steady
state velocity for 0.1 kV cm−1 is reached in less than
5 ps, being the local minimum totally absent when the
substrate is SiO2 and almost inappreciable if it is h-BN.

Fig. 2 depicts the 0.1 to 10 kV cm−1 transient spectral
density for various instants for suspended graphene
(a) and graphene on SiO2 (b). The qualitative evo-
lution is quite similar. In the two cases the spectral
density starts with similar values. Then, progressively
it evolves towards the 10 kV cm−1 stationary spectral
density, increasing in the frequencies ranging from 500
to 3000 GHz, where there is a maximum, and decreasing
less prominently in the rest of the frequency range
considered.. In suspended graphene the maximum is

already perceptible at 0.25 ps and shifts towards lower
frequencies for the successive intervals. With regard
to the SiO2 sample, the maximum persists around the
same frequency for all the intervals considered.

In the conference a deeper study will be offered from the
analysis of the microscopic information extracted from
the Monte Carlo simulations together with the transient
correlation functions and the spectral densities.
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I. INTRODUCTION 

Beyond being an obstacle to any electronic communications 

system, noise can also be an important source of information on 

the different mechanisms of electron transport in a given device1. 

Studies on electronic noise can provide valuable information to 

better understand the electron transport mechanisms in 

semiconductor devices. More concretely, the effect of Pauli 

principle and/or Coulomb interaction on the carrier statistics in 

ballistic media, and how it may result in suppressed shot-noise 

levels with respect to the full Poissonian value (2qI), is a field of 

interest for physicists and electronic engineers2-3. However, the 

experimental evidence of such shot-noise suppression mechanisms 

is rather difficult to obtain.  

II. EXPERIMENTAL RESULTS 

In this work the measured noise characteristics of a set of 

recessed planar InGaAs/InAlAs diodes are presented. For the 

measurement, a PNA-X N5244A with Option 029 from Agilent 

Technologies has been used, which allows acquiring the output 

power density from an electronic device with high levels of 

accuracy and sensitivity4. The data in the range between 20 and 30 

GHz (in the plateau beyond 1/f noise) was averaged in order to 

improve the precision of the results. The geometry of the diode is 

depicted in Fig. (1) and basically consists in an ungated HEMT 

topology with a recess between the drain and source terminals5. 

The recess leads to the presence of a barrier in the potential profile 

[see Monte Carlo results in the inset of Fig. (1)], which, by 

modulating the passage of ballistic carriers, is expected to 

suppress the associated shot-noise by virtue of Coulomb 

correlations2. 

In Fig. (2) we present the results of a first experiment with three 

devices of different recess lengths (LR), i.e. 200, 500 and 800 nm. 

The drain/source accesses (LD and LS) are 550 nm and 200 nm 

length in all three cases. For comparison, another device without 
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FIG. 1: Sketch of the device and simulated potential profiles in 

the recess region for several bias voltages. 
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FIG. 2. Measured results of three devices with different recess 

lengths (LR): (a) I-V curves, (b) current noise density (SI) vs. 

bias current, and (c) Fano factor (F) vs. bias voltage. 
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recess and 1300 nm total length has also been measured. The I-V 

curves of all the devices are plotted in Fig. (2a). As expected, 

longer recess regions make the device more resistive, which in 

turn provides lower current levels. The current noise density (SI) 

and the Fano factor (F=SI/2qI) are shown in Figs. (2b) and (2c), 

respectively. The current-noise density of the device without 

recess is nearly constant with bias, which indicates that thermal 

noise dominates due to the diffusive nature of the transport along 

the device, leading to a Fano factor continuously decreasing with 

bias. On the opposite, recessed devices present different response. 

For low bias, they also show flat current noise density. However, 

above certain voltage (around 0.6 V, when intervalley 

mechanisms are activated) the current noise density begins to 

significantly increase proportionally to current, indicating the 

presence of shot-noise due to ballistic transport in the recess 

region, but suppressed with respect to the full shot-noise value. 

Also, the Fano factor is slightly lower in the device with longer 

recess due to the presence of a higher barrier in the potential2 

(counteracting the expected decrease of F due to a lower 

contribution of the thermal noise of the accesses). 

In a second experiment, three devices with different drain 

access lengths have been characterized. The source (LS) and recess 

(LR) lengths are both 200 nm in all three cases. The I-V curves of 

the devices are plotted in Fig. (3a). In this case, the three devices 

present similar characteristics, indicating that the current levels are 

mainly determined by the recess, which has the same length in this 

case. The current noise densities are shown in Fig. (3b). Again, 

noise proportional to current appears, suppressed with respect to 

the full Poissonian value. Also, it can be observed how for very 

high bias, the current density decreases in some cases. This effect 

is more noticeable for longer drain accesses, which in turn present 

higher resistivity and further attenuate the shot noise generated in 

the ballistic recess region. As it can be observed in Fig. (3c), F is 

correspondingly lower in the case of longer drain access, 

presumably due to the attenuation of the shot noise contribution to 

the total noise when this region becomes very resistive. 

III. CONCLUSIONS 

The noise measurements performed in a set of recessed planar 

InGaAs/InAlAs diodes show evidences of shot noise suppression 

due to the potential barrier imposed by the recess. An increase of 

the spectral density at voltages above 0.6 V, in parallel to that of 

the current, could be understood as a signature of the presence of 

suppressed shot noise in the recess region where electron transport 

is quasiballistic and a fluctuating potential barrier is able to 

regulate the electron flow. The dependence of the total noise and 

F on the geometrical parameters is consistent with this 

explanation. However, the thermal noise contribution of the 

source and drain access regions (together with the one associated 

to the ohmic contacts) does not allow to precisely extract the value 

of the noise generated below the recess, and whether it is full or 

suppressed shot noise.  
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FIG. 3. Measured results of three devices of different drain 

access lengths (LD): (a) I-V curves, (b) SI vs. bias current, and 

(c) F vs. bias voltage. 
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I. INTRODUCTION

Many complex systems exhibit large fluctuations of
macroscopic quantities having non-Gaussian power law
distributions as well as power law temporal correlations
and scaling.1 The power law distributions, scaling, self-
similarity and fractality can be related to the power law
behavior of the power spectral density (PSD), which is
one of the most important characteristics of a signal. Sig-
nals having the PSD at low frequencies f of the form
S(f) ∼ 1/fβ with β close to 1 are commonly referred
to as “1/f noise”. Power-law distributions of spectra of
signals with 0.5 < β < 1.5, as well as scaling behavior are
ubiquitous in physics and in many other fields. For re-
cent reviews see 2–4. Despite the numerous models and
theories proposed since its discovery 90 years ago, the
subject of 1/f noise remains open for new discoveries.
Most models and theories of 1/f noise are not universal
due to the usage of assumptions specific to the problem
under consideration.

Often 1/f noise is modeled as the superposition of
Lorentzian spectra with a wide range distribution of re-
laxation times.5 A class of the models of 1/f noise espe-
cially relevant for understanding of complex systems in-
volves the self-organized criticality.6 Yet another model
of 1/f noise has been proposed by Kaulakys:7,8 it has
been shown that the origin of 1/f noise in a signal con-
sisting of pulses may be a Brownian motion of the inter-
pulse time. The nonlinear stochastic differential equa-
tions (SDEs) generating signals with 1/f noise has been
obtained starting from this point process model of 1/f
noise9,10. Such nonlinear SDEs have been used to de-
scribe signals in socio-economical systems11,12.

In this contribution we generalize the mechanism lead-
ing to 1/f noise in the signals consisting of a sequence
of pulses. Instead of a sequence of pulses we start from
an SDE describing a Brownian motion in an external po-
tential. We construct a new equation by interpreting the
time in the SDE as an internal parameter and adding
an additional equation relating the physical time to the
internal time. We show that relation between the inter-
nal time and the physical time that depends on the size
of the signal can lead to 1/f noise in a wide interval of
frequencies.

II. 1/f NOISE AND DIFFUSION IN
NON-HOMOGENEOUS MEDIA

Impurities and regular structures in the medium re-
sults in a transport of variable speed, the particle may be
trapped for some time or accelerated. Non-homogeneous
systems are characterized not only by subdiffusion re-
lated to traps, but also enhanced diffusion can arise as
a result of the disorder.13 The dynamics of such a sys-
tem is described by the continuous time random walk
(CTRW) theory. In an equivalent description the dy-
namics is Markovian and governed by a Langevin equa-
tion in an auxiliary, operational time instead of the phys-
ical time. This Markovian process is subordinated to the
process yielding the physical time.

Since the trap properties should reflect the structure
of the medium, a description of the transport should take
into account that the waiting time explicitly depends on
the position. Here we consider the situation when the
small increments of the physical time are deterministic
and proportional to the increments of the internal time.
The coefficient of proportionality is a function g(x) of a
particle position. This function models the position of
structures responsible for either trapping or accelerating
the particle. Thus, we start from the following set of
equations:

dxτ =F (xτ )dτ + dWτ , (1)

dtτ =g(xτ )dτ . (2)

Here τ is an internal, operational time and t is the phys-
ical time; F (x) is an external force affecting the particle
and Wτ is a standard Wiener process.

Writing the Fokker-Planck equation for the two-
dimensional density P (x, t) corresponding to (1), (2) and
changing the variable t to a variable τ one can reduce the
system of equations (1), (2) to a single equation in phys-
ical time with a multiplicative noise

dxt =
F (xt)

g(xt)
dt+

1√
g(xt)

dWt . (3)

There is a similarity to the signal consisting of pulses,
where the internal time is just the pulse number. In order
to obtain 1/f noise similarly as in a signal consisting of
pulses we choose the function g(x) as a power-law func-
tion of x: g(x) ∼ x−2η.

For example, if we start from a simple Brownian mo-
tion dxτ = dWτ restricted to a interval between xmin and
xmax and take g(x) = x−2η then the resulting equation
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FIG. 1. Signal generated by equation (5) with the parameters
η = 5/2 and λ = 3 (red line) together with the corresponding
internal time (blue line)

in the physical time is dxt = xηt dWt. In more general sit-
uation the initial equation can have a position-dependent
force. If we take the equation describing a Bessel process

dxτ =

(
η − λ

2

)
1

xτ
dτ + dWτ (4)

then the resulting equation in the physical time becomes

dxt =

(
η − λ

2

)
x2η−1
t dt+ xηt dWt (5)

This equation is the same as the nonlinear SDE generat-
ing signals with 1/fβ spectrum9,10. As has been shown,14

the reason for the appearance of 1/f spectrum is the scal-
ing properties of the signal: the change of the magnitude
of the variable x→ ax is equivalent to the change of the
time scale t→ a2(η−1)t.

Equation (4) together with dtτ = x−2η
τ dτ suggest an

efficient way of solving the non-linear SDE (5). Discretiz-

ing the internal time τ with the step ∆τ and using the
Euler-Marujama approximation for the SDE (4) we get

xk+1 =xk +
(
η − ν

2

) 1

xk
∆τ +

√
∆τεk , (6)

tk+1 =tk +
∆τ

x2ηk
(7)

Here εk are normally distributed uncorrelated random
variables.

An example of a signal generated by equation (5) to-
gether with the internal time is shown in Fig. 1. We see
that internal time increases rapidly when the signal ac-
quires large values. The corresponding spectrum is shown
in Fig. 2. The numerical solution confirms a presence of
a wide region where the spectrum behaves as 1/f .

In summary, we have demonstrated that the Brownian
motion in non-homogeneous medium can result in 1/f
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f

FIG. 2. Spectrum of the signal generated by equation (5)
with the parameters η = 5/2 and λ = 3 (red curve). Blue line
shows the slope 1/f

noise when the internal time and the physical time are
related via power-law function of the position. We expect
that the present model can be useful for explaining 1/f
noise in complex systems.
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I. INTRODUCTION

The use of nanometer field-effect transistors (FETs)
for the development of low-cost THz detectors and emit-
ters working at room temperature is one of the most
promising trends in ultrafast modern electronics. Such
devices should open the way to a large number of ap-
plications and may greatly benefit from the development
of integrated systems1. Mainly, this is associated with
the possibility of easy tuning the 2D plasma excitation
spectrum inside the transistor channel by changing the
external conditions, namely: gate voltage, drain voltage,
operation regime, etc.2–4. Indeed, under special excita-
tion and biasing conditions, stream-plasma instabilities
leading to the emission of THz radiation may be created
in the transistor channel5. On the other hand, it has
been proved both by experiments and numerical simula-
tions that the excitation of plasma modes in the transis-
tor channel increases significantly the efficiency of room-
temperature direct and heterodyne detection in the THz
frequency range6,7.

It is well known that the characteristics of the inter-
nal electronic noise of a device reflect the information
related to both the eigen-frequency spectrum2 and the
state of the free carrier system and its changes (for ex-
ample, in going from equilibrium to nonequilibrium con-
ditions). Such a dependence of the internal noise char-
acteristics on the physical behavior of free carriers can
also be used as a precursor of the transition from a first
physical state to another one such as, for instance, the
transition from a static to a dynamic state, onset of gen-
eration processes, etc.. In this contribution we present a
critical overview of the main features of electronic noise
spectra of FETs operating in the THz frequency range :
in particular, we discuss the possible influence of external
excitations and the role of the transistor geometry.

II. THEORETICAL MODEL

Carrier transport and related fluctuations are modeled
as a one-dimensional (1D) process by using simple hy-
drodynamic (HD) equations2

∂n

∂t
+
∂nv

∂x
= 0 (1)

∂v

∂t
+

∂

∂x

[
v2

2
+

e

m∗ϕ

]
+ eνD

∂n

∂x
+ vν = f̃ (2)

where n and v are the concentration and velocity of elec-
trons in the channel, respectively, ν is the velocity re-
laxation rate, m∗ the electron mass, D the longitudinal
diffusion coefficient, and f̃ the Langevin force which de-
scribes the source of thermal fluctations at the lattice
temperature T with the spectral density

Sff =
4kBTν

m∗ (3)

The self-consistent potential ϕ(x) inside the channel
is described by a 1D approximation of the 2D Poisson
equation8:

εc
∂2

∂x2
ϕ+ εs

Ug − ϕ
d(x)δ

=
e

ε0
[n(x)−ND(x)] (4)

where δ is the channel width, Ug the gate potential, ND
the effective donor concentration in the channel, d(x) the
effective gate-to-channel distance. A dependence of d(x)
on the coordinate in the channel allows us to describe
in the framework of Eq. (3) both gated regions where
d(x) has certain finite value and ungated regions where
d(x)→∞ is supposed to tend to infinity.

III. PLASMA RESONANCES EXCITATED BY
THERMAL FLUCTUATIONS

The system of Eqs. (1) to (4) is closed and it allows to
calculate numerically the spectral densities of current and
voltage fluctuations, SJJ(ω) and SUU (ω), respectively at
the transistor terminals as:

Sξξ(ω) =

∫ L

0

n(x0)|Gξ(ω, x0)|2Sff (x0)dx0 (5)

where L is the full length of the channel, Gξ(ω, x0) the
spectral representation of the response function (ξ =
J, U) to a local δ−like excitation at x = x0 induced by

the Langevin force f̃(x0).

Therefore, it is possible to calculate the spectral den-
sity of current fluctuations in source-drain (SD) and
source-gate (SG) circuits. A typical result calculated
at constant voltage operation, that is for ∆Ug = 0 and
∆Ud = 0, is reported in Fig. 1. We observe that, as ex-
pected, oscillations in the noise spectra which are related
to the resonant excitation of spatial modes of plasma
waves in the dielectric layer separating the channel from
the gate.
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FIG. 1. Calculated spectral density of current fluctuations in
source-drain and source-gate circuits calculated with Ud = 0
and Ug = 0.

IV. CRITICAL ANALYSIS AND OPEN
QUESTIONS

Using the previously described model we will present
a critical analysis of the main features of noise spectra
and a discussion of the following debated questions in
the literature:

1. To which extent the widely employed Dyakonov-

Shur model can describe correctly the noise spectra
and the associated plasma resonances?

2. What happens if the transistor channel is not a
perfect 2D gas, i.e. which is the role of the channel
thickness?

3. Which is the effect of a realistic topology, i.e. chan-
nel regions whose electrostatic potential is not di-
rectly controlled by the gate electrode?

4. Which is the effect of the embedding circuit, i.e.
can the plasma resonances be tuned by playing on
external discrete elements?

5. Can the noise be suppressed or enhanced by using
external electromagnetic excitations ?
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V. Gružinskis, ”Room-temperature terahertz mixer based
on the simultaneous electronic and optical excitations of
plasma waves in a field effect transistor”, Appl. Phys. Lett.
96, p013502, (2010).

8 H. Marinchio, C. Palermo, G. Sabatini, L. Varani, P.
Shiktorov, E. Starikov and V. Gružinskis, Pseudo-two-
dimensional Poisson equation for the modeling of field-effect
transistors, Journal of Computational Electronics 9, iss. 3-
4, pp. 141-145 (2010).

80



UPON 2015, BARCELONA, JULY 13-17 2015

Fluctuation theorems and stochastic thermodynamics :
applications to energy fluctuations in electric circuits and micro devices

Sergio Ciliberto1
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Thermal fluctuations play a very important role and
cannot be neglected in small systems, such as electric
circuits and micro-devices driven out of equilibrium by
external forces. In these systems the work performed by
the external forces and the dissipated heat fluctuate and
stochastic thermodynamics imposes several constrains on
their behavior. In this talk we will recall first the main
concepts of stochastic thermodynamics using experimen-
tal measurements of work and heat in electric circuits and
micro-devices. We will show that the probability distri-
butions of the injected work and dissipated heat satisfy
an asymptotic Fluctuation Theorem(FT) , which imposes
strong constrains on the energy fluctuations. We will in-
troduce the stochastic and total entropies which satisfy
an FT for any time. We will apply these concepts to
the experimental and theoretical study of the statistical
properties of the energy exchanged between two electrical
conductors, kept at different temperature by two differ-

ent heat reservoirs, and coupled only by the electric ther-
mal noise. Such a system is ruled by the same equations
as two Brownian particles kept at different temperatures
and coupled by an elastic force. We measure the heat
flowing between the two reservoirs, the thermodynamic
work done by one part of the system on the other, and
we show that these quantities exhibit a long time fluctu-
ation theorem. Furthermore, we evaluate the fluctuating
entropy, which satisfies a conservation law. These experi-
mental results are fully justified by the theoretically anal-
ysis. The other important point that we will describe is
the case of the fluctuations of the work done by an exter-
nal Gaussian random force on an atomic force microscopy
cantilever. We finally discuss the open problems of the
stochastic thermodynamics and useful perspectives, such
as the efficiency of energy transformation in small devices
and the connections with information.
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2 S.Joubaud, N. Garnier, S. Ciliberto, Fluctuations of the
total entropy production in stochastic systems, Eur. Phys.
Lett. 82, 3, 30007,(2008).

3 S. Ciliberto, A. Imparato, A. Naert, and M. Tanase,

Heat Flux and Entropy Produced by Thermal Fluctuations,
Phys.Rev. Lett., 110, 180601 (2013).

4 A. Bérut et al.,Experimental verification of Landauers prin-
ciple linking information and thermodynamics, Nature ,
483, 187189 ( 2012).

5 J. R. Gomez-Solano , L. Bellon , A. Petrosyan and S. Cilib-
erto, Steady-state fluctuation relations for systems driven
by an external random force, Europhys. Lett., 89, 60003
(2010).
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I. INTRODUCTION

Carnot engine played a crucial role in the development
of thermodynamics, setting a fundamental upper limit to
the efficiency of a motor operating between two thermal
baths. Nowadays, micromanipulation techniques make it
possible to explore the thermodynamics of small systems
at scales where fluctuations cannot be neglected. In this
contribution, I will present an experimental realization of
a Carnot engine with a single optically trapped Brownian
particle as working substance. We have fully character-
ized the thermodynamics of the engine when operating
both in and out of equilibrium, observing that our de-
vice reaches Carnot efficiency for slow driving. I will
also discuss the fluctuations of the finite-time stochas-
tic efficiency, showing that Carnot efficiency can be sur-
passed in individual or ensembles of a few number of
non-equilibrium realizations of the engine. Finally I will
briefly comment on the stochastic efficiency large devi-
ation behaviour which could provide information about
the fundamental characteristics of the engine. A number
of open questions arise due to the stochastic nature of the
processes realized with a single Brownian particle which
will be addressed in the final section.

II. EXPERIMENTAL SETUP

Fig. (1) depicts our experimental setup1,2 which con-
sists in a single polystyrene sphere of radius R = 500nm
immersed in water and trapped with an optical tweezer.
A pair of aluminium electrodes located in the chamber
are used to apply a voltage of controllable amplitude.
When a random electric field is applied to the electrodes,
the colloidal particle experiences a random force that
mimics a higher temperature thermal reservoir2. The
effective temperature of the particle is related to the in-
tensity of the random force and can be obtained from the
enhanced position fluctuations:

Tkin =
κ〈x2〉
k

. (1)

Using our setup, we can realize any thermodynamic pro-
cess in which the stiffness of the trap and the kinetic
temperature of the particle can change with time arbi-
trarily following a protocol {κ(t), Tkin(t)}.

FIG. 1. Schematic of the experimental setup

III. MEASURING KINETIC ENERGY

For the case of microscopic dielectric beads immersed
in water, the momentum relaxation time is of the order
of nanoseconds. Therefore, in order to accurately mea-
sure the instantaneous velocity of a Brownian particle, it
would be necessary to sample the position of the parti-
cle with sub-nanometer precision and at a sampling rate
above MHz.

In our experiment, we do not have direct access to the
instantaneous velocity due to our limited sampling fre-
quency which is in the kHz range. However, we have de-
veloped a technique that allows to extrapolate the instan-
taneous velocity from the time averaged velocity (TAV)
vf over a time ∆t = 1/f . With this technique, the ki-
netic energy changes can be measured giving access to
the full thermodynamics of the particle. Work, heat, po-
tential and kinetic energy and entropy changes can be
measured in this setup3.

IV. MICROADIABATICITY

Until now, the design of microscopic heat engines has
been restricted to those cycles formed by isothermal pro-
cesses or instantaneous temperature changes4 . Among
all the non-isothermal processes, adiabatic processes are
of major importance in thermodynamics since they are
the building blocks of the Carnot engine.
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FIG. 2. The Brownian Carnot engine. (A) Time evolution of
the experimental protocol. (B-D) Thermodynamic diagrams
of the engine: Isoth. compression (blue); Adiab. compres-
sion (magenta); Isoth. expansion (red); Adiab. expansion
(green). Solid lines are the values in the quasistatic limit.
Filled symbols are obtained from ensemble averages over slow
cycles while open symbols are obtained fast cycles. (B) T −κ
diagram. (C) Clapeyron diagram (D) T − S diagram.

Microadiabaticity, i.e. adiabaticity at the microscopic
scale, cannot be realized for single-trajectories due to the
unavoidable heat flows between microscopic systems and
their surroundings. However, a process where no net heat
transfer is obtained when averaged over many trajectories
could in principle be realized.

We have experimentally realized adiabatic processes5

following a theoretical proposal aimed at keeping con-
stant the phase space volume enclosed by the energy
surface6,7. In the adiabatic protocol both T and the stiff-
ness κ are modified keeping T 2/κ constant. To achieve
this, we have taken advantage of the aforementioned tech-
nique to measure kinetic energy changes, as a full under-
damped description is mandatory to take into account
entropy changes in the velocity degree of freedom.

V. BROWNIAN CARNOT CYCLE

The experimental realization of a Carnot cycle with
a single Brownian particle had previously remained elu-
sive due to the difficulties of implementing an adiabatic
process. In our setup, the Carnot cycle is implemented
by modifying the stiffness κ and the temperature of the
particle in a sequence of two isothermal steps joined by
two adiabatic steps as in Fig. (2A)8.

Taken all together, the thermodynamic diagrams un-
der quasistatic driving (Figs. (2B-D)) are equivalent to
those for a single particle ideal gas in a Carnot cycle.
We have analyzed both the average power extracted and
the efficiency of heat to work conversion. The efficiency
is given by the ratio between the extracted work and
the input of heat,which is usually considered as the heat
flowing from the hot thermal bath to the system. In our
experiment, however, there is a non-zero fluctuating heat
in the adiabatic steps, which must be taken into account
in the definition of the stochastic efficiency of the engine
during a finite number of cycles. In the quasistatic limit
our engine attains approximately Carnot efficiency. We
have also tested a number of theoretical predictions of
the stochastic thermodynamics for a Carnot engine in
our setup regarding the distribution of the fluctuating
efficiency9,10.

VI. OPEN QUESTIONS

A number of questions remain open and are the subject
of current and future work. In the contribution I will try
to discuss some of them:

• Can adiabatic processes, either at realization or av-
erage level, be realized in other microscopic systems
in contact with a thermal bath?

• In which cases must the efficiency include the fluc-
tuating heat in the adiabatic steps?

• Are there reversible trajectories with finite power?

• Can we improve the efficiency of the finite time
Carnot engine using measurements?

1 P. Mestres, I.A. Mart́ınez, A. Ortiz-Ambriz, R. A. Rica, E.
Roldán, Phys. Rev. E 90, 032116 (2014)
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Optical tweezers allow the measurement of fluctuations
at the nano-scale, in particular fluctuations in the end-to-
end distance of single bio-molecules. This kind of exper-
iments, at the interface between biology, chemistry and
physics offer the possibility of testing recent results in
non-equilibrium statistical physics and applying them in
high-resolution measurement of intra and inter-molecular
interactions. Thermal fluctuations play a prominent role
in these experiments and fluctuation spectra yield valu-
able information. However fluctuation spectra can be
easily distorted by unavoidable instrumental effects1. I
will show how, once instrumental effects are correctly
taken into account, equilibrium fluctuations in the end-
to-end distance of a single molecule allow for a precise
measurement of its entropic elastic response and of its
folding kinetics. I will then describe non-equilibrium ex-
periments in which optical tweezers perform work on a
tethered molecule, forcing its unfolding. The statistics of
the work necessary to unfold the molecule, collected in

repeated cycles, allow us to measure the equilibrium fold-
ing free energy from non-equilibrium pulling experiments
via the so-called fluctuation relations2 (FR). In the last
part of the talk I will move the discussion to a more gen-
eral level and will present a tentative but general strategy
to use FRs in measurements, which we call an inference
via the FR, inspired by our recent work on FRs in dual-
trap setups3. Our starting point will be the following:
the violation of FRs is itself an important information
since it hints that we are probably missing some contri-
bution to the entropy production. Can the extent of this
violation tell us something about the missing entropy?
Can we extract meaningful quantitative information from
such violation? These questions are particularly interest-
ing if a “hidden” entropy source is not directly measur-
able. This situation is found in many experiments, e.g.
in systems with hidden degrees of freedom4, systems with
incomplete detection5 and systems with more than one
configurational variables3.

1 Marco Ribezzi-Crivellari, Anna Alemany, and Felix Ritort
Recent progress in fluctuation theorems and free energy re-
covery. Opt. Lett 40(5), pp. 800-803 (2015)
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Recent progress in fluctuation theorems and free energy re-
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inference from partial work measurements in small sys-
tems. Proceedings of the National Academy of Sciences,
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4 J. Mehl, B. Lander, C. Bechinger, V. Blickle, and U. Seifert.

Role of hidden slow degrees of freedom in the fluctuation
theorem. Phys. Rev. Lett., 108:220601 (2012).

5 Klaara L Viisanen, Samu Suomela, Simone Gasparinetti,
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The concept of incomplete thermodynamic equilibrium
Einstein initiated1 allows us to define the distribution
function of fluctuations for the extensive variables with-
out the addressing to a space of microstates. Further
elaboration of this approach led to the Landau-Lifshitz
(L-L) formula for the fluctuation probability incorporat-
ing also the fluctuations of intensive variables like tem-
perature T and pressure P .2 The L-L distribution is
widely employed and it now has the direct experimen-
tal verification3.

However, there is still a belief that use of the concept
of fluctuations of intensive variables contradicts the prin-
ciples of statistical physics, as these variables are param-
eters, not arguments for the probability distribution in
the space of microstates. The discrepancy between the
results of calculations such as 〈(∆T )2〉 and 〈(∆P )2〉 us-
ing the distribution of either Gibbs or L-L continues to
be one of the arguments in favor of this opinion, see4–6

and more.
This report aims to show that obtained contradictions

have been spawned by discrepancy of the set of inde-
pendent state variables when calculating the fluctuations
with each of the probability distributions. Therefore, the

equivalence theorem of thermodynamic ensembles is vio-
lated in the case of fluctuations.

This violation appears as a mathematical consequence
of using the second differential in the theory of thermody-
namic fluctuations, which is non-invariant with respect to
the choice of independent variables in its usually adopted
form. It is shown that the L-L distribution allows to take
this fact into account and does not give rise results con-
tradicting Gibbs distribution if used appropriately.

The principal unavoidability of the fluctuations of
the intensive thermodynamic variables is discussed as a
consequence of the inevitable chaotic nature of micro-
scopic motion. The unsolved problem which particularly
nanophysics dictated is to generalize the Landau-Lifshitz
approach for the quantum region.
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I. INTRODUCTION 
In several cases periodic signals shape, period have some 

fluctuations that can be informative. From periodically working 
machines to heart movements the variability can be used to know 
more about proper behavior1. Nowadays several devices – like 
smart watches, wrist-bands, smart phones, actigraphs – can 
measure movements, motion patterns by inertial sensors for 
several applications including monitoring daily activity cycles for 
health analysis. 

Similar inertial sensors are used in coaching devices developed 
for professional kayak paddlers and trainers, where classical 
parameters, quantities and their shape in one stroke cycle are used 
to classify the athletes performance2-4. In a previous work we have 
shown that because the optimal motion of a kayak is clearly 
periodic, therefore the fluctuations of its period could be an 
indicator  of  athletes’ performance5. We have calculated a signal-
to-noise ratio using the  raw  signals’  spectra  and it seemed to be a 
good indicator too and it does not require the detection of strokes. 

As we show hereinafter, more detailed analysis needed to 
examine the relationship between these fluctuations and paddlers 
performance, many questions are still open about how one should 
define and calculate the temporal and spectral indicators, how 
these fluctuation based indicators can be used to classify similar 
periodic processes. 

II. KAYAK MOTION DATA  
The examined motion signals of the kayaks were measured by a 

special portable instrument developed in our laboratory. The 
device recorded the 3-axis acceleration and 3-axis angular 
velocities of the kayak with a sample rate of 1000 Hz5,6. 

Our goal was to find the best indicators of athletes’ 
performance based on a classification done by the trainer. In order 
to compare the typical performance of paddlers in the same 
circumstances (as much as possible), we have analysed the first 10 
minutes of long range (>5 km) training paddling of 14 athletes 
with different age and technical skills. 

The fluctuation-based indicators (time or frequency domain 
based both) were calculated for shorter window lengths (30 
seconds in figures), and the averages for the examined 10 minutes 
long part were compared. 

III. TEMPORAL INDICATORS 
The classical parameters of stroke cycles (stroke time, stroke 

impulse etc.) were calculated by peak and level crossing detection 
algorithms, using the forward axis acceleration signal6. 

As we have pointed out in previous works,5,6, not only the mean 
values of these parameters, but their fluctuations can also give 
information about athletes’   performance. As it is shown on Fig. 
(1), the relative standard deviation (SD) of the stroke impulse and 
the period decreases with better class significantly. 

On the other hand, there are some open questions about how we 
should calculate these SDs. Changing stroke rate and effects of 
tiredness can be observed in every paddling, so the length of the 
processed data and using detrending algorithms could have impact 
on  the  indicators’  values  and  the    their  observed  relationship  with  
technical skills. Furthermore, calculating absolute or relative SDs, 
defining the motions period as one stroke cycle or the sum of a 
left and a right hands stroke could affect this relationship, too. 

IV. SPECTRAL INDICATORS 
Precisely detecting the strokes using the complex signals with 

additional irregularities and noise could be rather complicated and 
inaccurate in most cases. Therefore calculating indicators based on 
the spectra of raw signals has many advantages concerning the 
signal processing. Note that it can be even extended to joint time-
frequency analysis. Following this we have used a certain kind of 

FIG. 1. Relative standard deviation of the detrended stroke impulse and 
period   in   the   function   of   technical   skills’   classification (higher number is 
better). The parameters were calculated for whole periods (total duration of 
a left and a right hands stroke). 
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signal-to-noise ratio (SNR) as another possible indicator for 
performance estimation5. 

   

 
FIG. 2. Signal to noise ratio (SNR) and noise level of roll axis angular 
velocity  as  a  function  of  technical  skills’  classification.  Signal  level  of  the  
spectrum were defined as the power of 0.2 Hz width peaks on fundamental 
frequency and first 5 harmonic frequencies, while the noise level was the 
power of the rest of the spectrum. 

One of the most important question is how one can separate the 
“signal”  and   the “noise” in the power density spectra. In case of 
one acceleration and two gyroscope signals, the dominant 
frequency is the first harmonic (belongs to one stroke cycle), but 
the in the case of the other three signals, the fundamental 
frequency is more significant (belongs to the period of both hands 
strokes). Consequently there are several ways to calculate SNRs. 
Also, beyond the ratio, the signal and noise levels could be 
indicators as well. 

Detecting the peaks precisely is not simple at all. We have 
designed numerical methods for finding the signal power in the 
spectra based on fixed peak or estimated half-width, and we have 
used them in different signal and noise definitions. We have 

compared all of these results for different window length and 
types. 

We found that estimating the signal level precisely is rather 
difficult, however the noise level alone seems to be a usable 
indicator of the technical skills as well. As depicted on Fig. (2) a 
certain type of SNR (details can be found in the caption) and noise 
level both show strong relationship with the technical quality. 

V. OPEN PROBLEMS 
As we have already pointed out, there are many questions about 

how we should calculate the temporal and spectral indicators. We 
present several different definitions for SNR, signal and noise 
level and simple algorithms to calculate them using six inertial 
sensors’  signals. 

The fact that the spectral indicators worked only for the signals 
whose dominant frequency is the fundamental frequency, and the 
temporal indicators also were better when the period was the sum 
of a left and a right hands stroke implies that the steadiness of the 
motion has a primary role in the paddling quality. 

There can be other temporal parameters or spectral methods that 
can indicate the performance even better, so more detailed 
analysis is worth to be performed. 

The indicators discussed above were tested using classification 
of technical skills, however the actual performance of the athlete 
depends on many factors. This is exceptionally important in order 
to determine how reliably the indicators can be used for certain 
cases, to determine what kind of data processing is needed. 

Furthermore, it is an exciting question what are the sources of 
the noise can be detected in the paddling periodicity and strength. 
It can depend on mechanical effects – movement of the kayak and 
of the human body, dissipation –, learned technical skills and even 
mental condition, can be correlated to other processes. 

Another interesting question is how this analysis can be related 
to other periodic motions, other sport fields, performance and 
reliability estimation, actigraphy or even more. 
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I. INTRODUCTION 

Bayesian analysis changes probability estimates as 

information is acquired.  If you are searching for something 

and after some time you do not find it, that information can 

be used to estimate if the object of the search is present or 

not.  Assume a searcher has finite resources and finite time 

to carry out a search and the searcher can search different 

areas and can use a variety of search methods.  The 

unsolved question is when is it optimal to give up searching 

an area with a single method and switch methods or switch 

areas of search.  Examples could be as simple as looking 

for a piece of paper between two cluttered desks, an animal 

foraging for food, or looking for a lost person, ship, or 

aircraft.  Noise will cause fluctuations in the model 

parameters. 

II. NET GAIN EQUATION 

Let’s start with the equation for searching two separate 

areas, 1 and 2, or the same area with two different methods 

also denoted by 1 and 2, 

 

     

  



21

222111,

CTC

pGTpGTN




 (1) 

 

where N is the net gain or reward, T is the allotted search 

time,  is the time spend in region 2 or with search method 

2, G is the gain, p is the probability that the target is 

present, 



 t is the probability, if the target is present, that 

it will be found by time t, and C is the cost of the search, 

per unit time. 

 

III. GENERALIZATIONS: THIN OR 

FAT TAILS 
 

Several possibilities can be explored, e.g. exponential or 

algebraic probability distributions,  

 



 t   1 exp  t 
or

 t  
 0

 20  t
2 /n

   (2) 

where larger n corresponds to a fatter tail. 

 

IV. BROWNIAN OR BALLISTIC 

 
In the exponential case,  can be studied for Brownian 

motion as 

 



 
D

d
2

   (3) 

 

where D is the diffusion constant and < d > is the mean 

distance between targets. 

 

For ballistic motion with velocity v, the success rate  

can be, 

 



 
vR

d
2  (2D) 



 
vR2

d
3  (3D)    (4) 

 

where R is the range at which a target can be sighted. If 

the targets are on a fractal set of dimension , then d is 

replaced by 
/1d .  In the second case, larger n values 

mean fatter tails with successful search relegated 

probabilistically to longer times.   

 

V. SPLITTING RESOURCES 
 

With finite resources available, the success rate might need 

to be split between search of type 1 and type 2, i.e. there is 

a maximum  and it gets split between 1 and 2, 



        where the term is the success rate 

allotted to search of type 1 and is for the type 2 search. 
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VI. THE TARGET FLEES 
 

Another  generalization is that the target moves away to 

avoid detection, say in the manner, 

 



p pexp t     (5) 

 

 

VII. CHASE OR AMBUSH 
 

The cost,over a time t, of a constant velocity search might 

be related to kinetic energy expended so 
2vmC  t, but 

then the success rate might increase proportional to v.  One 

can contrast a predator practicing ambushing prey so the 

cost is C=0 while waiting, against chasing prey with a 

velocity v.   

 
FIG. 1A representative example of maximizing the gain as 

a reward (measured in the z direction) as a function of time 

spent in region 2 (along the y axis) and velocity of the 

searcher in region 2 whose success rate  is proportional to 

velocity, but the cost of searching is proportional to kinetic 

energy expended, i.e. v
2
.   

VIII. DO NOT PICK LOW HANGING 

FRUIT 
Or perhaps the gain G = G() is proportional to 

1/soeasier to find targets will typically have less value. 

 

IX. CONCLUSIONS 
  

 The factors for a net gain can be generalized in 

several directions, and each type of search will have its 

own trade space of variables. 
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Unità di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy
2Radiophysics Department, Lobachevsky State University,
23 Gagarin Avenue, 603950 Nizhniy Novgorod, Russia

3Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Via S. Sofia 64, I-90123 Catania, Italy
4Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy

I. INTRODUCTION

In this work we try to answer the question how rele-
vant the random fluctuations are in the dynamics of a
natural system. Specifically we ask which role the ex-
ternal fluctuations play in a real ecosystem, which is a
typical example of complex system, since it is governed
by nonlinear dynamics and subject to deterministic and
random perturbations coming from the environment. For
this purpose we study the spatio-temporal dynamics of
phytoplankton abundances in a marine ecosystem, com-
paring results from the model with experimental findings.
The study is based on a stochastic reaction-diffusion-
taxis model, which is used to analyze the spatio-temporal
dynamics of five phytoplankton groups in the middle of
the Tyrrhenian Sea, inside the Modified Atlantic Wa-
ter (MAW), that is the upper layer of the water col-
umn of the Mediterranean Sea (from the surface down
to 200 m). The study is performed by considering the
intraspecific competition of the phytoplanktonic groups
for limiting factors1,2,3, i.e. light intensity and nutrient
concentration, and the seasonal changes of environmen-
tal variables4.
Moreover, we take into account the effects of the random
fluctuations of the temperature and the velocity field on
the phytoplankton populations by inserting terms of mul-
tiplicative noise in the differential equations of the model.
In order to compare theoretical results with experimen-
tal findings, the picophytoplankton abundances obtained
by the stochastic model are converted in chlorophyll a
concentrations5,6. The statistical analysis, based on the
chi-square test, shows that the vertical distributions of
total chlorophyll concentration are in a good agreement
with experimental data acquired in the marine site inves-
tigated during four different sampling periods (seasons)
of the year.

II. THE MODEL

Our stochastic model, which describes the spatio-
temporal dynamics of five populations (i=1,...,5) dis-
tributed along a one-dimensional spatial domain (z-
direction), is defined by the following equations

∂bi(z, t)

∂t
= biGi(z, t) +

∂

∂z

[
D(z, t)

∂bi(z, t)

∂z

]

− vi

(
∂Gi(z, t)

∂z

)
∂bi(z, t)

∂z
+ bi ξbi(z, t),

∂R(z, t)

∂t
= −

∑ bi(z, t)

Yi
·min(fIi(I), fRi

(R))

+
∂

∂z

[
D(z, t)

∂R(z, t)

∂z

]
+

∑
εimi

bi(z, t)

Yi
,

+ RξR(z, t)

I(z, t) = Iin(t) exp

{
−
∫ z

0

[∑
ai · chl ai(Z, t) + abg

]
dZ

}
,

where b1(z, t), b2(z, t), b3(z, t), b4(z, t), and b5(z, t) indi-
cate the cell concentrations of the five populations consid-
ered, i.e. Synechococcus, Haptophytes, Prochlorococcus
HL, Pelagophytes and Prochlorococcus LL, respectively.
Here R(z, t) represents the phosphorus (nutrient) concen-
tration, and I(z, t) is the light intensity which is assumed
to decrease exponentially with the depth z, according to
the Lambert-Beer’s law4,7,8,9.
Moreover εi, mi, and 1/Yi are phosphorus recycling co-
efficient, specific loss rate, and nutrient content of the
i-th picophytoplankton population, respectively; Gi(z, t)
are the net per capita growth rates, which depend on
fIi(I) and fRi

(R) given by the Michaelis-Menten for-
mulas, and the specific loss rate of the i-th picophyto-
plankton group1,4; vi is the swimming velocity of each
picophytoplankton population as a function of the corre-
sponding gradient of the net growth rate; ai are the chl
a-normalized average absorption coefficients of the i-th
picophytoplankton population, and abg is the background
turbidity; Iin(t) is the incident light intensity at the wa-
ter surface, varying with the time due to daily changes;
D(z, t) is the vertical turbulent diffusivity, which changes
as a function of the time and depth.
The spatio-temporal behaviour of the picophytoplankton
abundance is modeled considering three processes1: net
growth (reaction term), active movement (taxis term)
and passive movement (diffusion term). Moreover, the
environmental random fluctuations are considered by in-
serting terms of multiplicative Gaussian noise in the dif-
ferential equations. Specifically we use the noise sources
ξbi(z, t) and ξR(z, t) with the following statistical proper-
ties: 〈ξbi(z, t)〉 = 0, 〈ξR(z, t)〉 = 0, 〈ξbi(z, t)ξbi(z′, t′)〉 =
σbiδ(z−z′)δ(t−t′), 〈ξR(z, t)ξR(z′, t′)〉 = σRδ(z−z′)δ(t−
t′), with i = 1, ... , 5. Here, σbi and σR are the intensities
of the noise sources which act on the i-th population and
nutrient, respectively.
The boundary conditions for cell concentration of the i-
th picophytoplankton population have to describe the ab-
sence of biomass flux through both the surface layer z = 0
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and the deepest layer of the MAW z = zb:

[
D(z, t)

∂bi
∂z

− vibi

]∣∣
∣
∣
z=0

=

[
D(z, t)

∂bi
∂z

− vibi

]∣∣
∣
∣
z=zb

= 0,

Moreover, the boundary conditions for the nutrient have
to describe the absence of nutrient flux from the water
surface, and fix the phosphorus concentration at the bot-
tom of the MAW (z = zb) equal to the average value
measured Rin:

∂R

∂z

∣
∣
∣
∣
z=0

= 0, R(zb) = Rin.

The theoretical distributions of cell concentration for the
five picophytoplankton groups are obtained by integrat-
ing the system of stochastic differential equations and
averaging over 1000 realizations.
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FIG. 1. Theoretical distributions (orange line) and experi-
mental profiles (blue line) of the total chlorophyll a concen-
tration. The numerical results, obtained by the stochastic
model for σR = 0.0005 and σbi = 0, are compared with the
experimental data collected in the sampling site (39o 30′.00N,
13o30′.00E), in different period of the year: 24 November 2006
(panel a); 3 February 2007 (panel b); 22 April 2007 (panel c);
9 June 2007 (panel d).

Afterwards, the theoretical abundances of the five pop-
ulations are converted into chlorophyll a concentrations
by using the experimental cellular content measured by
Morel and the conversion curves obtained by Brunet et
al.5,6. The numerical results are shown in Fig. 1, where
the distributions of total chlorophyll a concentration ob-
tained by the stochastic model are compared with the
corresponding experimental profiles.

Results (here not reported) of the goodness-of-fit test
χ2 indicate the presence of a quite good agreement be-
tween experimental and theoretical findings in all four
seasons analyzed, even if the best value of reduced chi-
square in each season is reached for a different noise in-
tensity. Specifically, in accordance with previous stud-
ies10, the χ2 test shows that the stochastic model repro-
duces the experimental data better than the determin-
istic one in three sampling periods over four. In fact,
in the fourth period (corresponding to the late spring)
the best reduced chi-square is obtained by the determin-
istic model. This can be explained considering that in
late spring the random fluctuations of environmental pa-
rameters are strongly reduced along the whole water col-
umn4,11,12. The results obtained emphasize therefore the
lack of information on the noisy behaviour of relevant
physical and biological variables, suggesting that a better
modeling needs a deeper knowledge of: i) velocity com-
ponents subject to random fluctuations during the year;
ii) nutrient half-saturation constants, which are signifi-
cantly influenced by seasonal changes; iii) properties of
the environmental noise which directly affects the phyto-
plankton populations.
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All that glitters is not gold: Zero-point energy in the Johnson noise of resistors 
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The thermal noise (Johnson noise) in resistors was discovered 1 by 
Johnson and explained 2 by Nyquist in 1927, a year later than the 
foundations of quantum physics were completed. The Johnson-
Nyquist formula states that 
 
Su ( f ) = 4RhfN( f ,T )       (1) 
 
where Su ( f )  is the power density spectrum of the voltage noise 
on the open-ended resistor of resistance R (replaced by the real 
part of the impedance if impedance is used); and h is the Planck 
constant. The Planck number N ( f ,T )  is the mean number of hf  
energy quanta in a linear harmonic oscillator with resonance 
frequency f , at temperature T 
 
N ( f ,T ) = exp(hf / kT )−1[ ]−1   ,   (2) 
 
which is N ( f ,T ) = kT / (hf )  for the classical physical range 
kT >> hf . Eq. 2 results in an exponential cut-off of the Johnson 
noise in the quantum range f > fP = kT / h , in accordance with 
Planck's thermal radiation formula. In the deeply classical (low-
frequency) limit, f << fP = kT / h , Eqs. 1-2 yield the familiar 
form used in electrical engineering  
 
Su ( f ) = 4kTR        (3) 
 
where the Planck cut-off frequency fP  is about 6000 GHz at 
room temperature, well-beyond the reach of today's electronics. 
 
The quantum theoretical, generalized treatment of thermal noise 
was given only 24 years later by Callen and Welton 3 (often called 
Fluctuation-Dissipation Theorem (FDT). The quantum version 3 of 
the Johnson-Nyquist formula has an additive 0.5 to the Planck 
number, corresponding to the zero-point energy of linear 
harmonic oscillators: 
 
Su ( f ) = 4Rhf N ( f ,T )+ 0.5[ ]  .   (4) 
 
Thus the quantum correction of Eq. 1 is a temperature-
independent additive term in Eq. 2: 
 
Su ,ZP ( f ) = 2hfR  ,    (5) 
 
which linearly depends on the frequency and it exists for any 
f > 0  frequency, even in the deeply classical, f << fP = kT / h , 

frequency regime, and even at zero temperature. The zero-point 
term described by Eq. 5 has acquired a wide theoretical support 
during the years, e.g. 4-6 .  
 
However, there have also been contra-arguments and debates. 
MacDonald 

8 and Harris 9 argued that extracting energy/power 
from the zero-point energy is impossible thus Eq. 5 should not 

exist.  
 
Grau and Kleen 

10 (similarly to the original treatment of Nyquist 2), 
argued that the Johnson noise of a resistor connected to an 
antenna, see Figure 1, must satisfy Planck's thermal radiation 
formula thus the noise must be zero at zero temperature, which 
would imply that Eq. 5 is invalid. It should be emphasize that it is 
a hard experimental fact that the zero-point term does not exist in 
the thermal radiation. This is obvious even by naked-eye 
observations: at 6000 K temperature, at 600 nm (orange color), the 
Planck number  N = 0.0164 . Thus the zero-point term (0.5) is 30 
times greater, implying that, if it would be present in the 
radiation, looking into a dark room instead of the sun, the light 
intensity at this wavelength would decrease only about a 
negligible 3%. 
 

 
 
Figure 1. Measurement scheme based on an antenna and a photon counter, 
which does not show the zero-point term (Eq. 5) at its output.  
 
Kish 11 showed that the existence of the zero-point term, which 
has and "f"-noise implies a 1/f noise and related logarithmic 
divergence of the energy of a shunt capacitor in the high-
frequency limit. While this does not disprove the existence of the 
term, it may indicate that the problem is a renormalization 
problem, a mathematical artifact, which is not actually present at 
measurements. 
 
Recently, Reggiani, et al. 12 objected the derivation 3-6 of Eq. 4 but 
did not show what the results avoiding their criticism should be.  
 
Yet, on the contrary of all the criticisms above, the experimental 
test by Koch, van Harlingen and Clarke 

13 fully confirmed the 
theoretical result Eq. 4 by measurements on resistively shunted 
Josephson-junctions. 
 
However, Haus 14 and Kleen 15 stated that the zero-point term (Eq. 
5) in Eq. 4 is the consequence of the uncertainty principle at 
phase-sensitive amplitude measurements, see Figure 2, which the 
linear voltage amplifiers measuring Johnson noise represent. 
Nevertheless, the uncertainly principle argument cannot disprove 
Eqs. 4,5. The claimed zero-point term in the noise voltage may 
still exist and satisfy the uncertainty principle instead of being 
solely an experimental artifact. 
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Figure 2. Measurement scheme based on a linear amplifier (LVA) system 
indicating the existence of the zero-point term or its uncertainty relation 
based artifact. 
 
To claim the existence or non-existence of the debated zero-point 
noise term in the voltage is a serious matter because of its 
implications of the related current and energy flow.  
 
Thus we devote our talk to the following question: 
 
Is the zero-point voltage noise term (Eq. 5) and the power/energy 
flow it implies actually present in the wire connected to a 

resistor? 
 
Abbott, et al.,16 write in their education-article on thermal noise: 
"Until further evidence, the quantum zero- field should be 
regarded as a conservative field as far as the extraction of energy 
is concerned." 
 
In this talk, we address this comment and close this issue by 
serving evidence 17 that the zero-point voltage component cannot 
exist in the wire otherwise at least two different types of perpetual 
motion machines can be built and both the energy conservation 
law and the second law of thermodynamics are violated 17. 
 
The remaining unsolved problem of noise after our treatment is: 
 
What is the proper general formula or formulas of Johnson noise 
in the voltage of resistors? The formula(s) that can reflect on the 
type of measurement that we use to characterize the Johnson noise 
of a resistor? 
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rectangular potential well

A.A. Kharcheva,1 A.A. Dubkov,1 B. Spagnolo,2, 3 and D. Valenti3

1Radiophysical Department, Lobachevsky State University,
Gagarin ave.23, 603950 Nizhni Novgorod, Russia

e-mail address: anya-kharcheva@yandex.ru
e-mail address: dubkov@rf.unn.ru

2Instituto Nazionale di Fisica Nucleare, Sezione di Catania, Via Santa Sofia 64, I-95123 Catania, Italy
e-mail address: bernardo.spagnolo@unipa.it

3Dipartimento di Fisica e Chimica, Università di Palermo and CNISM,
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The anomalous diffusion in the form of Lévy flights is
of permanent interest due to wide application in different

areas of science
1–3

. At the same time, to explore this
phenomenon, unlike the standard Brownian motion, one
requests to apply the complex apparatus of fractional
derivatives and state non-trivial boundary conditions. As
a result, the steady-state probability density function of
the particle coordinate can be found only for some simple

potential profiles
4–6

.
Investigation of the spectral properties of the steady-

state Lévy flights in potentials with sufficiently steepness
remains an unsolved problem. Here one can mention the
exact result for the correlation time of Lévy flights in
the symmetric quartic potential recently obtained in the

article
7
.

Our main goal is to find the spectral power density of
the coordinates of the particles by diffusion in the form of
the steady-state Lévy flights in an infinitely rectangular
deep potential well

U(x) =

{
0, |x| < L,

∞, |x| > L.
(1)

It should be emphasized that the exact formula for the
spectral density of the coordinate of Brownian particle

moving in the potential (1) is given by
8

S (ω) = (2)

2D

ω2

(
1− 1

L

√
D

2ω
·

sinhL
√

2ω /D + sinL
√

2ω /D

coshL
√

2ω /D + cosL
√

2ω /D

)
,

where D is the diffusion coefficient.
We start from the following general operator formula

for the correlation function K[τ ] of a stationary Marko-

vian process x(t) previously obtained in the paper
9

K[τ ] =
〈
x eL̂

+(x)τx
〉
st
, (3)

where L̂+(x) is the adjoint kinetic operator and 〈. . .〉st
denotes averaging on the steady-state probability density
function.

According to the Wiener-Khinchin theorem the spec-
tral power density reads

S(ω) =

∫ ∞
−∞

K[τ ] cosωτdτ = 2Re
{
K̃[iω]

}
, (4)

where K̃[p] is the Laplace transform of K[τ ]. From equa-
tion (4) we arrive at

K̃[p] =

〈
x

1

p− L̂+(x)
x

〉
st

. (5)

According to equation (5), one has to solve the following
differential equation for the auxiliary function ϕ(x)

L̂+(x)ϕ(x)− pϕ(x) = −x (6)

and to find the average K̃[p] = 〈xϕ(x)〉st.
In particular, from equation (4) the correlation time

can be calculated as

τk =
1

〈x, x〉

∫ ∞
0

K[τ ]dτ =
S(0)

2〈x, x〉
, (7)

where 〈x, x〉 is the variance of the particle coordinate.
Further we consider the anomalous diffusion in the

form of Lévy flights in a potential U(x) which is gov-
erned by the following Langevin equation for the particle
coordinate x(t)

dx

dt
= −dU(x)

dx
+ ξα(t), (8)

where α is the Lévy index (0 < α < 2) and ξα(t) is the
symmetric α-stable Lévy noise.

The corresponding fractional Fokker-Planck equation

for the probability density function takes the form
3

∂P

∂t
=

∂

∂x

(
dU

dx
P

)
+Dα

∂αP

∂|x|α
. (9)

For potential (1) the boundaries at x = ±L are imper-
meable for particles, i.e. P (x, t) = 0 at |x| > L. In the
stationary case, according to the definition of the spatial
fractional derivative, equation (9) transforms to∫ L

−L

Pst(z)− Pst(x)

|x− z|1+α
dz = 0. (10)
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FIG. 1. Plots of stationary probability density for different
values of the Lévy index α. The value of the parameter L = 1.
The case α = 2 corresponds to usual Brownian motion.

The solution of the integral equation (10) has been found

in the article
10

and has the following form

Pst(x) =
(2L)1−α Γ(α)

Γ2(α/2)(L2 − x2)1−α/2
, (11)

where Γ(x) is the Gamma function.
The stationary probability density function (11) for

different Lévy index α is shown in Fig. 1. It should
be noted that the result (11) in the case α = 1 can
be derived from the steady-state probability distribution

for smooth potential U(x) =
γ

2m

( x
L

)2m
, previously ob-

tained in article
6
, in the limit m→∞.

Substituting the operator L̂+(x) in equation (6), we
need to solve the following integral equation for the func-
tion ϕ(x) ∫ L

−L

ϕ(z)− ϕ(x)

|x− z|1+α
dz − pϕ(x) = −x. (12)

The spectral characteristics in the steady state for
asymmetric Lévy flights in potential profile considered
still remain an open problem. Moreover, the role of Lévy
index α to get steady-state characteristics in general po-
tential profiles is still unknown.
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I. INTRODUCTION

The description of complex interactions with surrounding
can be provided provided by the Langevin equation, which in
the overdamped limit takes the common form

ẋ(t) = f(x) + ζ(t), (1)

where f(x) is a deterministic force, while ζ(t) represents
complex interactions of a test “particle” with its environment.
Usually it is assumed that the noise is white and Gaussian.
Here, however we use the more general type of noise: i.e.
Lévy noise, which is still of the white type but it naturally
leads to heavy-tailed power-law fluctuations.

Heavy tailed fluctuation have been observed in versatil-
ities of models including physics, chemistry or biology1,2,
paleoclimatology3 or economics4 and epidemiology5 to name
a few. Observations of the so-called Lévy flights boosted
the theory of random walks and noise induced phenom-
ena into new directions6,7 which involve examination of
space fractional diffusion equation (Smoluchowski-Fokker-
Planck equation) and stimulated development of more general
theory8,9.

The present work10 addresses properties of stationary states
in 2D systems driven by Lévy flights. The research performed
here extends earlier studies of 1D systems11–16 where analysis
of symmetric and asymmetric Lévy flights in harmonic, super-
harmonic and subharmonic potentials have been presented.

II. MODEL

In 1D, a motion of an overdamped particle subject to the α-
stable Lévy type noise is described by the Langevin equation

dx

dt
= −V ′(x) + σζα,0(t), (2)

which can be rewritten as dx = −V ′(x)dt+σdLα,0(t), where
Lα,0(t) is a symmetric α-stable motion8, which is the general-
ization of the Brownian motion (Wiener process) to the situa-
tion when increments of the process are distributed according
to α-stable densities, i.e. densities with power law asymp-
totics p(x) ∝ |x|−(α+1) with 0 < α < 2. ζα,0(t) represents a
white α-stable noise which is a formal time derivative of the
symmetric α-stable motion Lα,0(t). Eq. (2) is associated with
the fractional Smoluchowski-Fokker-Planck equation17,18

∂p(x, t)

∂t
=

∂

∂x
[V ′(x)p(x, t)] + σα

∂αp(x, t)

∂|x|α
(3)

where ∂α

∂|x|α = −(−∆)α/2 is the fractional Riesz-Weil
derivative (laplacian) defined via its Fourier transform

F
[
−(−∆)α/2p(x, t)

]
= −|k|αF [p(x, t)]. Contrary to sys-

tems driven by white Gaussian noise, for α < 2, the stationary
solutions for Eq. (3) are not of the Boltzmann-Gibbs type and
exist for potential wells which are steep enough15. The expo-
nent c characterizing a potential well V (x) = |x|c needs to be
larger than 2−α, i.e. c > 2−α. Otherwise, the potential well
is not steep enough in order to produce a stationary state. The
stationary states (if exist) have power-law asymptotics

pst(x) ∝ |x|−(c+α−1) (4)

determined by the stability index α and the exponent c char-
acterizing steepness of the potential well13,15,16. For c = 2
when the stationary density is of the same type (except the
scale parameter) as the α-stable distribution associated with
the underlying noise13, see Eq. (2).

Analytical formulas for stationary states for systems driven
by α-stable noises with α < 2 are known only in a very
limited number of cases. For the quartic 1D Cauchy oscil-
lator, i.e. V (x) = 1

4x
4 with α = 1, the stationary state of

the fractional diffusion equation (3) is given by13 pst(x) =
σ/[π(σ4/3 − σ2/3x2 + x4)].

By analogy to 1D system17,18, the bi-variate system is de-
scribed by the following Langevin equation driven by the bi-
variate α-stable Lévy type noise

dr

dt
= −∇V (r) + σζα(t). (5)

Eq. (5) can be rewritten as dr = −∇V (r)dt + σdLα(t),
where Lα(t) is a bi-variate α-stable motion and V (r) is an
external potential.

Equation (5) is associated with the Smoluchowski-Fokker-
Planck equation which has the general form

∂p(r, t)

∂t
= ∇ · [∇V (r)p(r, t)] + σαΞp(r, t), (6)

where Ξ is the fractional operator due to bi-variate α-stable
noise ζ, see Eq. (5). The diffusive term in Eq. (6) de-
pends on the noise type.9 For the bi-variate α-stable noise
with the uniform spectral measure the fractional operator
Ξ = −(−∆)α/2, i.e. it is the fractional laplacian de-
fined via the Fourier transform F

[
−(−∆)α/2p(r, t)

]
=

−|k|αF [p(r, t)] .
The main scope of current research is to check if stationary

states for harmonic and quartic potentials subject to bi-variate
α-stable noises exist and what are their shapes depending on
a noise type and noise parameters.

For the harmonic potential V (x, y) = 1
2 (x2 + y2) and the

uniform spectral measure the fractional diffusion equation (6)
takes the form

∂p

∂t
=

∂

∂x
(xp) +

∂

∂y
(yp)− (−∆)α/2p, (7)
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where p = p(x, y, t). In the Fourier space Eq. (7) is equivalent
to

∂p̂

∂t
= −k ∂p̂

∂k
− l ∂p̂

∂l
− (k2 + l2)

α/2p̂. (8)

The characteristic function of the stationary density is

p̂ = exp

[
− (k2 + l2)α/2

α

]
, (9)

which is the characteristic function of the bi-variate α-stable
density with the uniform spectral measure. Therefore, in 2D
like in 1D, the stationary state of the harmonic 2D oscillator is
the bi-variate α-stable density like the one of the underlying
noise. In particular, for α = 2, the stationary density is the
bi-variate Gaussian distribution, while for α = 1 it is the bi-
variate Cauchy distribution.

For the quartic potential V (x, y) = 1
4 (x2 + y2)2 and the

uniform spectral measure the fractional diffusion equation (6)
takes the form

∂p

∂t
=

∂

∂x

[
(x2 + y2)xp

]
+

∂

∂y

[
(x2 + y2)yp

]
− (−∆)α/2p.

(10)
In the Fourier space Eq. (10) takes the form

∂p̂

∂t
= k

∂3p̂

∂k3
+k

∂3p̂

∂k∂l2
+l

∂3p̂

∂k2∂l
+l
∂3p̂

∂l3
−(k2+l2)

α/2p̂. (11)

The stationary density fulfills

− p̂
′

z
+ [p̂′′ − zαp̂] + zp̂′′′ = 0, (12)

where z =
√
k2 + l2. Exact solutions can be constructed by

numerical methods only, e.g. Langevin dynamics see Fig. 1.
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FIG. 1. Stationary states for the quartic potential V (x, y) = 1
4
(x2 +

y2)2 and α-stable noise with α = 1.0, i.e. the Cauchy noise.

III. SUMMARY AND CONCLUSIONS

For the 2D harmonic potential stationary states reconstruct
(up to rescaling) the noise distribution. In the limit of α = 2
bi-variate α-stable densities converge to the bi-variate Gaus-
sian distribution. Therefore, both types of bi-variate α-stable
noises produces the same stationary state.

For the quartic potential stationary states are spherically
symmetric and have local minima at the origin. With increas-
ing value of the stability index α minima become shallower.
Finally, in the limit of α = 2 the Boltzmann-Gibbs distribu-
tion is reconstructed.

In general for single well potentials of (x2 + y2)c/2 type
(with c > 2) subject to action of bi-variate α-stable noises
with uniform spectral measures stationary densities have
power-law (x2 + y2)−(c+α)/2 asymptotics. Consequently,
marginal densities have also power-law asymptotics with the
exponent −(c+ α− 1).
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I. INTRODUCTION

Recently, considerable attentions have been paid to
the fluctuation of the entropy production for mesoscopic
transports. In particular, the tails of the probability dis-
tribution represent rare but important phenomena for the
stochastic thermodynamics. Experimentally, however, it
is difficult to sample sufficient number of rare events. The
rare events have been explored for a dragged Brownian
particle in water, RNA stretching, the electron transport
thorough quantum dots, to name only a few. This issue
suggests an unsolved problem: How should we sample the
rare events? Several numerical methods were developed
for the efficient sampling.

In this presentation, we discuss on an alternative way
to calculate the probability distribution on the basis of
a single sample for quantum many-body systems. Our
results treat whole the range of the probability distribu-
tions equally well. With the use of the single sample, we
can accurately reproduce the full statistics of the ensem-
ble, which is an assembly of many pure states. Hence, the
difficulty of sampling the rare events is partially solved.

II. TYPICAL PURE NONEQUILIBRIUM
STATES AND PROBABILITY DISTRIBUTION

We use the intrinsic thermal nature of a typical pure
state |φ〉 on the energy shell HE . Let us randomly sam-
ple a pure state |φ〉 from HE according to the Haar mea-

sure. Then, for an arbitrary observable Â, the expecta-
tion value 〈φ|Â|φ〉 well agrees with the microcanonical

average 〈Â〉mc with a probability almost unity1,2. For
large system size, the equivalence of ensembles claims
that the canonical and microcanonical averages for the
total system are quantitatively similar. And, we simply
denote the microcanonical average as 〈Â〉eq.

It is a challenging problem to explore the nonequilib-
rium processes on the basis of the pure state. We extend
the availability of the thermal nature of typical states to
the nonequilibrium processes which start from an equilib-
rium state3. We can also construct a class of typical pure
nonequilibrium stationary states based on the scattering
approach4, and calculate the stationary current.

The important point is that Â can be arbitrary higher
order polynomials of local operators. For example, Â
can be the exponential of a local operator. One might
think that we can distinguish the pure and microcanon-
ical states from the expectation values of higher correla-
tions. However, this is not the case. Hence, we can cal-
culate the characteristic function of, for example, the en-

-1.0 -0.5 0.0 0.5 1.0
a

0.5
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FIG. 1. The probability distribution Peq(∆S = a) for the
microcanonical ensemble and Pφ(∆S = a) for pure states.

The error bars show Peq(∆S = a)/
√
d (red) and fluctuation

of 10 randomly sampled pure states (black).

tropy production 〈U(t)†eiξβĤ(t)U(t)e−iξβĤ(0)〉eq on the

basis of the pure state |φ〉. Here, Ĥ(t) is the Hamiltonian
at time t, and U(t) is the unitary evolution operator. By
the Fourier transformation, we can calculate the prob-
ability distribution P (βW = a) only from a fixed pure
state |φ〉3. The deviation roughly satisfies

Peq(βW = a) = Pφ(βW = a)(1 +O(
1√
d

)), (1)

where Peq(·) and Pφ(·) are the probability distributions
calculated by the initial microcanonical ensemble and the
pure state |φ〉. Here, d = dimHE is the dimension of
the initial energy shell at an energy scale E. Since d
exponentially grows with the system size N , the error
is negligible also for relatively small systems. The error
estimation (1) is considered as model-independent, and
determined only by the absolute value of the probability
and the dimension.

In Fig. 1, we numerically calculate the probability
distribution of the entropy production for N = 10 sites
quantum spin chain which is externally perturbed by a
time dependent magnetic field. Here, we ignore the bo-
son or fermion statistics, however, the same argument
essentially holds for these cases by constraining both the
total energy and the number of particles. This issue is
important to explore the energy and particle currents for
quantum junctions in nonequilibrium steady states4. The
Hamiltonian is

Ĥ(t) = −J
N−1∑
j=1

σzjσ
z
j+1 +

N∑
j=1

σx + h(t)

Ns∑
j=1

σzj + γ
N∑
j=1

σzj .

(2)
Here, we use the ferromagnetic exchange energy J = 1,
and the z component of the magnetic field is γ = 0.5.
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The time-dependent magnetic field h(t) = sin 2πωt is
acting on the subsystem 0 ≤ j ≤ Ns with Ns = 2 and
ω = 0.4. The parameter γ controls the integrability. We
randomly sample 10 pure states from an energy shell HE ,
and calculate the probability distributions. The error
bars show the theoretically predicted deviation from the
microcanonical case, and the numerical fluctuation. The
deviation is in agreement with the theoretical estimation.

The distribution function P (βW = a) contains a con-
tinuous parameter a, and the error estimation above

holds for most of a as verified in Fig. 1. In particular, we
can accurately reproduce the tails or large deviations.

ACKNOWLEDGMENTS

This work is partially supported by JSPS Grants-in-
Aid for Young Scientists (B) (No. 26800206) from Japan.

1 A. Sugita, Nonlinear Phenom. Complex Syst. 10 192 (2007);
cond-mat/0602625 [cond-mat.stat-mech] (2006)

2 P. Reimann, Phys. Rev. Lett. 99 160404 (2007)

3 T. Monnai, and A. Sugita, J. Phys. Soc. Jpn. 83 094001
(2014)

4 T. Monnai, and K. Yuasa, Europhysics Letters, 107 40006

99



UPON 2015, BARCELONA, JULY 13-17 2015 

 

 

Degradation Stochastic Resonance Concept: Benefits of Controlled Noise Injection in Adaptive 

Averaging cell-based Architecture 
 

Nivard Aymerich
1
, Sorin Cotofana

2
 and Antonio Rubio

3
 

1Broadcom Networks Spain, S.L. 

e-mail address: nivard@broadcom.com 
2 Delft University 

e-mail address: S.D.Cotofana@tudelft.nl 
3 UPC, BarcelonaTech 

e-mail address: antonio.rubio@upc.edu 

 

I. INTRODUCTION 

Future nano-scale technologies will exhibit high defect ratios, 

large parameter variability and reduced noise margins. Special 

architectures are needed to build reliable mid/large nanocircuits. 

Several architectures at different system levels have been 

proposed to build circuits based on nanoscale devices1,2. Among 

them the architectures based on active redundant circuits, such as 

R-modular redundancy (RMR) or NAND multiplexing are 

designed to tolerate malfunctioning elements by combining the 

information of redundant circuits performing the same function. 

Such techniques are capable of protecting the system against 

transient and permanent errors without testing and reconfiguring 

but have a reduced capacity to tolerate static errors or defects in its 

original organization. These techniques distribute the information 

processing, storage, and communication along N identical 

elements. The redundant elements combined with some form of 

signal restitution—which recover the signal levels before the 

information is lost—permit the design of reliable circuits using 

unreliable elements. These structures are promising for 

nanotechnology. Of them the alternative named Averaging Cell 

(AVGc) has recently shown a very high efficiency as the decision 

element uses an analog computing principle. In a recent work3 

authors have introduced the principle of adaptive-averaging cell 

(AD-AVG), architecture that is able to deal not only with 

permanent and dynamic but also with the independent time-

varying variability of the elements caused by the degradation of  

components. In this abstract we present how AD-AVG-based 

computer design can benefit of the appearance of a 

counterintuitive degradation stochastic resonance effect. 

II. THE AD-AVG  ARCHITECTURE 

The AD-AVG architecture, graphically depicted in Fig (1), is a 

fault-tolerant technique based on hardware redundancy. It 

calculates the most probable value of a binary variable from a set 

of error-prone physical replicas. The AD-AVG is demonstrated to 

tolerate high amounts of heterogeneous variability and 

accumulated degradation in the physical replicas. 

The AD-AVG operation is based on a weighted average of R 

input replicas yi of a binary variable y.  

   
where ci is the weight corresponding to replica i. The AD-AVG 

calculates the respective weights following a variability monitor 

and weight driver (Fig. 1) 

 

 
Fig. 1. AD-AVD architecture. Different weights are applied to inputs 

determined with the use of the monitor. 

III. DEGRADATION STOCHASTIC 

RESONANCE (DSR) 

We analyze (by analytical and simulating methods) what 

happens in an R-input AD-AVG when the variability of the input 

replicas increases independently as a consequence of degradation. 

A complete analysis can be found in a recent paper3. Fig. (2) 

depicts the resulting function yield of the AD-AVG cell against 

degradation, we assume noise in the variability monitor (s). 

 
Fig. 2. Yield analysis of different size AD-AVCs agains degradation. 

We consider different levels of noise in the variability monitor s. 

 

In the figure we clearly observe how the yield characteristic of 

the cell changes over time due to degradation stochastic resonance 

effect. Thanks to this effect it is possible to obtain higher factors 

of AD-AVG yield after specific amounts of degradation. 

Regarding this experiment on the DSR effect we can extract the 

following ideas: 

• The DSR effect becomes more relevant in AD-AVGs with 

larger number of inputs. 

• Given an AD-AVG in a particular situation of degradation in 

time and noise level it is not always the best option to use all the 

available replicas. There are situations in which less input replicas 

provide higher yield with the same degradation in time and noise 

in the variability monitor. 
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IV. CONTROLLED DEGRADATION 

STOCHASTIC RESONANCE IN 

AD-AVG CELLS 

The main idea behind extending the DSR effect occurrence to 

get benefit of the resonance peak is to add virtual degradation to 

the system in order to force DSR peak degradation conditions 

regardless of its actual degradation level. Degradation affects the 

hardware and causes a variability increase in the input signals. 

Therefore, one way to achieve this virtual degradation is to 

increase the input variability levels to make the system behave 

like it would have been in a higher degradation status. It may be 

considered the option of adding a controllable noise generator to 

each of the input replicas to virtually increase the instantaneous 

amount of degradation in time up to the resonance point. This 

operation is feasible as long as the level of degradation in time is 

below the resonance point. Fig.3 shows the modification of the 

AD-AVG to inject independent controlled-level noise at the cell 

inputs. Fig. 4 shows the effect of behavior of a 20-input AD-AVG 

when we inject different levels of noise at the inputs x. 

 

 
Fig. 3. Adaptive averaging cell with independent noise generators 

added to the inputs i. 

 

Fig. 4. Yield agains degradation with different levels of noise. Thick 

blue line corresponds to the AD-AVG cell a noise x=0.06V. 

Given that we demonstrated that we can control the DSR peak 

position by means of input variation levels, we can make a step 

forward and define a strategy that allows us to get the maximum 

yield during all the circuit lifetime, by enabling DSR peak 

relocation as a consequence of degradation evolution. The basic 

principle of the DSR control is to check at runtime the 

instantaneous amount of degradation in terms of the input 

variability estimators and update the input noise magnitude 

accordingly. 

The target is to keep the reliability characteristic at the highest 

value regardless of the particular degradation level. In order to 

observe which is the input noise magnitude that we have to inject 

into the circuit in order to accomplish our goal, we present in Fig. 

(5) simulation results for a 20-input AD-AVG with noise in the 

Variability Monitor of magnitude σs =  0.06 V sweeping over 

different input noise levels from σx = 0  V to σx =  0.9 V. 

Fig. 5 depicts in thick blue line the curve associated to the null 

input noise case, thin colored lines are the curves associated to the 

sweeping values of σx  from 0 to 0.9 V. We also highlight in the 

figure in thick black line the curve that the yield follows when we 

apply the proper input noise magnitude at each degradation level. 

If we apply the proper noise magnitude, we can move along the 

involute of the thin colored curves obtaining a yield even higher 

than that provided by the resonance peak.  

 
Fig. 5. Impact of adding noise to the input of the cell. The thick black 

line corresponds to the obtained yield when the noise is plied to maximize 
reliability. 

V. CONCLUSIONS 

In this paper, we present the DSR effect in the context of AD-

AVG architectures. This counterintuitive effect implies an 

enhancement in the system reliability against hardware 

degradation for specific noise conditions. For example, the yield 

of a 20-input AD-AVG, with a noise level of 0.06 V in the 

Variability Monitor, decreases from 1 to 0.89 as the system 

degradation is increasing, then it grows up to 0.94 at the DSR 

peak, and finally decreases to zero when the system reaches its 

end of life. Moreover, in order to take the full advantage of the 

DSR effect, we propose to add controllable noise injectors to the 

AD-AVG inputs to virtually increase the amount of hardware 

degradation and create the DSR conditions regardless of the 

degradation level. By this method, we shift the characteristic yield 

to the DSR peak, regardless of the degradation level, and 

significantly enhance the system yield. Simulation results indicate 

that by applying the proper noise magnitude we can provide an 

optimum and nearly flat reliability level at any time before the 

DSR peak degradation level 
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Stotland and Di Ventra1 were the first to present an
analysis of the influence of noise on memristors. The
interplay between noise and resistive switching has been
further characterized, both experimentally and through
simulations, in several papers2–4.

In this work we go back to the their seminal paper,
where they analyzed the influence of additive white Gaus-
sian noise on a simple model of a memristor put forth by
Strukov et al.5. By means of numerical simulations, they
showed that the contrast between low- and high-resistive
states is enhanced by the addition of internal noise in
the presence of a weak harmonic driving signal, and pro-
vided an explanation in terms of a stochastic resonance
phenomenon.

In this contribution, we aim at extending the work of
Stotland and Di Ventra. Motivated by the potential ap-
plication of resistive switching in the area of non-volatile
data storage, we consider the case of non-harmonic driv-
ing signals. Noise is also shown to enhance the contrast
between resistive states, and we provide an alternative
explanation of the observed behavior in terms of the as-
sociated Fokker-Planck equation.

According to the model by Strukov et al.5, resistance
in a memristor can be written as

R(x) = α(1− δRx), (1)

where α, δR ∈ R+ are adequate constants and x ∈ [0, 1]
is a state variable governed by the equation

dx

dτ
=

4x(1− x)

1− δRx
v(τ), (2)

where τ is a suitably normalized time variable and v(τ)
is the (normalized) external voltage drive. It is easy to
verify that x(τ) can be found as a solution to the equation

xβ(τ) + gβ(τ)x(τ)− gβ(τ) = 0, (3)

where β = (1− δR)−1 and

g(τ) =
x(0)

(1− x(0))
1
β

exp

{
4

∫ τ

0

v(t)dt

}
. (4)

In this section, we consider the case in which equation
(2) is modified by additive white Gaussian noise η(τ)
such that 〈η(τ)〉 = 0 and 〈η(τ)η(τ ′)〉 = Γδ(τ − τ ′). We
emulate an alternating 0-1 writing-pattern of a memory
device by considering a non-harmonic drive v(τ) which
consists of a sequence +1 → −1 → +1 → · · · of pulses
of width τb.
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FIG. 1. Temporal evolution of the state variable x for several
noise intensities. Results are the average of 1000 realizations.
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FIG. 2. EPIR ratio as a function of internal noise intensity.
Solid and dashed lines correspond to quasi-analytic predic-
tions developed in the text. Results corresponding to the
average of 1000 realizations of the stochastic differential equa-
tion are represented by triangles.

Fig. 1 shows the temporal evolution of x for several
noise intensities and τb = 1. Observe that the maximum
value that the state variable of x reaches after a +1 pulse
is applied decreases as the noise intensity increases, as
noted by circles and arrows. A usual way of quantifying
the contrast between low (Rl) and high (Rh) resistance
states is through the Electric Pulse Induced Resistance
(EPIR) ratio given by Rh−Rl

Rl
. As it can be observed in

Fig. 2, the EPIR ratio is maximized for a certain optimal
noise intensity and pulsewidth.

Results in Fig. 1 can be understood by resorting to the
associated Fokker-Planck equation. Assuming that τb is
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FIG. 4. Minimum value of x vs. noise intensity: approxi-
mation given by the stationary distribution (solid line), ap-
proximation given by the deterministic solution (dashed), and
result of integrating the SDE (blue triangles).

large enough, we can work with its stationary solution

P (x, τb) ≈ Ps(x) ∝ exp

{
2

Γ

∫ x

0

v(τb)
4y(1− y)

1− δRy
dy

}
, (5)

and 〈x(τb)〉 can be computed by numerical integration.
Fig. 3 shows a good agreement between simulations of
the stochastic differential equation (SDE) and results ob-
tained through the stationarity hypothesis. As it is read-
ily seen from equations (3)-(4), the deterministic evolu-
tion of x(τ) is highly dependent on the initial condition.
One of the effects of noise is to erase the memory of
the initial condition. Indeed, as expected, the stationary
probability distribution in equation (5) does not depend

on the initial condition. However, the time of conver-
gence to stationarity does depend on the initial condition.
In general, the convergence time decreases as the noise
intensity increases, i.e., a higher noise intensity erases
the memory of the initial condition faster.

We can try to use the stationarity hypothesis to com-
pute the minimum value attained by x after a −1 pulse is
applied, i.e., x(2τb). Fig. 4 shows 〈x(2τb)〉 as a function
of the noise intensity (the stationary probability is simi-
lar to that in equation (5)). The behavior for low noise
intensities deviates from that predicted by the station-
ary distribution. Indeed, for the given initial condition
(〈x(τb)〉 in Fig. 3, the x value at the end of the previous
+1 pulse), the pulsewidth τb is not large enough to al-
low for the convergence to stationarity and higher noise
intensities are needed to erase the memory of the initial
condition. Moreover, when the noise intensity is low, the
value of x(2τb) can be approximated by the deterministic
solution in equations (3)-(4).

Using the predictions based on the stationary proba-
bility distribution and the deterministic solution (for low
noise intensities) in Figs. 3-4, we can estimate the EPIR
ratio. The result is shown in Fig. 2 and agrees very
well with simulations. Intuitively, the main effect of the
added noise is to lower the value of x at the end of the
first +1 pulse in such a way that 〈x(τb)〉 is smaller than
expected from the deterministic solution. For low noise
intensities, this ‘new’ initial condition for the differential
equation for τ > τb results in a mean value of x(2τb)
smaller than that in the noiseless case and, thus, leads
to an enhanced EPIR ratio. For high noise intensities,
values of the state variable x attained at the end of each
pulse are independent of the initial conditions and de-
termined by the stationary solution of the corresponding
Fokker-Planck equation. Furthermore, as Γ increases,
the distribution in equation (5) broadens, 〈xs〉 tends to
1/2 and the EPIR ratio goes to zero.

In summary, we introduced a Fokker-Planck approach
to tackle the effect of internal noise on resistive switching,
and used it to explain the resistive-contrast enhancement
found in numerical simulations. It remains an open ques-
tion whether such an approach can be applied to account
for the beneficial role of external noise in resistive switch-
ing as it was reported in a previous work2.
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I. INTRODUCTION

Classical, dynamical systems have been analysed for
ages. And they still are intensively studied in all con-
texts of nowadays science. They are the core part
of applied maths, biology, chemistry, financial markets,
physics (still!) and all the possible mixtures like econo-
physics, biophysics, biochemistry to name but a few. In
general, one can write down short equation that creates
endless possibilities for defining and later investigation of
system in question

ẍ(t) = F (x, ẋ, t). (1)

Here x and t is the position and time respectively. Dot
means the differentiation with respect to time. The F on
the r.h.s. stands for any force that can act in the system
like classical, non-classical, constant, time-dependent, de-
terministic or stochastic.

One of the global understanding of the Newton’s Sec-
ond Law of Motion is that the particle described by the
eq. (1) follows the force it feels. If we push the coffee-cup
lying on the table to the left it will move to the left. We
cannot imagine other picture than that. It all happens
because the forces are linear and we all drink coffee in the
macro–world. In the micro–world, however, the lineari-
ties happen rarely. For finite temperatures noise effects
appear, not just contributing to the loss of the system’s
dynamical abilities, but many times enhancing it1. On
the other hand, for very low temperatures chaos seems
to be inevitable. This all ingredients makes the equation
(1) alive and well, still attracting strong attention.

So, what is typical? If the linear systems are in mi-
nority, noise doesn’t destroy the dynamics, chaos seems
to be everywhere, and even positive mobility is not so
distinctly common2.

The absolute mobility can be defined as the ratio of the
velocity of the particle to the force µ = ẋ/F . This ratio is
commonly positive. There are situations, however, where
it can become negative and the system shows counter-
intuitive dynamics. This phenomenon is called the abso-

lute negative mobility. It has been reported for the clas-
sical, non-linear system with periodic potential driven by
the periodic time-dependent force, constant force f in the
presence of the equilibrium thermal noise, typically mod-
elled by the δ-correlated Gaussian white noise ξ of zero
mean3

ẍ = sin(x) + a cos(ωt) + f + ξ(t). (2)

For a certain conditions the absolute mobility can be neg-
atively valued. The original numerical findings has been
later confirmed experimentally4.

What if one would test the system not against constant
bias force f , but instead apply stochastic force, with the
same average value as the constant force above? The
dynamics would change drastically, but surprisingly the
effect stays if one would consider biased Poissonian white
shot noise5. The question if the effect would be similar
for other type of non-equilibrium random forces appears
naturally. Maybe even the enhancement of the ANM ef-
fect can be possible for random noise? One of the natural
candidates to test the idea seem to be the two–state noise
also known as a random telegraph noise

η(t) = {−d, u}, d, u > 0, (3)

The probabilities of transition per unit time from state
−d to u and back is given by µd and µu respectively.

t

−d

u

η(
t)

Over the talk we’ll try to address those questions, for-
mulate the problem and discuss the dynamics of the clas-
sical system (2) where the constant bias will be replaced
by the mean value of the dichotomous noise

f = 〈η(t)〉 =
uµd − dµu

µd + µu
. (4)
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I. INTRODUCTION

We consider a dynamical system which has a stable at-
tractor and which is perturbed by an additive noise. Un-
der some quite typical conditions, the fluctuations from
the attractor are intermittent and have a probability dis-
tribution with power-law tails. We show that this results
from a cascade of amplification of fluctuations due to
transient periods of instability.

II. POWER-LAW FLUCTUATIONS

In a one-dimensional example the equation of motion
might be

ẋ = v(x, t) +
√

2Dη(t) (1)

where η(t) is a white noise signal (defined by (2) below)
and D is the diffusion coefficient of the corresponding
Brownian motion. We shall be primarily concerned with
the case where D is small. The underlying system (with-
out the noise term) is taken to be stable in the sense
that its Lyapunov exponent λ is negative, implying that
nearby trajectories converge. When a small noise term
is added to the equation of motion, the trajectories do
not reach the attractor of the underlying deterministic
system. The separation of two trajectories, ∆x, can be
characterised by its probability density P∆x. (Several
stochastic variables are introduced here: we use PX to
denote the probability density function for a quantity
X, and 〈X〉 to denote its expectation value). It might
be expected that P∆x would be well-approximated by a
Gaussian distribution, and for a generic class of models
this expectation is correct. An example is the case where
the underlying dynamical system is ẋ = λx (with λ < 0),
which approaches the attractor x = 0. If this equation
of motion is replaced by ẋ = λx +

√
2Dη(t), where η(t)

is white noise, with statistics

〈η(t)〉 = 0 , 〈η(t)η(t′)〉 = δ(t− t′) (2)

these equations describe an Ornstein-Uhlenbeck1 pro-
cess. The deviations from the fixed point have a Gaussian
distribution in the limit as t→∞:

Px =

√
λ

2πD
exp

[
−|λ|x

2

2D

]
. (3)

provided λ < 0. The deviation ∆x of two trajectories
from each other is is also Gaussian distributed, with

double the variance. We argue, however, that there is
also a generic class of models for which the distribu-
tion P∆x(∆x) of separations of trajectories has power-law
tails:

P∆x ∼ |∆x|−1+α (4)

when ∆ is large compared to
√
D/|λ|, (and we must have

α > 0 if this distribution is to be normalisable). The large
excursions of ∆x(t) which are the origin of the power-law
tails are a form of intermittency. The intermittency of
∆x(t) is illustrated in figure 1 for a model of colloidal
particles in a turbulent flow. Figure 2 shows evidence
that ∆x has a power-law distribution in the same model,
with an exponent which is independent of D. The power-
law distribution has both an upper and a lower cutoff
scale, and the lower cutoff scale decreases as D → 0.
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FIG. 1. a Set of trajectories of a model of colloidal particles
in suspension. Different trajectories separate and recombine.
b Intermittent separation of pairs of trajectories ∆x(t).

105



UPON 2015, BARCELONA, JULY 13-17 2015

10
−4

10
−3

10
−2

10
−1

0.1

1

10

100

∆x−0.985

a

∆x

P
(∆

x)

0.1

1

10

100

P
(∆

 x
) ∆x−1.34

b

FIG. 2. The probability distribution P∆x for a model system,
for two values of D (D = 3×10−10, full curve, and D = 10−9,

dashed curves, showing fits by a power law |∆x|−(α+1).

In this talk we explain the origin of this intermittency
of show how it can be quantified by making an analytical
theory of the exponent α. The intermittency which is
considered here is different from that which is discussed
in most studies2–5, where intermittency arises because a
system is just above a threshold of instability. The sys-
tems considered in this work are driven by external noise,
and we are concerned with what might be termed sub-
critical intermittency, which is observed when the under-
lying system converges to an attractor. The intermit-
tency effect discussed in this paper is only observed in
non-autonomous systems, where the linearised dynamics
in the vicinity of the attractor is fluctuating.

Beyond the point at which the underlying system be-
comes unstable, that is, when the Lyapunov exponent λ
is greater than zero. The system ceases to have a point
attractor, and instead it has a strange attractor, where
phase points cluster on a fractal measure5. We argue that
as λ approaches zero from below, the exponent α in (4)
approaches zero from above. When λ > 0, the two-point
correlation function of the strange attractor, g(∆x), has
a power-law dependence: g(∆x) ∼ |∆x|D2−1 where D2 is

the correlation dimension of the strange attractor6. The
analogy with (4) suggests that the exponents are related
by

α = −D2 (5)

so that normalisable distributions of fluctuations corre-
spond to negative values of D2. Equation (4) therefore
gives a clear physical meaning to a negative fractal di-
mension.

III. EXPLANATION

The talk will present an explanation of the effect, ex-
panding upon the summary below.

Consider the linearisation of Eq. (1) to give the sepa-
ration between two nearby trajectories:

δẋ = Z(t)δx+ 2
√
Dη(t) , Z(t) =

∂v

∂x
(x(t), t). (6)

Note that when D = 0, Z(t) is the logarithmic derivative
of the separation δx(t), and we can think of Z(t) as being
an instantaneous Lyapunov exponent. In the case of au-
tonomous systems with an attractor, the attractor must
be a fixed point in phase space, and Z(t) approaches a
constant λ < 0 as t → ∞. In this case the fluctua-
tions are described by an OU process and the distribution
P∆x is Gaussian. In cases where the dynamical system
is non-autonomous, Z(t) need not approach a constant
value. If the external driving is a stationary stochastic
process, Z(t) is a fluctuating quantity with stationary
statistics. The origin of the power-law tails described by
(4) is that the fluctuations are amplified during periods
when Z(t) > 0. This noise amplification is independent
of the initial amplitude, because the fluctuating quan-
tity Z(t) acts multiplicatively in Eq. (6). This leads to
a stochastic cascade amplification process, whereby large
amplitude fluctuations are built up by a succession of
periods where Z(t) > 0. The power-law tail in the fluc-
tuation distribution arises whenever Z(t) is positive for
some intervals of time, however short.

1 G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev., 36, 823-41,
(1930).
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I. INTRODUCTION 

Understanding energy conversion processes at the nanoscale 

has become crucial for the future development of energy aware 

ICT technologies1. In a new scenario where computing energy 

consumption is pushed to the fundamental limit2, proposals 

oriented to power such a future zeropower ICT devices using the 

energy harvested from ambient sources have started to make 

sense. Vibration energy harvesting (VEH) technology has 

demonstrated to be a real alternative to standard electrochemical 

battery technology for powering portable devices from ambient 

mechanical energy in the form of vibrations, but only few large 

scale examples have shown to be useful in real applications3. 

Among all the challenging topics identified in VEH technology, 

enhancement of the harvested energy density and widening of the 

frequency response are two of the most intensively investigated. 

In previous works4,5,6, we have demonstrated that both challenges 

can be simultaneously addressed by miniaturizing at the nanoscale 

the VEH transducers and engineering the non-linearity of their 

mechanical properties. Nanoelectromechanical structures (NEMS) 

based on piezoelectric 2D materials have been proposed for this 

aim. In particular, it has been theoretically demonstrated that 

tuning the bistable non-linearities of suspended h-BN monoatomic 

ribbons by a compressive strain induced buckling allows, from 

one hand, maximizing the energy harvested from wide band 

Gaussian vibration noise and, from the other, getting power 

density levels above the state of the art7. However, the problem of 

converting the energy of ambient mechanical noise into useful 

electrical energy by means of NEMS based on piezoelectric 2D 

materials is still open. To solve this problem it will be necessary 

to provide experimental evidence, currently lacking, but 

previously, a good model for the electromechanical processes 

involved in the conversion mechanism has to be developed. In this 

contribution we will present our last theoretical results of the 

dynamics of one atom thick h-BN suspended nanoribbons. Two 

computational procedures have been followed: (i) From one hand, 

we have obtained the deformation potential energy by first 

performing ab-initio calculations and then we have calculated the 

dynamics by solving numerically a Langevin type equation. (ii) 

Alternatively, we have treated also the dynamic part of the 

problem at the atomistic level by means of molecular dynamics 

calculations. 

 

II. STATIC CALCULATIONS 

 Suspended h-BN nanoribbons along the x direction in a 

clamped-clamped configuration are brought under a compressive 

strain  by bringing closer the two clamped ends as depicted in 

Fig. (1). Eventually, the structure is buckled and, consequently, 
two symmetric stable states are induced around the plane defined 

by the uncompressed configuration. 

 
FIG. 1. Schematic representation of 1-atom thick h-BN 

clamped-clamped suspended nanoribbon in a non-compressed 

state, =0% (left) and a compressed >0% state (right). 

 

The elastic potential energy, E, and the 2D longitudinal 

polarization P2D, have been calculated using DFT as implemented 

within the SIESTA package8 in order to have a purely atomistic 

description and an electronic structure obtained from first-

principles. Fig. (2) shows the change in the elastic energy, E, 

with respect to the ground state energy defined as the energy of 

the flat and non-compressed ribbon, i.e. E0,0=E(z=0,=0), as a 

function of the deformation amplitude, z, corresponding to a h-BN 

nanoribbons 17 nm long and 1 nm wide.  

 
FIG. 2. Elastic energy change, E, with respect to the ground 

state, E0,0 (as defined by the energy of the flat, z=0, non-

compressed, =0, ribbon) as a function of the vertical static 

displacement, z, of the central atoms of the h-BN ribbons. 

Dimensions are in all cases 17 nm long and 1 nm wide. 
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At a certain compression between 0% and 1%, h-BN ribbons 

relax the compression energy by buckling their structure and a 

bistable non-linearity is induced, which is characterized by two 

energy wells (around z=±1nm) and an energy barrier which 

separation and height grow with compression5,6. 

III. DYNAMIC CALCULATIONS 

The h-BN structures have been excited by an external force with 

a WGN (white Gaussian noise) spectrum of Frms=5pN of intensity. 

In these particular conditions, a Langevin equation coupled to a 

piezoelectric transduction equation have been solved for different 

compression values from 0% up to 1%. For =0% and low 

compression values, the structure randomly vibrates around z=0 

by the action of the noisy external force, since bistability is still 

not well defined. When compression increases (for >0%), the 

two energy wells start to influence the dynamics of the system and 

the structure start to eventually jump from one energy well to the 

opposite one. Such inter-well excursions grow in amplitude when 

compression increases, since inter-well distance also increases. 

However, energy barrier height also grows as compression 

increases and, consequently, when the compression reaches a 

certain value the barrier is too high and the structure gets stuck 

into one of the wells, where it vibrates in a similar random way as 

in the low compression regime. 

Those three regimes can be identified in the zrms curve of Fig. 

(3) (black open circles) and the corresponding Prms curve (red 

filled circles): the zrms value is larger in the inter-well jumping 

regime (around =0.3%) than in the low and high compression 

states, where no inter-well excursions are produced. 

 
 

FIG. 3. Response normalized to the excitation force versus 

compression  of the rms vertical position of central atoms, zrms 

(black curves, left axis), and of the rms power delivered to the 

optimal load* (red curve, right axis). Quality factor is supposed to 

be Q=100. *The h-BN nanoribbon is electrically loaded by a 

RL=240 k resistor, which maximizes the electrical power 

transferred from the 2D piezoelectric transducer. 

 

Similar results as those obtained by solving the Langevin 

equation (see Fig. (3)) can be derived by means of molecular 

dynamics (MD) simulations performed with the LAMMPS code9. 

Thermal excitation is considered in this case as the external 

vibrational source of noise and temperature is used as the control 

magnitude of the noise intensity. However, MD gives additional 

information about the modes of vibration of the nanoribbons and, 

more specifically, about the dynamics of the transitions between 

the two fundamental buckled states. In Fig. (4), three 

representative snapshots of the dynamics of a 100.8 nm x 7.5 nm 

nanoribbon with a compression of 1.5 % are shown. An excited 

mode (snapshot b) with a node in the middle of the nanoribbon 

usually shows up between two fundamental modes (snapshots a 

and c) associated to the buckled states.  

 

 
 

FIG. 4. Snapshots sequence of the dynamics of a 100.8 nm x 7.5 

nm h-BN nanoribbon subjected to a compression of =1.5 % and 

thermally excited at T=300K. 

 

With the aim of improving the accuracy of the dynamic model 

of the compressed piezoelectric h-BN nanoribbons, we are 

currently introducing the effect of the non-linear damping terms 

associated to the ripples of the structure. Such instabilities have 

been previously attributed to the quality factor dependence on the 

compressive strain level, which has been experimentally observed 

in suspended nanoribbon structures made of other 2D materials. 

Additional relevant information derived from this non-linear 

damping effect is expected to provide new insights to advance on 

solving the problem of converting the energy of ambient 

mechanical noise into useful electrical energy. 
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I. INTRODUCTION

Light-matter interaction is one of the most complex
phenomena in natural sciences. It has been studied for
400 years as classical optics and for 50 years as quan-
tum optics, and it still remains an active research field.
The simplest device which demonstrates light-matter in-
teraction is an optomechanical cavity, regarded as a
single mode of electromagnetic radiation confined be-
tween two mirrors. One of the mirrors is static, and
another one is attached to a spring and can mechani-
cally move. Light and mechanical motion are coupled
by the radiation pressure1. Massive effort in cavity op-
tomechanics resulted in the recent years in a number of
ground-breaking experiments, for example, demonstra-
tion of cooling of mechanical resonators to their quan-
tum mechanical ground state, optomechanical squeezing
of light, and observation of radiation pressure shot noise.

In optomechanical experiments, both cavities and me-
chanical resonators are perfectly linear.

An important development of the last few years was
circuit (microwave) optomechanics — a technology in
which mechanical elements are embedded into (supercon-
ducting) microwave cavities. Whereas microwaves and
light are both electronagnetic waves, and the physical
principles of cavity optomechanics and microwave op-
tomechanics are similar, the setups and the operation
regimes are very different. An important aspect we ad-
dress here is that microwave cavities can be made in-
trinsically non-linear by adding Josephson junctions and
can be integrated with non-linear mechanical elements,
for example based on multi-layer graphene. This opens
a whole new field of non-linear optomechanical systems.

The optomechanical system is described by a compact
Hamiltonian, written in the second-quantized form as fol-
lows,

Ĥ = ~ωcâ
†â+ ~ωmb̂

†b̂+ ~g0â†â
(
b̂† + b̂

)
. (1)

Here, â and b̂ are creation operators for photons and me-
chanical vibrations, respectively, the first term describes
the optical or the microwave cavity with the frequency
ωc, the second one — the mechanical resonator with the
frequency ωm, and the last term corresponds to the radia-
tion pressure coupling, with g0 being the (single-photon)
coupling constant. In optomechanical cavities, ωc is the
frequency of visible light (THz range), and therefore the
mechanical frequency ωm, which can range between kHz
and GHz, is always several orders of magnitude less than
ωc. In microwave cavities, the cavity frequency is in the
hundreds of GHz range, still much greater than ωm.

A very common step in treating the Hamiltonian (1)

is to assume that the number of photons in the cavity is
large. Then the coupling term can be linearized, and the
Hamiltonian becomes

Ĥ = ~ωcâ
†â+ ~ωmb̂

†b̂+ ~g
(
â† + â

) (
b̂† + b̂

)
, (2)

where g is the so-called multi-photon coupling. It is re-
lated to the single-photon coupling by g = g0

√
N , where

N is the average number of photons in the cavity. In
the experiments, this number can be made very big, and
therefore g is much stronger than g0, sometimes by sev-
eral orders of magnitude. In contrast to the non-linear
Hamiltonian (1), (2) is linear and thus represents a sig-
nificant simplification.

II. CLASICAL SQUID GEOMETRY

A simple example of a non-linear microwave cavity
of a superconducting quantum interference device (dc
SQUID), a superconducting loop with two junctions. dc
SQUID is a very sensitive detector of magnetic field. If
one of the arms of the SQUID is suspended and vibrates,
the sensitivity is sufficient to detect these mechanical
vibrations via the variation of the flux. This mecha-
nism of detection of mechanical oscillations was proposed
theoretically2,3 and demonstrated experimentally4.

Subsequent experiments demonstrated strong backac-
tion at low voltages in a partially suspended SQUID (the
mechanical frequency and the quality factor of the me-
chanical resonator were affected by the biasing conditions
of the SQUId, such as the current bias and the magnetic
flux)5 and even self-sustained oscillations in a fully sus-
pended (torsional) SQUID6.

This is a purely classical problem, which has been
solved theoretically by considering classical equations of
motion. The two Josephson junctions were modeled in
the framework of the resistively and capacitively shunted
junction model, when a current-biased junction is rep-
resented as a combination of three circuit elements con-
nected in parallel — a Josephson junction proper, a re-
sistor, and a capacitor. The coupling between supercon-
ducting phases and the mechanical motion was provided
by the position dependence of the magnetic flux and by
the Lorentz force acting on the mechanical resonator.
Rather than giving here the details of the calculation5,6,
we present here an argument which facilitates the under-
standing of the origin of the self-sustained oscillations.
The equation of motion for the resonator reads

mẍ+mωmQ
−1ẋ+mω2

m = F cosωt+ αĨ , (3)

where m, Q, and x are the mass, the quality factor, and
the coordinate of the (single-mode) mechanical oscillator,
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the first term on the right hand side stands for the driving
force, and the second term represents the Lorentz force
and is proportional to the current through the suspended
arm of the SQUID.

In practice, the dynamics of the mechanical resonator
is several orders of magnitude slower than the dynamics
of the phases of Josephson junctions. Furthermore, in
the experiments the junctions were overdamped. In this
situation, the current Ĩ can be approximated by the time-
averaged (with respect to the plasma frequency of the

SQUID) value, Ĩ ≈ CV̇ + V/R, where V/R = (I2 − I2c ),
I is the bias current, and Ic is the flux-dependent critical
current through the SQUID. The flux dependence of Ic
provides the dependence of Ĩ on x and ẋ, thus renormal-
izing the frequency and the quality factor in the oscil-
lator. In particular, the renormalization of the quality
factor originates from the term V̇ . Its sign depends on
the magnetic field, and its value diverges at I → Ic, thus
providing a possibility for the negative effective quality
factor — a necessary condition for self-sustained oscilla-
tions, observed in the experiment.

III. OPTOMECHANICALLY INDUCED
ABSORPTION

One of the signatures of the quantum nature of
electromagnetic radiation in optomechanical systems is
electromechanically induced transmission / absorption
(OMIT/OMIA), which is a sharp peak/dip in the trans-
mission/reflection spectrum of the cavity exactly at the
cavity frequency ωc if the cavity is driven at the red-
shifted frequency ωc − ωm. For a linear cavity, the peak
is harmonic. It has been observed in several experiments,
including a recent measurements in the microwave cavity
with graphene membrane serving as one of the mirrors7.

The same device7 showed clear signs of non-linear be-
havior as the power of the probe increased. This behav-
ior was due to mechanical non-linearities of the graphene
membrane. We performed systematic theoretical studies
of non-linear response of the microwave cavity coupled to
a Duffing oscillator — the simplest model of a non-linear
oscillator8. The main conclusions are as follows,

• The shape of the peak does not necessarily corre-
spond to the response profile of a driven Duffing
oscillator. Instead, the response develops a sharp
peak without an inflection point.

• The depth of the OMIA dip is almost independent
on the probe power, however, the position depends
on it.

• At low probe powers, there is hysteretic behavior,
which disappears at higher probe powers.

These theoretical conclusions are in a good agreement
with experimental results.

IV. UNSOLVED PROBLEMS

Despite a great success of microwave optomechanics,
there are currently more questions than answers in the
field. The most interesting issue is how one can reli-
able manipulate with the mechanical resonator in the
quantum regime, and, in particular, whether one can cre-
ate non-classical states (defined as states with negative
Wigner function). A superposition of two lowest mechan-
ical Fock states has been previously achieved but not in
the cavity geometry.

For a linear cavity, one can only transfer a Gaussian
state of the cavity into a Gaussian state of the mechan-
ical resonator. Thus, to create non-classical states, one
needs non-linearity. To access the quantum regime, one
needs strong coupling, and thus strongly coupled non-
linear cavities become of interest.

Lifetime of quantum states of a mechanical resonator
is not really well understood, and the mechanisms of de-
coherence are not understood at all. The decoherence in
quantum non-linear mechanical systems will certainly be
one of the most important issues in the coming research.
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I. INTRODUCTION

Conduction of electrons in matter is ultimately de-
scribed by quantum mechanics. Yet at low frequency or
long time scales, low temperature quantum transport is
perfectly described by this very simple idea: electrons are
emitted by the contacts into the sample which they may
cross with a finite probability1,2. Combined with Fermi
statistics, this partition of the electron flow accounts for
the full statistics of electron transport3. When it comes
to short time scales, a key question must be clarified:
are there correlations between successive attempts of the
electrons to cross the sample? While there are theoretical
predictions1 and several experimental indications for the
existence of such correlations4–6, no direct experimental
evidence has ever been provided.

In order to probe temporal correlations between elec-
trons, we have studied the correlator between current
fluctuations i(t) measured at two times separated by τ ,
C(τ) = 〈i(t)i(t+τ)〉, where 〈.〉 denotes statistical averag-
ing. We calculate this correlator by Fourier transform of
the detected frequency-dependent power spectrum of cur-
rent fluctuations generated by a tunnel junction placed at
very low temperature. The very short time resolution re-
quired to access time scales relevant to electron transport
is achieved thanks to the ultra-wide bandwidth, 0.3-13
GHz, of our detection setup.

We report the measurement of the frequency-
dependent noise spectral density of both thermal noise
(no dc bias, various temperatures) and shot noise (low-
est temperature, various voltage biases), from which we
determine the current-current correlator in time domain
C(τ). In complex quantum systems, the method we have
developed might offer direct access to other relevant time
scales related, for example, to internal dynamics, cou-
pling to other degrees of freedom, or correlations between
electrons.

In the following, the noise spectral density is expressed
in terms of noise temperature : TN (f) = S(f)/(2kBG).

II. RESULTS

Thermal noise spectroscopy. On Fig. 1, we show mea-
surements of the noise temperature TN vs. frequency
for various electron temperatures T between 35 and 200
mK, when the sample is at equilibrium, i.e. with no
bias (V = 0). We observe that at low frequency one has
TN (0) = T which is the classical Johnson-Nyquist noise.
At high frequency hf � kBT , all experimental curves
approach the zero temperature curve (theoretical dotted
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FIG. 1. Equilibrium noise temperature vs. frequency
for various electron temperatures T . Symbols are ex-
perimental data and solid lines are theoretical expectations
of Eq. (1).
Inset : Experimental rescaled noise temperature TN/T vs.
rescaled frequency hf/(2kBT ).

black line) which corresponds to the so-called vacuum
fluctuations Svac(f) = Ghf . Our data are in very good
agreement with the theoretical predictions given by7 :

Seq(f, T ) = Ghf coth

(
hf

2kBT

)
. (1)

Shot noise spectroscopy. Fig. 2 shows the measure-
ments of TN vs. frequency for various bias voltages V.
The data are taken at the lowest electron temperature
T = 35 mK. At low frequencies, i.e. hf < eV , one
observes a plateau corresponding to classical shot noise
S = eI. When hf � eV , the vacuum fluctuations take
over and S = Svac(f). Black lines on Fig. 2 are the theo-
retical predictions of the out of equilibrium noise spectral
density8

S(f, V, T ) =
1

2

[
Seq

(
f +

eV

h
, T

)
+ Seq

(
f − eV

h
, T

)]
. (2)

Current-current correlator in time domain. The
current-current correlator in the time domain is given
by the Fourier Transform of Eq. (2) :

C(t, T, V ) = Ceq(t, T ) cos

(
eV t

~

)
. (3)
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FIG. 2. Out of equilibrium noise temperature vs. fre-
quency for different dc voltage biases V at T = 35 mK.
Symbols are experimental data and solid lines are theoretical
expectations.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t in units of (h/eV)

1.0

0.5

0.0

0.5

1.0

∆
C

(t
)/

∆
C
eq
(t

)

FIG. 3. Rescaled current-current correlator in time
domain vs. reduced time eV t/h for various bias volt-
ages V = 25.5, 30.6, 35.7 and 40.8 µV .

However, Seq(f) diverges as |f | → ∞, so Ceq(t, T ) di-
verges at all times. To circumvent this problem, we de-
fine the thermal excess noise and its corresponding time
domain correlator :

∆S(f, T, V ) = S(f, T, V )− S(f, T = 0, V )

∆C(t, T, V ) = ∆Ceq(t, T ) cos

(
eV t

~

)
, (4)

We show experimental data for ∆C(t, V )/∆Ceq(t, T ) as
a function of the rescaled time h/eV on Fig. 3. This
rescaling clearly demonstrates the oscillation period be-
ing h/eV , in agreement with Eq. (4).

III. INTERPRETATION

These oscillations are the result of both the Pauli prin-
ciple and Heisenberg incertitude relation. To see this, let
us consider a single channel conductor crossed at t = 0
by two electrons of energy E and E′. According to Pauli
principle, the energies must be different, E 6= E′. But
how close can E and E′ be? According to Heisenberg
incertitude relation, it takes a time tH ' h/(|E − E′|)
to resolve the two energies, so E and E′ cannot be con-
sidered different for times shorter than tH . This means
that if one electron crosses at time t = 0, the second one
must wait. Since |E − E′| < eV , one has tH > h/eV :
there is a minimum time lag h/eV between successive
electrons. The regular oscillations we observe on ∆C are
a direct consequence of this blockade and reflect the fact
that electrons try to cross the sample regularly at a pace
of one electron per channel per spin direction every h/eV .
The decay of ∆C(τ) we observe at long time reflects the
existence of a jitter which is of pure thermal origin.

At high bias voltage, eV � kBT, hf , the oscillation pe-
riod h/eV becomes so small that the electrons no longer
have to wait before tunneling. This high energy regime
is the classical limit where the current flowing through
the junction is characterized by a Poisson distribution.
The noise spectral density is thus given by the Schottky
limit S = eI. At low bias voltage, there are correlations
between successive tunneling electrons and the resulting
current distribution is no longer Poissonian.

∗ Karl.Thibault@USherbrooke.ca
† Julien.Gabelli@U-PSud.fr
‡ Christian.Lupien@USherbrooke.ca
§ Bertrand.Reulet@USherbrooke.ca
1 T. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).
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I. INTRODUCTION

The transient dynamics of noisy Josephson junctions
(JJ) is studied by a theoretical analysis. A JJ is a meso-
scopic system in which macroscopic quantities, as volt-
age and current, are directly dependent on the order pa-
rameter ϕ through the well-known Josephson relations.
The parameter ϕ is the phase difference between the
macroscopic wave functions describing the superconduct-
ing condensate in the two electrodes forming the device.

The behavior of Josephson junctions is strongly influ-
enced by environmental perturbations, and specifically
by the presence of noise source responsible for decoher-
ence phenomena. The role played by random fluctuations
in the dynamics of these devices has recently solicited a
large amount of work and investigation on the effects
both of thermal and non-thermal noise sources on their
transient dynamics1–4. In the last decade, theoretical
progress allowed one to calculate the entire probability
distribution of the noise signal and its cumulants, per-
forming a full counting statistics of the current fluctua-
tions2. Moreover, the presence of non-Gaussian noise sig-
nals has been found experimentally in many systems1,3.
Non-equilibrated heat reservoir is an example of non-
Gaussian noise source. Within this context, experimental
investigations have been performed, studying the effect
of sources of non-Gaussian fluctuations on the average
escape time from the superconducting metastable state
of a current biased JJ1,3.

Recently, the characterization of JJs as detectors,
based on the statistics of the escape times, has been
proposed5–10. Specifically, the statistical analysis of the
switching from the metastable superconducting state to
the resistive running state of the JJ has been exploited
to detect weak periodic signals embedded in a noisy en-
vironment6,7. Moreover, the escape rate from one of the
metastable wells of the tilted washboard potential of a
JJ has been used to encode information on the non-
Gaussian noise present in the input signal5,8–10. After
the seminal paper of Tobiska and Nazarov4, JJs used as
threshold detectors allow to study non-Gaussian features
of the current noise8,9. Specifically, when a JJ leaves the
metastable zero voltage state, it switches to a running
resistive state and a voltage appears across the junction.
Therefore, it is possible to measure directly in experi-
ments the escape times or switching times and obtain
their probability distribution11–14.

Motivated by these studies, in view of a deeper un-
derstanding of the transient dynamics of a JJ interacting
with a noisy environment, we carry out an analysis on
the role of non-Gaussian noise sources in the switching
times of a long JJ. The dynamics of this system is ruled
by a nonlinear PDE, the perturbed sine-Gordon (SG)
equation, which includes in this work a stochastic term.
The noise signal is modeled by using different α-stable
(or Lévy) distributions Sα(σ, β, µ), where α ∈]0, 2] is the
stability index (or characteristic exponent) which deter-
mines how the distribution tails go to zero, β (|β| ≤ 1) is
an asymmetry parameter, and σ > 0 and µ are two real
numbers which define the profile of the distribution and
are called, for this reason, shape parameters. Specifically
β = 0 (β 6= 0) gives a symmetric (asymmetric) distribu-
tion. These statistics allows to describe real situations, in
which some variables of the studied system show abrupt
jumps and very rapid variations called Lévy flights15.
The behavior of short and long JJs in the presence of
non-Gaussian noise sources was previously studied16,17

considering only few Lévy distributions, namely those
with a probability density function for which an explicit
form is known, that is Gaussian (α = 2, β = 0), Cauchy-
Lorentz (α = 1, β = 0) and Lévy-Smirnov (α = 0.5,
β = ±1) distributions. In particular, the mean switch-
ing times (MST) and the mechanisms ruling the escape
events from the metastable superconducting state were
explored, considering also the effect of an external sinu-
soidal driving. Furthermore, the noise induced genera-
tion of nonlinear SG excitations along the junction, i.e.
solitons and breathers, was taken into account. Fig. 1
shows the phase dynamics of junctions of different lenghts
(L = 2 and L = 15)17. Considering lengths larger than
a certain threshold value, the junction switches to the
resistive state by soliton creation (left panel of Fig. 1),
that is by formation of 2π steps in ϕ. Otherwise, the
junctions elements move between the metastable states
as a whole (right panel of Fig. 1). Solitons are the pillars
of the transient dynamics in long JJ, so the noise induced
effects in the MST behavior has to strongly depend on
the solitons originated by random fluctuations. The soli-
ton solutions are strongly stable, appearing clearly in the
I-V characteristic of the junction, and maintaining their
shape after collisions or reflections at the boundaries. In-
stead a breather is a travelling SG solution formed by
a soliton-antisoliton bounded couple, oscillating with a
proper internal frequency. Many practical difficulties to
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FIG. 1. LJJ phase dynamics during the switching to the resistive state using a Cauchy-Lorentz noise source. The length of
junction is L = 2 (right panel) and L = 15 (left panel). The curves show the characteristic Lévy flights of the CL statistics
inducing nonlinear excitations along the junction. Figure adapted from 17.

experimentally evidence breathers in long JJ exist. In-
deed, breathers are unstable and rapidly decay in time,
moreover the magnetic flux associated with a breather is
zero, as well as the voltage difference across the junction.
Therefore, an actual challenge in this field, both from ex-
perimental and theoretical point of view, is the capacity
to generate, observe and sustain breathers in long JJ.

The mechanisms ruling the nonlinear modes excited
in a SG system in the presence of non-Gaussian noise
sources is a research field not completely explored. The
focus of this work is therefore a deeper investigation of
the transient dynamics of the phase difference ϕ in a long
JJ, subject to noise sources with different α-stable distri-
butions Sα(1, β, 0). In particular, the MST as a function
of the noise intensity, the frequency of the driving force
and the junction length is studied, exploring the com-
plete spectrum of α and β values within the intervals
]0, 2] and [−1,+1], respectively. Interesting nonmono-
tonic behaviors are expected to characterize the MST

data, namely noise enhanced stability (NES) and reso-
nant activation (RA) effects. From a theoretical point
of view, the appearance of breathers, induced by Lévy
flights, was highlighted by Valenti et al17, modeling the
noise source only by the CL statistics (see the narrow
peaks in the curves of Fig. 1). When α-stable statis-
tics different from Gaussian, Cauchy-Lorentz and Lévy-
Smirnov are used, a lack of knowledge exists about the
characteristics (rate of appearance, oscillation frequency,
intensity) of nonlinear SG excitations induced by the
noise. In particular, in view of a deeper comprehension
of the role of the noise in the transient dynamics of long
JJs, it has to be further studied how the features of differ-
ent Lévy-distributed noises (fat tales, mode and limited
space displacement around it) affect the SG nonlinear
modes. Finally, another interesting open problem is the
role of the breathers in the out of equilibrium dynamics
of long JJs.
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I. INTRODUCTION

What does it mean measuring the electrical current at
Tera Hertz (THz) frequency? Answering this questions
is not easy neither from an experimental nor theoreti-
cal point of view. At such frequencies, the displacement
current (time-dependent variations of the electric field)
becomes even more important than the conduction (par-
ticle) current. For semi-classical electron device simula-
tions, it is assumed that the interaction with an external
measuring apparatus does not alter the properties of the
system itself. On the contrary, for rigorous quantum de-
vice simulations, one must take into account the effect
of the measuring apparatus on the measured system (the
quantum device evolves differently if the system is mea-
sured or not!).

The traditional procedure to describe the interaction
between a quantum system and a measuring apparatus is
by encapsulating through a non-unitary operator. How-
ever, which is the operator that determines the (non-
unitary) evolution of the wave function when measuring
the electrical THz current? Is it “continuous” or “in-
stantaneous”? with a “weak” or “strong” perturbation of
the wave function? 1 To the best of our knowledge, no
such THz-total-current operator has been presented.

In this conference we will discuss a present an original
and accurate modelization for the quantum measurement
of the total (conduction plus displacement) current at
THz frequency. We will consider the interaction between
the electrons in a metal surface, working as a sensing
electrode, and the electrons in the device active region.
We will show that the measurement of the THz current is
weak (in the sense of Aharonov et al.2), implying a small
perturbation of the quantum system and a new source of
noise3.

II. A NOVEL QUANTUM APPROACH TO
INCLUDE THE THZ MEASURING APPARATUS

The interaction between the quantum system and the
measuring apparatus is studied here through quantum
(Bohmian) trajectories, without the need of postulating
an operator. In principle, we need to consider all the
particles of Fig. 1 a). However, because of the large dis-
tance between the system and the ammeter, we consider
only the interaction between the particle x1 belonging to
the quantum system, and the near electrons, x2, ...,xN ,
in the metal surface Sm (see Fig. 1 b)). Therefore, we
compute the total current on the surface SL, while the
rest of not simulated particles, which do not have a di-
rect effect on the back-action suffered by the particle x1,
are the responsible of translating the value of the to-

FIG. 1. a) Schematic representation of a two terminal de-
vice. The ideal surface SL collects all the electric field lines.
b) Zoom of the red region in Fig. 1 a). It is schematically
depicted the coulomb interaction (red dashed lines) and the
conditional wave function (black solid line) defined in Eq. (1).

tal current on SL until the ammeter. The conditional
(Bohmian) wave function4 of the system (i.e. the wave
function of the quantum subsystem in the active region
of the device) provides an excellent tool to numerically
computing the interaction between the particles plotted
in Fig. 1 b). Under the approximation reported in Ref.
[5], the conditional (Bohmian) wave function evolves as

i~
∂ψ(x1, t)

∂t
= [H0 + V ]ψ(x1, t), (1)

where V = V (x1,X2(t), ...,XN (t)) is the conditional
Coulomb potential felt by the system and H0 is its free
Hamiltonian. With capital letter, we denote the actual
positions of the (Bohmian) particles. The total current,
IT (t) = Ip(t) + Id(t), is composed by the displacement
component Id(t) plus the particle component, Ip(t), de-
fined as the net number of electron crossing a surface SL.
For simplicity, we shall focus only on the displacement
component of the total current (no electrons crossing the
surface where the current is measured). So, Id(t) can be
computed as the time derivative of the flux F of the elec-
tric field E(r, t) produced by all N electrons (system plus
metal) on the large ideal surface SL using the relation:

IT (t)=

∫
SL

ε(r)
dE

dt
· ds=

N∑
i=1

∇F (Xi(t)) · vi(t), (2)

where the flux F depends on each electron position and
vi is the Bohmian velocity.3,6 From the numerical simula-
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tion, we see that the quantum system is only slightly af-
fected by the interaction with the electrons in the metal.3

On the other hand, in Fig. 2, we show that the instanta-
neous current measured in the surface SL when consid-
ering the contribution of all the electrons in the metal or
when considering only the electron in the device active
region, i.e. without including the apparatus, differs con-
siderably. The large fluctuations in the current reported
in Fig. 2 means an additional source of noise due to the
interaction of the electrons in the metal with the particle
x1 in the active region of the device (it can be seen as the
unavoidable effect of plasmons in the sensing electrodes).

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

C
ur

re
nt

 (µ
A)

Time (ps)

Instantaneous Current (without Ammeter)
Instantaneous Current (with Ammeter)

FIG. 2. Value of the total current. With solid line is reported
the instantaneous value of the total current calculated from
Eq. (2) (with ammeter) and with dashed lines obtained from a
mean field simulation for particle x1 alone (without ammeter).

III. WEAK MEASUREMENT

The measurement scheme present in Sec. II, implies
that when the information of the measured total current
is very noisy, the quantum system is only slightly per-
turbed, and vice versa.3 This fact is completely in agree-
ment with the fundamental rules of quantum weak2 mea-
surement: if one looks for precise information, one has to
pay the price of perturbing the system significantly (the
so-called collapse of the wave function). On the other
hand if one does not require such a precise information
(for example, the instantaneous value of the total cur-
rent seen in Fig. 2) one can leave the wave function of
the system almost unaltered2). Repeating many times
the same (numerical) experiment the mean value of the
(weak) measured total current computed from Eq. (2)
is equal to the value obtained without considering the
ammeter. See Fig. 3. Thus, we show that the measure-
ment of the high-frequency current is weak in the sense

of Aharanov et al.2.

IV. CONCLUSIONS AND DISCUSSIONS

In this work, we have studied the quantum backac-
tion associated to the quantum measurement of the THz
electrical current of electronic devices. According to our
analysis, when a large fluctuation in the current appears,
the measurement of the THz current implies a slightly
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FIG. 3. Red solid line probability distribution of the measured
total current from Eq. (2) in a time interval T = 0.2 ps of the
simulation from 39000 experiments. Green dashed line mean
value obtained form a mean field simulation.

perturbation of the quantum system, and vice versa. Ad-
ditionally, we have also shown that the mean value ob-
tained from repeating many times the same experiment
provides the strong value of the measurement. Therefore,
we conclude:

• The measurement of the total current in a quantum
device at THz regime is a weak measurement.2

• The weak measurement implies that another source
of noise needs to be considered when predicting
high frequencies quantum transport.

Finally, it should also be mentioned that the weak mea-
surement of the total current at high frequency opens a
new path for envisioning experiments for reconstructing
(Bohmian) trajectories and wave function in solid state
systems, similar to those already performed for photons.7
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I. INTRODUCTION

A central problem of quantum transport is to find
the statistics of electron transfer in a coherent quan-
tum point contact (QPC) driven by an arbitrary time-
dependent voltage. For the dc-case this question has been
first addressed and theoretically answered by Levitov and
Lesovik1, who calculated the cumulant generating func-
tion (CGF) of probability distribution of the transferred
charge St0(χ) = ln

∑
N Pt0(N)eiχN . The astonishingly

simple result in the zero-temperature limit was that the
statistics is just binomial

S(χ) =
2eV t0
h

∑
n

ln
[
1 + Tn

(
eiχ − 1

)]
, (1)

where V is the applied bias voltage, t0 is the observa-
tion time, and Tn are the transmission coefficients of the
individual quantum channels. It should be emphasized
that the result is nontrivial in that the Fermi sea of both
contacts enters into the calculation.

The question of time-dependent driving has been ad-
dressed only recently. The CGF of a quantum contact
can be expressed by the extended Keldysh action2

S(χ) = Tr ln
[
1 + Tn

({
ǦL(χ), ǦR

}
− 2
)
/4
]
, (2)

where now ǦL/R are the Keldysh Green’s functions of the
two leads. The counting field χ is introduced in Keldsyh
space via Ǧ(χ) = exp(−iχτ̌K/2)Ǧ exp(iχτ̌K/2), where
τ̌K is the current operator matrix. This formulation is
valid for a all possible quantum contacts comprising su-
perconducting leads or time-dependent driving fields.

II. TIME-DEPENDENT VOLTAGE DRIVE

In time-dependent problems the Green’s functions
have to be considered as operators in a two-time (or two-
energy) space, however the general formulation remains
valid. Based on this observation it was shown that the
electric current due to a voltage drive V (t) with period
T is composed of elementary events of two kinds3: uni-
directional one-electron transfers determining the aver-
age current and bidirectional two-electron processes con-
tributing to the noise only. These events are sketched in
Fig. 1. As consequence the CGF takes the form

S(χ) = S1p(χ) + S2p(χ) . (3)

Here the first term describes so-called uni-directional one-
particle processes, shown in Fig. 1(c) and is essentially

))

FIG. 1. Elementary events of a quantum point contact driven
by a time-dependent voltage V (t) with average V̄ shown in
(d). (a) and (b) depict the two-particle events in which an
electron-hole pair is created and either the electron or the hole
is transmitted (and the other is reflected). (c) are the unidi-
rectional events in which simply one electron is transferred.
The lower two plots show the elementary event analysis for a
harmonic voltage drive (see text for an explanation).

given by Eq. (1), in which V is the average voltage V̄ .
The two particle events contribute as

S2p(χ) = ωt0
∑
k

ln [1 + 2pkTR (cos(χ)− 1)] . (4)

Here pk = sin2(αk/2) is the probability of an elementary
event. The above formulation allows to decompose the
transport statistics of a voltage-driven QPC into its el-
ementary constituents. An example is shown in Fig. 1
for a harmonic voltage drive V0 cos(ωt). The dependence
of the probabilities on the amplitude of the drive are
shown in the upper plot and the corresponding shot noise
P = −∂2S(χ)/∂χ2|χ=0/t0, which shows characteristic
oscillations as function of the oscillation amplitude.

III. CONTROLLING ELEMENTARY EVENTS

One question emerging is how the elementary events
can be controlled. A very interesting possibility was ex-
plored in6, where the authors have applied a biharmonic
time dependent drive at the contact. The experimental
result was that by adding an in-phase second harmonic of
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FIG. 2. (a) Difference ∆P between the noise generated by
biharmonic drive V (t) = V̄ +V1 cos(ωt)+V2 cos(2ωt+ϕ) and
the noise generated by the first harmonic only. Parameters are
eV1/ω = 5.4, eV2/ω = 2.7 and ϕ = 0 (blue), π/2 (green), and
π (red curve). (b) Probabilities pk of the electron-hole pair
creations as a function of the amplitude V2 for the biharmonic
voltage drive with eV̄ /ω = 3, eV1/ω = 5.4, and ϕ = 0.

a certain amplitude, it is possible to minimize the overall
noise in the junction below the noise level produced by
the first harmonic only, see Fig. 2 (a). This is because of
a complex response of the Fermi sea upon time-dependent
perturbation: the time-dependent drive mixes the elec-
tronic states of different energies which, in combination
with the Pauli principle, gives a non-trivial charge trans-
fer statistics. The explanation in terms of electron-hole
pairs created in the system has been put forward in5.
For a simple harmonic drive there is only one electron-
hole pair generated per period with probability p1. When
the second harmonic is in phase with the first one, the
probability p1 of the pair generation decreases as the am-
plitude V2 of the second harmonic is increased, see Fig. 2
(b). As V2 is increased further, the second electron-hole
pair is generated with an increasing probability p2 per
period. For the amplitude eV2/ω ≈ 2.6, the total prob-
ability p1 + p2 of the electron-hole pair creation exhibits
a minimum. This gives the minimal excess noise which

has been observed in6. More fundamentally, it means
the elementary excitations are controlled dynamically by
shaping the time dependence of the driving voltage.

Another approach to control the excitations is to shape
the voltage pulses as a Lorentzian, which should lead to
special excitation states in which an exact integer number
of charges is excited - so-called levitons7. As shown in
Eq. 3, however this holds only for pulses of integer flux∫
dtV (t) = nh/e with the Planck quantum h, because

otherwise additional electron-hole pairs are excited. Due
to the finite temperature in the experiment8, however,
the minimal excitations are not found exactly for integer
flux. A full analysis in terms of elementary events in this
case is still missing.

IV. UNSOLVED PROBLEMS

So far the analysis of the current fluctuations is re-
stricted to the zero-frequency current correlators. This
quantity only contains information on the probabilities of
the charge transfer, viz. contained in V̄ and pk. However
the open problem is how to access the temporal shape of
the excited wave function. On the theoretical side, the
unsolved problem is how to approach these correlations in
a quantum point contact between two many-body Fermi
systems. The problem is complicated by the fact that a
time-dependent voltage severely disturbs the Fermi see
even at zero temperature. Hence, it is in general not
possible to resort to a simple single-particle picture. One
way to attack this problem theoretically is to make use of
the extended Keldysh-Greens function formalism2 sum-
marized in Eq. (2) and reformulate the methods devel-
oped for the time-dependent voltage-driven full counting
statistics3 for time-resolved detection schemes. In this
contribution we will formulate this unsolved problem of
the theory of quantum transport and present first steps
towards a solution.
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I. ELECTRON QUANTUM OPTICS

Electron quantum optics aims at transposing quantum
optics experiments, allowing for the controlled prepara-
tion, manipulation and measurement of single electronic
excitations in ballistic quantum conductors.

High-mobility 2D electron gases are a perfect testbed
for conducting this task as several building blocks of
quantum optics can readily be recreated in this context.
First, the phase-coherent ballistic propagation of elec-
trons is ensured by chiral edge states of the integer quan-
tum Hall effect (IQHE). After propagation, these elec-
trons collide at a quantum point contact (QPC), a tun-
able tunnel barrier mimicking a beamsplitter. The only
missing ingredient finally appeared recently in the form
of an on-demand single electron source (SES), opening
the way to all sorts of interference experiments.1

II. THE HONG-OU-MANDEL SETUP

The Hong-Ou-Mandel2 (HOM) interferometer is a cel-
ebrated tool of quantum optics. It allows to probe the
degree of indistinguishability of two photons. When they
collide on a beamsplitter at the same time, they exit in
the same outgoing channel, showing a sudden vanish-
ing of the output coincidence rate. This bunching phe-
nomenon is a direct consequence of the bosonic statistics.

In a recent work,3 we studied, from a theoretical stand-
point, the outcome of this experiment at the single elec-
tron level, where two independently emitted electrons
travel along counter-propagating opposite edge states
and meet at a QPC, in the integer quantum Hall regime
at filling factor ν = 1. This goes beyond the simple
transposition of an optics setup as several major differ-
ences exist between photons and electrons. In particular,
electrons differ because of their statistics, the presence of
the Fermi sea, and the possibility of holes.

We showed that valuable physics is encoded in the
noise properties of the system, in particular the zero-
frequency current correlations measured at the output of
the QPC (R/L being right- and left-movers)

SHOM =

∫
dtdt′

[
〈IoutR (t)IoutL (t′)〉 − 〈IoutR (t)〉〈IoutL (t′)〉

]
.

(1)

We predicted that the current correlation exhibits a
dip as a function of the time delay δT between injections,
whose shape is in direct correspondence with the one of
the injected wavepackets. When δT vanishes, this HOM

I1

I2

+
−

+ +

++

+
−

FIG. 1. The setup: two opposite edge states, each made out
of two interacting co-propagating channels, meet at a QPC,
and an electronic wavepacket is injected on both incoming
outer channels.

dip extends down to zero signaling the existence of a
unique outcome for the collision (a single electron in each
output channel), a signature which we could tie back to
the Pauli principle. Our work also suggests the possibility
of asymmetric dips when different wavepackets collide, or
even an HOM peak in the case of electron-hole collision.

The experimental realization of an electronic HOM
interferometer in the IQHE soon followed,4 albeit per-
formed in the slightly different regime of filling factor
ν > 1, due to technical constraints. The puzzle with
these results is that although the HOM dip clearly ap-
pears on top of a flat background contribution, it does not
vanish as predicted for ν = 1, therefore signaling interest-
ing effects happening beyond this simple picture. Indeed,
another important difference between photons and elec-
trons is the presence of interactions, and electron quan-
tum optics offers a fascinating playground to explore the
emergence of many-body physics. In a subsequent work,5

we proposed an interaction-based decoherence scenario
which explains these striking experimental results.

III. NOISE AS A PROBE FOR
FRACTIONALIZATION AND DECOHERENCE

We consider a quantum Hall bar at ν = 2, in the strong
coupling regime and at finite temperature. There, each
edge state is made out of two co-propagating channels
coupled via Coulomb interaction, as shown in Fig. (1).
This is expected to lead to energy exchange between
channels, and to charge fractionalization.

Our noise calculations rely on an accurate model of the
injection of electrons, their propagation along the edges,
and their scattering at the QPC. We introduce a pre-
pared state consisting in a single exponential wavepacket
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FIG. 2. Modulus of SHOM as a function of the time delay
for wide packets in energy (injection energy ε0 = 175mK and
energy resolution γ = 1) and two propagation lengths.

deposited on the outer channel, thus mimicking the SES
in its optimal regime of operation. Each edge is then
modeled as a chiral Luttinger liquid with both intra- and
inter-channel interactions, which upon diagonalization
naturally brings about two freely propagating collective
modes: a fast charged mode and a slow neutral one. We
compute the correlations of output current in the HOM
setup as a function of the time delay between right- and
left-moving injected electrons, and reveal three charac-
teristic signatures in the noise. The interference pattern
is provided in Fig. (2) for a given set of parameters.

First, a central dip appears for zero time delay, cor-
responding to the interference of both fast and slow-
right-moving excitations with their left-moving counter-
parts. As observed in the experiment, this dip never
quite reaches zero in our calculations, and its depth
strongly correlates with the energy resolution of the in-
jected wavepackets. This is actually a probing tool of
the degree of indistinguishability of the excitations col-
liding at the QPC. Because of the strong inter-channel
interaction, some coherence of the injected object is lost
in the co-propagating channels which do not scatter, and
this Coulomb-induced decoherence is responsible for the
dramatic reduction of contrast of the HOM dip.

Interestingly, smaller satellite dips appear in the
noise at finite δT and seem to vanish for well-resolved
wavepackets in energy. These correspond to interference
between excitations traveling at different velocities, and
provide an interesting noise signature of the interference
of charged modes with neutral ones.

A more quantitative comparison between experimen-
tal and theoretical results is currently under way,6 and

already shows a remarkable agreement with no adjustable
parameters. However, a major challenge still remains un-
solved: the HOM dip bears a striking independence on
the injection energy from the SES. This is in stark con-
trast with the ν = 1 case, where the shape of the dip is
directly related to the overlap of the injected wavepack-
ets and thus depends crucially on the injection energy.
This naturally brings about the question of the content
in energy of the excitations colliding at the QPC. What
does the new many-body state resulting from interactions
over the propagation length truly look like? Could the
noise be used as a way to reconstruct the decohered state
which tunnels at the QPC?

IV. THE FRACTIONAL CASE

Interactions dramatically change the nature of the ex-
citations, and the HOM interferometry offers the possi-
bility to probe the incoherent mixture of fractionalized
electronic excitations induced by Coulomb interactions.
A natural extension of this work consists in studying a
system where the ground state itself is a strongly corre-
lated state of matter: the fractional quantum Hall effect
(FQHE). There, one would be dealing not with electrons,
but with single quasiparticles with fractional charge and
statistics which should lead to dramatically new physics.

This constitutes a challenge at various levels, as a lot
of open questions remain, from the nature of the quasi-
particle injector to the results of an interferometry setup
in the spirit of the HOM one. Indeed, the single elec-
tron source is clearly not the best candidate to generate
on-demand single quasiparticles in the FQHE. Can sin-
gle quasiparticles be dynamically emitted? What setup
would guarantee the emission of on-demand single quais-
particles with little to no charge fluctuations?

The link between the measurement of low frequency
noise correlations and the statistics of the carriers is well
known. HOM interferometry with photons or electrons
allows to probe the statistics through second order coher-
ence, whether this is also enough to access the fractional
statistics of quasiparticles is still under debate and de-
serves to be explored.
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I. INTRODUCTION

The emerging field of quantum thermodynamics aims
to extend basic concepts of thermodynamics at the
nanoscale. Indeed lowering the dimension of a system,
fluctuations and quantum effects become crucial and clas-
sical thermodynamics cannot be simply applied. The
question of how a small system exchanges heat and en-
ergy with a bigger one is very important both from tech-
nological and fundamental point of view. A deep under-
standing of heat exchange at the nanoscale is necessary in
view of the realization of quantum devices such as quan-
tum heat engines which could have great technological
impact. Despite much recent efforts, the thermodynam-
ics of quantum systems is still poorly understood, at least
when compared to its classical counterpart. Here we aim
to go a step forward towards a microscopic and rigorous
description of heat exchange in quantum system.

II. PATH-INTEGRAL APPROACH

We consider a quantum system coupled to a thermal
reservoir and the energy flows between them. Starting
from very few and plausible assumptions, we approach
the problem with the path integral technique. In this
framework we can write a general heat influence func-
tional which embodies all the dissipative mechanisms and
allows us to study heat processes.
We present the exact formal solution for the moment gen-
erating functional which carries all statistical features of
the heat exchange process for general linear dissipation.
We derive an exact formal expression for the transferred
heat and applied this formalism to the dissipative two
level system. We show that the difference between the
dynamics of the heat transfer and the dynamics of the
reduced density matrix (RDM) is an additional time-
nonlocal correlation function which correlates interme-
diate states of the RDM with the final state.

III. APPLICATION TO THE TWO LEVEL
SYSTEM

As an application, we concentrate on a two level sys-
tem, described by the Hamiltonian

HS = −∆

2
σx −

ε(t)

2
σz (1)

where ∆ is the tunneling amplitude and ε(t) describe
a generic time-dependent external bias. The two level
system is coupled to a thermal bath and we calculate,
by means of the heat influence functional, the average
heat and the heat power exchanged between them.

To investigate the potential of the present method, we
calculate the dynamics of the average heat power and av-
erage heat in analytic form for weak Ohmic dissipation
both in the Markovian regime relevant at high temper-
atures and in the non-Markovian quantum noise regime
holding when temperature is of the order of the level
splitting Ω or lower. In the latter regime, the heat is
represented by a convolution integral which involves the
population and coherence correlation functions of the dis-
sipative two level system and the polarization correlation
function of the reservoir. In particular we arrive to the
compact form:

〈P (t)〉 =
πK

2
δ2 − ∆

2

∫ t

0

dτ L′(τ)(
〈σx(t− τ)〉s 〈σz(τ)〉s−〈σz(t− τ)〉a 〈σx(τ)〉a

− p0
[
〈σx(t− τ)〉a 〈σz(τ)〉s−〈σz(t− τ)〉s 〈σx(τ)〉a

] )
+

tan(πK)

2

∫ t

0

dτ L′(τ)
d〈σz(τ)〉s

dτ
.

(2)
We find that the heat transfer receives contributions

both from singularities related to the system dynam-
ics and from Matsubara singularities resulting from the
system-reservoir correlations. The latter yield significant
contributions in the quantum noise regime while they are
absent in the Markovian regime. Representative example
for the average heat power are given in Fig. (1).

Altogether we have achieved a complete description of
the dynamics of the heat transfer for weak damping rang-
ing from the classical regime down to zero temperature.
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FIG. 1. Time evolution of the average heat power for the two
level system. Here we show that at low temperatures quantum
noise effects play a significant role in the system dynamics.
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I. INTRODUCTION 
The adage “The noise is the signal” 1 has been proved many 

times. In the domain of quantum electric transport for example, 
the zero-frequency noise gives the conductance in the linear 
regime via the fluctuation-dissipation theorem, or gives the charge 
in the weak transmission regime via the Schottky relation. One of 
the beautiful illustrations of this latter fact was the measurement 
of the fractional charge of a two dimensional electron gas in the 
fractional quantum Hall regime2,3. 

In the recent wave of quantum heat transport studies, some 
works are devoted to heat noise4,5,6,7,8,9 but very few to the 
fluctuations between the charge and heat currents10,11 that we call 
the mixed noise12. In addition to the characterization of such a 
“new” quantity, our objective was to find which kind of 
information can be extracted from it. For this, we have calculated 
the correlator between the charge current and the heat current for a 
two terminal quantum dot system using the scattering theory and 
we have studied its possible relation with quantities such as the 
thermoelectric efficiency and the figure of merit. 

 

II. SYSTEM AND DEFINITION 
We considered a single level quantum dot connected to two 
reservoirs with distinct chemical potentials  and temperatures 

as depicted on Fig. 1. 
 

 
FIG. 1. Schematic picture of a single level quantum dot 

connected to two reservoirs with distinct chemical potentials and 
temperatures. 

In a similar way to the standard definitions of the charge current 
noise, , and heat current noise, , we define the mixed 
noise as the zero-frequency Fourier transform of the correlator 
mixing the charge and the heat currents: 

 
(1) 

 
where refers to the charge current and  refers to the heat 

current. The indices p and q designate the left (L) or the right (R) 
reservoirs. 

 

III. MIXED NOISE 
Using the Laudauer-Büttiker scattering theory, which applies in 
the absence of interactions, we obtain the expression of the mixed 
noise in terms of the transmission coefficient and Fermi-Dirac 
distribution functions : 

 

dF
h q
1J I

pq
  (2) 

with 
 

(3) 
 

 
In the linear response regime, the fluctuation-dissipation 

theorem holds and leads to the following relation between the 
noises and the electrical conductance , the Seebeck coefficient  
and the thermal conductance  : 

 
 
 

(4) 
 
 
where  is the average temperature of the sample. The p and q 

indices have been removed in Eq. (4) since the noises are identical 
in amplitude in both reservoirs in the linear response regime. 
From these results, one shows that the thermoelectric figure of 
merit, defined as , can be expressed fully in terms 
of noises such as: 

 
(5) 

 
 

When one leaves the linear response regime, the figure of merit 
is not more the relevant parameter to quantify thermoelectric 
conversion and one has rather to consider directly the efficiency 
which is defined as the ratio between the output and input powers. 
According to the thermoelectric engine that one wants to build, 
the powers are given either by the product between charge current 
and voltage or directly by the heat current. In general, it is not 
possible to connect these quantities to the noises. However, in the 
Schottky regime, i.e., in the weak transmission regime, with the 
help of the proportionality relations between the noises and the 
currents, we have shown that12: 

 
 

(6) 
 

dttJI qp
ˆ0ˆJI

pq
 

21

11

RL

RRLL

ff

ffffF

SGTk

Tk

GTk

B

B

B

2
0

IJJI

2
0

JJ

0
II

2

~2

2

  

 

 

2JIJJII

2JI

0
   

 

ZT

JJ
LR

II
LR

2JI
LR

2JI
LR

   

 

123



 
                                                                                                                      

A crucial point in Eq. (6) is the fact that it is needed to consider 
the ratio of cross-noises, i.e., the correlators between distinct 
reservoirs; otherwise the value that we get does not correspond to 
the efficiency. As a graphical proof, three quantities are shown on 
Fig. 2: the auto-ratio of noises, the cross-ratio of noises and the 
efficiency. As stated in Eq. (6), the cross-ratio of noises and the 
efficiency coincide at low transmission , i.e., in the Schottky 
regime, whereas the profile of the auto-ratio of noises has nothing 
to do with these two first quantities. From this result, one can 
conclude that the mixed cross-noise is a measure of the efficiency. 
From Eq. (6) we also see that a vanishing mixed cross-noise 
cancels the thermoelectric efficiency. 

Outside the linear response regime or the Schottky regime, i.e., 
in the intermediate regime, one needs to perform numerical 
calculations in order to characterize the behavior of the mixed 
noise. In Fig. 3 are shown the absolute values of the noises as a 
function of voltage and dot energy level at , taken in the 
same reservoir ( ) or in distinct reservoirs ( ). Whereas 
the charge and heat noises present some symmetry, the mixed 
noise is fully asymmetrical. One knows that the asymmetry in 
noise gives information on the system, such as for example the 
asymmetry in the frequency noise spectrum which is directly 
related to the ac conductance through a generalized Kubo 
formula13. Thus, the identification of the information that may be 
contained in the asymmetry of the mixed noise and their possible 
relations to the thermoelectric conversion is a problem which 
remains to be addressed. 

IV. CONCLUSION 
The mixed noise has fulfilled much of its promises since we 
showed that it is related to the thermoelectric figure of merit in the 
linear response regime or directly to the thermoelectric efficiency 
in the Schottky regime. We think that this quantity deserves to be 

studied on the same level than the charge and heat noises, both 
theoretically and experimentally. At the experimental side, the 
challenge is to find a way to measure such a quantity, whereas at 
the theoretical side, it is needed to calculate it using more realistic 
approaches that include, among others, interactions and many 
terminals. 
 

 
FIG. 3. Absolute value of the charge noise (left column), mixed 

noise (central column) and heat noise (right column) as a function 
of voltage and dot energy level. The black regions correspond to 
the lowest values (close to zero) and the bright regions to the 
highest values of the noises. 
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I. RESUME  

In this report I discuss the non-Gaussian stochastic diffusion in 

electrochemical circuit of alternating current. I found the Fokker-

Planck equation with the spatial derivative of second order that 

takes into account the excess function of the Poissonian 

electrochemical noise. The open question is formulated.  

II. EQUATIONS 

Let us consider the electrochemical circuit of alternating current 

showed on Fig. (1).  

 

 
 

FIG. 1. Non-Gaussian Markov’s electrochemical noise circuit 

 

The circuit on Fig. (1) contains the double layer capacity C , 

the resistance of electrochemical discharge R , and the non-

Gaussian current noise source )(ti  ( t  is time). The noise )(ti  

describes the random character of electrochemical discharge. The 

voltmeter V  measures the random voltage )(te  on capacity C .  

Let us introduce the random quantity   as the electrochemical 

analog of the random displacement of free Brownian particle:  

)(

0

tdt 


   (1) 

In Eq. (1) the symbol   stands for observation time. At large 

observation time ( RC ) we have for the symmetric 

(Poissonian) electrochemical discharge 1: 

 D2)2(
    (2) 

0)3(       (3) 

 4

)4( !4 D     (4) 

Left-hand side of Eqs. (2), (3), and (4) equals the second, third 

and fourth cumulant of quantity   correspondingly. The symbols 

D  and 4D  stand for the coefficients.  

Eqs. (2) - (3) are the corollaries of the Einstein stochastic 

diffusion equation (5) for the probability density function 

),( W :  

0),(][
2

2










WD   (5) 

But Eq. (4) is not a corollary of Eq. (5).  

Our main result is the Fokker—Planck equation (6):  

0),(])([
2

2

4 












W

D

D
D   (6) 

Eqs. (2), (3), and (4) are the corollaries of Eq. (6). 

  

III. OPEN QUESTION 

In general case of the any duration of the observation time, the 

Einstein stochastic diffusion equation (5) must be replaced by the 

Cattaneo equation (7) (telegrapher’s equation type) 2, 3: 

0),(])1[(
2

2














 WDRC   (7) 

My open question is:  

How I can find the analog of Cattaneo equation (7) for Eq. (6)?  
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Neutral mass-selected clusters are deposited with low
initial energy on the graphite substrate. The flux of clus-
ters is uniform and constant during the experiment. Af-
ter deposition the clusters start to diffuse on the sur-
face. Moving clusters meet each other and stick together
thereby forming islands. The islands grow by capturing
new clusters. This process is shown in the Fig. (1).

The anomalously high diffusion coefficients for
different metallic clusters have been discovered in
experiments1,2. The hypothesis that each cluster is ac-
celerated arises from the fact that the initial velocity is
low and the diffusion is fast. It has been shown that
the properties of the graphite substrate are most prob-
ably responsible for the effect, since fast diffusion has
been observed for different metallic clusters. This fact
is explained using the model of Fermi acceleration and
is supposed to be the result of the interaction of clusters
with a part of graphite layer called ’flake’, that is involved
in thermal motion as a whole3. A thermodynamic inter-
pretation of Fermi acceleration in billiards was presented
in4.

The effect of the motion of flakes on cluster dynamics
can be described as a noise. This equilibrium noise de-
pends on temperature. On the contrary, the motion of a
cluster is far from equilibrium. The energy of the chaotic
motion of a cluster is increasing in time. Time-dependent
probability distribution of the cluster velocity is calcu-
lated in work5 using Langevin equation, and the corre-
sponding PDF is not Maxwell. The accelerated motion
of the cluster is terminated at a boundary of an island.
The contradictory character of the problem of cluster dy-
namics under influence of flake fluctuations is as follows.
Fermi mechanism results in the superdiffusion. The dif-
fusion constant should increase with measurement time.
However, experiments yield time-independent diffusivity.
Therefore, either the experimental results are incorrect
or the theory is not relevant. To solve the contradic-
tion we introduce an ensemble of moving clusters. This
ensemble consists of a constant (on average) number of
clusters in the approximation of slow growth of islands.

Such an ensemble is an open system: new slow clusters
arrive in the system due to deposition and fast clusters
depart from the system being captured by islands. The
motion of ensemble of clusters is stable and characterized
by the stationary probability distribution. Thereafter, we
can estimate an mean velocity and effective temperature
of the cluster ensemble. The long lifetime of the quasi-
equilibrium state makes it possible to assume that a lo-
cal equilibrium principle is satisfied and that an effective
temperature characterizing this state can be introduced.

We analyse factors that influence the effective temper-
ature. A decrease in this temperature results from cluster
capturing by islands. The higher the velocity of a cluster,
the higher the probability that this cluster will arrive to
the island boundary and join the island. We consider con-
ditional probability distribution of velocities under con-
dition that the cluster has not reached the boundary yet
and is still moving. Thus, we come to such a quasistable
state of a system in which the velocities of the particles
are limited.

An increase in the effective temperature is caused by
Fermi acceleration. We introduce the age of each cluster,
which is a time interval from the cluster deposition to
the moment of observation. To obtain stationary PDF
of velocities of clusters in ensemble, we average the time-
dependent PDF of one Fermi-accelerated cluster using
probability distribution of ages of clusters.

We describe a nonequilibrium state in conventional
terms of equilibrium thermodynamics, which are conve-
nient for application of the results in the production of
the thin films.

ACKNOWLEDGMENTS

We are very grateful to Dr. Andrey Chikishev for fruit-
ful discussion.

126



UPON 2015, BARCELONA, JULY 13-17 2015

deposition

joining the island

island trajectory

young
slow cluster

old
fast cluster

FIG. 1. The process of deposition, diffusion and aggregation
of clusters that results in the formation of islands.
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I. INTRODUCTION

Recently, there has been considerable interest in ran-
dom walk models in disordered media characterized by
random diffusivity (cf.1,2 and references therein). Such
models lead in a natural way to the appearance of anoma-
lous subdiffusive behavior, lack of ergodicity, aging and
similar effects. For these reasons they are suitable to
model various complex phenomena, such as diffusion of
enzymes or receptors on a cell surface, observed using sin-
gle particle imaging in in vivo2, or an impurity strongly
interacting with a condense matter system.

The main aim of the present project is to formulate and
investigate a family of “microscopic” models of a random
walk in a random stochastic medium. The dynamics of
the medium will be described by a kinetic process that
depends on the location of the walker (or, in more gen-
eral cases, on the walker’s history). At every moment,
the dynamics of the walker will depend on the config-
uration of the environment. Both dependences will be
assumed to be local, i.e. they involve only the vicinity of
the walker’s locations. By appropriately modeling these
couplings we expect to formulate new families of many-
body stochastic models with a moving impurity, capable
of reproducing results for random walks in quenched dis-
order (if the environment dynamics is ultra slow), and
much more. As an example we discuss here a paradigm
model of a random walker in the environment described
by Glauber’s famous kinetic Ising model3.

II. EXAMPLE

Let us consider systems described by classical Hamilto-
nians H(σ). We are interested in Hamiltonians following
Markovian dynamics towards equilibrium. For concrete-
ness, we consider σ to be the N -dimensional Ising vectors
σ = (σ1, . . . , σN ), with Ising variables σi = ±1. Let us
denote the conditional probability of reaching state σ at
time t when the system is initially in the state σ0 as
P (σ, t|σ0, 0) (of course P (σ, 0|σ0, 0) = δσ,σ0

). We use the
shorthand notation P (σ, t). Then, the dynamical evolu-
tion is given by

Ṗ (σ, t)=
∑
σ′

[w(σ′→σ)P (σ′, t)− w(σ→σ′)P (σ, t)] , (1)

where the transition rates w(σ′ → σ) are the probability
per unit time for the transition from configuration σ′ to
σ. It is natural to assume the detailed balance condition

(DBC), that is, to impose that

w(σ′ → σ)Peq(σ′) = w(σ → σ′)Peq(σ) (2)

with Peq(σ) = P (σ, t→∞).
Let us consider the ferromagnetic Ising model, H(σ) =

−J
∑N−1
i σiσi+1, J > 0. The probability distribution at

equilibrium is

Peq(σ) =
1

ZN
e−βH(σ), (3)

with partition function ZN = 2N (coshN βJ + sinhN βJ).
We restrict the dynamics to single spin flips, σ′ = Diσ.
That is, a configuration σ is only connected to other con-
figurations by this process and the transition rates are of
the form w(Diσ → σ). With these assumptions Eq. (1)
becomes

Ṗ (σ, t)=
N∑
i=1

[w(Diσ→σ)P (Diσ, t)−w(σ→Diσ)P (σ, t)] .

Under these conditions a conventional form for the tran-
sition rates is3

w(Diσ→σ)=Γ

[
1− 1

2
tanh [2βJ ]σi(σi−1+σi+1)

]
, (4)

where the parameter Γ is the time scale at which the
transitions occur.

Let us make the Ansatz P (σ, t) =
√
Peq(σ)φ(σ, t), with

φ(σ, t) to be determined. For our model Hamiltonian this
reads P (σ, t) = exp [βJ

∑
i σiσi+1/2]φ(σ, t). Then, from

Eq. (1) we have

φ̇(σ, t) =
∑
σ′

{
P
−1/2
eq (σ)w(σ′→σ)P

1/2
eq (σ′)

−P−1/2eq (σ′)
∑
σ′′
w(σ′→σ′′)P

1/2
eq (σ′)δσσ′

}
φ(σ′, t),

which can be written as a Schrödinger equation φ̇(σ, t) =
Hφ(σ, t). For Glauber’s case [transition rates given by
Eq. (4)] one has

H(γ) = −Γ
∑
i

{
[A(γ)−B(γ)σzi−1σ

z
i+1]σxi

− [1− γ
2σ

z
i (σzi−1 + σzi+1)]

}
,

with γ = tanh 2βJ , σz and σx the Pauli matrices,

A(γ) = γ2/[(2(1 −
√

1− γ2)] and B(γ) = 1 − A(γ).
Hamiltonian (5) can be diagonalized by a Jordan-Wigner
transformation.
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III. CURRENT PROJECT

Our aim is to analyze systems derived from this model
in the presence of an impurity. In these models, when
the impurity occupies site m, the system’s coefficients
are changed in some way. The following models show
this behavior:

• The energy is increased locally by h̄ at the position
of the impurity. That is

H = −J
N−1∑
i=1

σiσi+1 +HI−bath (5)

with HI−bath =
∑N
i h

m
i with hmi = h̄δimσi (site

impurity) or hmi = h̄(δi,mσi+ δi−1,mσi−1) (link im-
purity). In the first case, when the impurity is at
site m, if the spin at that site is +1, energy is in-
creased by h̄, and is decreased by h̄ if it is −1.

• The interaction energy depends on the position of
the impurity. Then,

H = −
N−1∑
i=1

Jmi σiσi+1 (6)

with Jmi = J + χ(δi,m + δi+1,m).

• Spread the effect of the impurity over a range of
sites. For example, Hamiltonian (6) with Jmi =
J +

∑
j,〈j,m〉 χδim.

Additionally, one can consider that the impurity may
be subject to an external potential V (m). This potential
can be parabolic or a random potential, that is, some-
thing which forces the impurity to be localized in equilib-
rium. The configuration of the system of spins plus impu-
rity is (σ,m), with Ising variables σi = ±1, i = 1, . . . , N
and m ∈ 1, . . . , N being the position of the impurity. One
can write a Master equation for this system as

Ṗ (σ,m, t)=
∑
i [w(Diσ, σ)P (Diσ, t)−w(σ,Diσ)P (σ, t)]

+ [W (m+ 1,m)P (m+ 1, t)+W (m− 1,m)P (m− 1, t)

− W (m,m+ 1)P (m, t)−W (m,m− 1)P (m, t)] ,

where the transition rates w(Diσ, σ) do not change
the position of the impurity and the transition rates
W (m′,m) stand for the probability per unit time that
the impurity changes position from m′ to m. It should
conserve probability, be local, and obey DBC. The prob-
abilities at equilibrium are in general

Peq =
1

Z
exp[−βH(σ,m)]. (7)

However, in equilibrium the impurity may be fully delo-
calized for those Hamiltonians which do not break trans-
lational symmetry for the impurity.

For Hamiltonian (6) one can go a bit further. The
transition rates can be generalized from Glauber’s to 1−
tanh[2βJmi ]σi(σi−1+σi+1) and the Master equation can
be written as

Ṗ (σ,m, t) = Γ
∑
i

[
[Di−1](1− 1

2
tanh 2βJmi hiP (σ,m, t)

]
+ α exp[χσm+1(σm + σm+2)P (σ,m+ 1, t)]

+ α exp[χσm−1(σm + σm−2)P (σ,m− 1, t)]

− 2α exp[−χσm(σm−1 + σm+1)P (σ,m, t)] (8)

with hi = σi(σi−1+σi+1) and where α and Γ allow for dif-
ferent time scales in both types of transitions. Our goals
are: i) find models such as those described above that are
exactly solvable in 1D; ii) Perform numerical studies of
these kind of models with Monte Carlo and Tensor Net-
work States methods; iii) Apply them to various realistic
scenarios, as the aforementioned biological systems or to
exotic applications like a classical model for gravity.
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FIG. 1. Random Lorentz gas with different size of scatterers.

A random Lorentz gas with time-dependent bound-
aries is a two-dimentional system containing a set of
heavy discs (scatterers) distributed randomly. Particles
move freely among these discs. The boundaries of the
scatterers oscillate. The unlimited linear growth of par-
ticle velocity in these systems is called the Fermi ac-
celeration phenomenon2. Even for periodical and cor-
related motion of boundaries the influence of this motion
on particle can be considered as noise, because the mo-
ments of particle collisions with the scatterers are ran-
dom. Langeving equation can be used to calculate parti-
cle dynamics1.

Fermi acceleration leads to anomalous transport2. De-
pendence of mean square displacement on time is linear√
x2 = kt. The constant of proportionality k increases

with the increase of amplitude of boundary velocity and
can be called the coefficient of superdiffusion. This pa-
rameter has a dimension of velocity.

The great number of investigations in billiards-like sys-
tems proved strong dependence of their transport prop-
erties on geometry of Lorentz gas. At the same time
thermodynamics interpretation and analogy with ideal
gas suppose independence on the size and concentration
of the scatterers. These parameters define the mean free
path. The only parameters of the model are amplitude of
boundary velocity and the mean free path. There are no
parameters with time dimension. Therefore, we cannot
construct coefficient of superdiffusion using parameters
of length.

The unsolved problem was: does the coefficient of su-
perdiffusion k depend on geometrical properties of ran-
dom low-density Lorentz gas. To solve the problem we
have calculated the coefficient of superdiffusion analyti-
cally, taking into account Fermi acceleration. We have
also performed computer simulation of particle motion.
The theoretical and numerical results are in good agree-
ment. The coefficient of superdiffusion k is defined only
by amplitude of boundary velocity and dimensionless co-
efficient describing the kind of scatterers motion, which
can be random or periodical. The explanation of this in-
dependence on the mean free path comes from the fact
that the usual diffusion coefficient linearly increase with
this path. At the same time Fermi acceleration, on the
contrary, decreases. Fig. 1 illustrate this fact. On the
top picture the mean free path is relatively large, but
Fermi acceleration is relatively small due to the low rate
of the collisions. On the bottom picture, on the contrary,
the mean free path is relatively small and Fermi acceler-
ation is relatively large. Therefore, the two factors that
influence the diffusion of particle compensate each other,
and the coefficient of supperdiffusion does not depend
on geometrical properties of random low-density Lorentz
gas.
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I. INTRODUCTION

In this work we study a one channel quantum dot
connected to two reservoirs. We calculate the non-
symmetrized finite frequency noise in the framework of
the Keldysh Green’s function formalism. The transmis-
sion processes are introduced using a transmission am-
plitude defined with the help of the hoping parameter
and the Green’s functions of the dot. The expression of
the non-symmetrized finite frequency noise is obtained.
When we symmetrize our result, it coincides with the ex-
pression of the Büttiker formula of the finite frequency
noise.

II. MODEL

We consider a one channel quantum dot as depicted in
Fig. (1). The Hamiltonian reads as H = HL + HR +
HT +Hcen, where:

Hα=L,R =
∑
k∈α

εkc
†
kck (1)

HT =
∑

α=L,R

∑
k∈α

Vkc
†
kd+ h.c. (2)

Hdot = ε0d
†d (3)

The c†k,p,σ and ck,p,σ are respectively the creation and

annihilation operators in the reservoirs. The d†σ and dσ
are respectively the creation and annihilation operators
in the dot. Vk is the hopping parameter. In our work,
we focus on the spinless case.

FIG. 1. Schematic representation of the quantum dot and the
leads. The tunneling process occurs with a strength Γ. µL,R

are the chemical potential of the left and right reservoirs. In
the following, we take µL,R = ±eV/2.

Next, we define the non-symmetrized finite frequency
noise in the left reservoir:

S(ω) =

∫ ∞
−∞
〈δÎL(0)δÎL(t)〉eiωtdt (4)

where δÎL(t) = Îα(t)−〈IL〉, where 〈IL〉 is the average left

current and ÎL the current operator in the left reservoir,
which is given by1:

IL(t) =
ei

~
∑
k

(
Vkc
†
k,Ld− V

∗
k d
†ck,L

)
(5)

The next step is the evaluation of the current-current
correlator 〈δÎL(0)δÎL(t)〉. For this we need first to
rewrite the Hamiltonian in the interaction representa-
tion. Then, using an S-matrix expansion one can rewrite
the current-current correlator in the interaction repre-
sentation. The resulting expression is a function of four-
points Green’s functions of the dot Gdd1 (τ, τ ′, τ1, τ2) =
i2〈TCd(τ)d(τ ′)d†(τ1)d†(τ2)〉, where τ is time variable in
this representation.

Now we use a Wick theorem in order to factorize the
four-points Green’s functions in a product of two points
Green’s functions2:

Gdd1 (τ, τ ′, τ1, τ2) = G(τ, τ2)G(τ ′, τ1)−G(τ, τ1)G(τ ′, τ2)
(6)

The results contains two parts, a disconnected part which
is equal to the square of the average current, and a
connected part which contains fifteen contributions. To
rewrite the correlator as a function of the time variable t,
we use the Keldysh formalism3. Applying a Fourier
transform to the result and after some algebras, one finds
the non-symmetrized finite frequency noise expression.

III. RESULTS

In the case of symmetric barriers, the non-symmetrized
finite frequency noise reads as:

S(ω) =
e2

h

∫
dε

[[
T(ε− ω)T(ε) + |t(ε)− t(ε− ω)|2

]
fLL

+T(ε− ω)T(ε)fRR + T(ε)
[
1− T(ε− ω)

]
fRL

+T(ε− ω)
[
1− T(ε)

]
fLR

]
(7)

where fαβ = nα(ε)[1−nβ(ε−ω)] with n the Fermi-Dirac
distribution function and α, β = L,R. The transmis-
sion amplitude and the transmission coefficient are re-
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spectively given by:

t(ε) =
iΓ

ε− ε0 + iΓ
(8)

T(ε) =
Γ2

(ε− ε0)2 + Γ2
(9)

where ε0 is the dot energy level, Γ = (2π)−1ρ(ε)|Vk|2 is
the barriers strength and ρ the density of states of the
reservoirs which are considered as identical. The sym-
metrized noise is obtained from the expression Ssym(ω) =
[S(ω) + S(−ω)]/2. Doing this, we get the Büttiker for-
mula of the symmetrized finite frequency noise4,5:

Ssym(ω) =
e2

h

∫
dε

[[
T(ε− ω)T(ε) + |t(ε)− t(ε− ω)|2

]
FLL

+T(ε− ω)T(ε)FRR + T(ε− ω)
[
1− T(ε)

]
FLR

+T(ε)
[
1− T(ε− ω)

]
FRL

]
(10)

To see the evolution of the non-symmetrized finite fre-
quency noise, we plot the non-symmetrized excess noise
∆S(ω, V ) = S(ω, V )−S(ω, 0) as a function of frequency
for different values of the temperature and for differ-
ent impurity strengths. In Fig. (2), we plot the non-
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FIG. 2. Non-symmetrized excess noise in units of e3V/~ as a
function of frequency in units of eV/~ for ε0/eV = 100, and
for fixed Γ/eV = 1. Solid red line corresponds to kBT/eV =
0.01, dashed green line to kBT/eV = 0.1 and dotted blue line
to kBT/eV = 0.5.

symmetrized excess noise as a function of frequency for
fixed impurity strength at different values of tempera-
ture. What we see first is the fact that the spectrum
is symmetric in frequency whatever the temperature is,
then the intensity of the excess noise decreases with the
temperature. At low temperature, the noise presents a
singularity in the vicinity of ±eV/~. Then the cancella-
tion occurs beyond ±eV/~ because of the cancellation of
the thermal noise contribution. In Fig. (3), we plot the

non-symmetrized excess noise as a function of frequency
for fixed temperature and different values of the impurity
strength in the weak impurity regime. The noise here be-
comes anti-symmetric with a singularity in the vicinity of
±eV/2~. In Fig. (4) we plot the non-symmetrized excess
noise as function of the frequency for fixed temperature
in an intermediate impurity regime. What we see here is
that the noise becomes asymmetric.
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FIG. 3. Non-symmetrized excess noise in units of e3V/~ as
a function of frequency in units of eV/~ for ε0/eV = 0.01,
and for fixed kBT/eV = 0.01. Solid red line corresponds to
Γ/eV = 0.01, dashed green line to Γ/eV = 0.02 and dotted
blue line to Γ/eV = 0.05.
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FIG. 4. Non-symmetrized excess noise in units of e3V/~ as
a function of frequency in units of eV/~ for ε0/eV = 0.3,
and for fixed kBT/eV = 0.01. Solid red line corresponds to
Γ/eV = 0.01, dashed green line to Γ/eV = 0.1 and dotted
blue line to Γ/eV = 1.

IV. CONCLUSION

In this work we calculated the non-symmetrized finite
frequency noise for a single level quantum dot. We used
the Keldysh formalism to evaluate the current-current
correlator and then we performed a Fourier transform
to get the expression of the finite frequency noise. Our
result is consistent with the Büttiker formula of the sym-
metrized finite frequency noise obtained using the scat-
tering theory since the symmetrization of our expression
give the formula obtained by Büttiker. Varying the tem-
perature, the dot energy and the barrier strength, the
profile of the noise spectrum changes from symmetric be-
havior, to asymmetric or to anti-symmetric behaviors.
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I. INTRODUCTION 

The investigation of ultrathin metal nanowires (NWs) has been 

widely discussed from the point of view of theoretical and 

experimental studies due to their unique transport properties. In 

most technologies, the ultrathin NWs can be produced with a short 

length and usually they are not stable1,2. They maintain 

functionality only for a short period of time and require 

sophisticated conditions like ultrahigh vacuum for storage. 

Recently, a new approach was reported for the fabrication of 

ultrathin gold NWs. It enables synthesis of chemically stable NWs 

with a width of 2 nm and a length of several microns3. They are 

promising candidates for investigating electrical properties of 1D 

metal conductors and for usage in nanoscale electronics as 

contacts between functional elements. However, the development 

of high-quality nanoscale electronic devices is still challenging. 

High signal-to-noise ratio and structural performance are the main 

requirements for many applications, including biosensors and 

molecular electronics. 

Since nanowires are usually produced by wet chemical 

synthesis, organic molecules on the interfaces between NWs and 

contacts can strongly influence their electrical properties4. This 

allows investigation of the junction properties of molecular layers. 

Studies of electron transport in such nanowires have already been 

performed at room5, 6 and low4 temperatures. At the same time, 

noise spectroscopy provides useful information, complementing 

electrical characterization. So far, determining the transport 

properties in ultrathin gold nanowire structures has not been 

reported. 

Here, we present the results obtained for bundles of Au NWs 

using the noise spectroscopy technique and we consider the 

influence of molecular interfaces on the transport properties of 

NWs. An analysis of different noise components in different 

systems provides insights into the processes of charge transport in 

fabricated device structures. Therefore, the properties of molecular 

interfaces between Au NWs and contacts can also be studied by 

analyzing the peculiarities of noise behavior in such systems.  

 

II. MATERIALS AND METHODS 

The samples studied were bundles of ultrathin gold nanowires 

(Au NWs) obtained by wet chemical synthesis4. The SEM image 

of the studied structures is shown in FIG. (1). After fabrication of 

the gold contacts, the ultrathin Au NWs were assembled over 

these electrodes to investigate the transport and noise properties of 

the structures. The NWs usually had diameters of about 2 nm and 

were several micrometers in length. 

The schematic of the measurement setup is shown in FIG. (2). 

 

 

 

FIG. 1 SEM image of investigated Au NW structure. 

 

 

 

     This setup was used for both I-V characterization and noise 

spectra measurement. The voltage applied to the sample from a 

rechargeable battery was tuned by an adjustable resistor of 

2 kOhm. The sample was connected in series with a high-

precision variable resistor LoadR . The latter was used to evaluate 

current flowing through the sample. 

    The drain current of the Au NWs can be calculated using the 

difference between the voltages, measured by two voltmeters by 

the formula   /d m s LoadI V V R  . Here Vm is  the total voltage 

on sample plus load, Vs is the voltage on the sample. The noise 

spectra were measured at several working points of the I-V 

curve. 

 

 
 

 

FIG. 2 Schematic of the noise measurement setup. 
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For the noise measurements, voltage fluctuations in Au NW 

structures were amplified by a low-noise amplifier developed in-

house ( 24 dB , input noise 22.2 /nV Hz at100 Hz ) and then 

amplified by a Stanford low-noise voltage amplifier SR560. The 

noise signal was registered by a HP35670 dynamic parameter 

analyzer and then transferred via GPIB interface to a PC. The 

measurements were performed at room temperature in a shielded 

environment. 

 

III. RESULTS AND DISSCUSSION 

The current-voltage characteristic of the investigated sample is 

shown in FIG. (3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3. Typical I-V characteristic of Au NW structure. 

 

 

 

      I-V characteristic demonstrates quasi-linear behavior, which 

can be explained by a significant increase in the role of thermally 

activated processes in charge transport at room temperature4. 

 

The noise spectra have several components: thermal, flicker and 

generation-recombination (GR). These components were extracted 

by fitting and then analyzed. Flicker noise spectral density 

multiplied by frequency is proportional to current squared (shown 

in FIG. (4)). This dependence reflects that transport in the NW 

structure demonstrates ohmic behavior and an absence of 

nonlinear processes in the system. 

 

 

 

 
 

FIG. 4 The dependence of current spectral density of flicker noise 

multiplied by frequency vs current squared. 

 

 

An analysis of noise spectra demonstrated several (about four) 

GR components, which is not typical for pure gold nanowires7, 8. 

Therefore the Lorentzian-shaped components are the result of 

processes at the interface between gold nanowires and contacts. 

The frequencies of the Lorentzian-shaped components are mostly 

independent of the drain bias, which excludes self-heating of the 

NWs. The GR noise components may be explained by taking into 

account the molecular layers covering the Au NWs. Indeed, the 

synthesis of nanowires was performed in oleylamine solution, a 

lipidic molecule, which assists the growth of nanowires and due to 

its nature can form a channeled micellar structure. However, at the 

same time, these molecules are self-assembled on the surface of 

the grown structures. The presence of such a layer influences the 

electrical properties4 of the structures and also leads to the 

appearance of GR components in the noise spectra. The physical 

origin of registered GR noise components is discussed. 

IV. CONCLUSIONS 

We studied the specific noise properties of bundles of ultrathin 

gold nanowires obtained by wet chemical synthesis and contacted 

with gold electrodes. The peculiarities of noise behavior were 

explained by the presence of an interface layer between NWs and 

contacts. It was shown that the noise components as well as 

electronic properties were strongly affected by the organic 

monolayers assembled on the surface of the nanowires. This new 

approach can be used to study properties of the molecular thin 

layer by analyzing the peculiarities of electronic transport and 

noise in such systems. 
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Electronic transport in phase separated managanites
has been a topic of intensive investigations in the last
decades. Nevertheless, recent investigations of low tem-
perature properties of hole doped manganites brought
new surprising discoveries. Among them, experimental
evidence for appearance of the electronic glass state at
low hole doping level at low temperatures, associated
with ferromagnetic insulating phase, contradicting the
conventional double exchange magnetic coupling model
is a subject of continuous interest.1

Hole-doped La1−xCaxMnO3 (LCMO) manganites at
Ca-doping levels 0.125< x <0.225 are ferromagnetic in-
sulators (FMI) at low temperatures, unlike the ones with
x above 0.225, which are ferromagnetic but also metallic,
or with x below 0.125, which are insulating antiferro-
magnets in the ground state. Long range interactions in
the ferromagnetic insulating phase lead to the opening of
the Coulomb gap in the density of states and to hopping
conduction in the presence of such gap.1,2 Slow relax-
ations of charge carriers arising from a large number of
low-lying states separated by barriers lead to enhanced
low-frequency non-Gaussian 1/f resistance noise.3,4

Until now, experimental investigations of 1/f noise in
Coulomb glass state were limited to the doped semi-
conductors with electron density close to the critical
concentration for the metal-insulator transition and to
two-dimensional electron glass in MOSFET-like struc-
tures. Observations of 1/f non-Gaussian electronic glass
in doped manganites in which, in a marked difference to
disordered semiconductors, electronic glass arises for the
polarized polaronic carriers, significantly widens the class
of materials exhibiting such properties.

One of the main topics of discussion in the subject
literature was the issue of the low frequency cutoff in
the 1/f spectra which appears at frequencies much lower
than those predicted by the theoretical models.2,3 We
discuss here the high frequency cutoff of the 1/f noise
in hole doped manganites in the Coulomb glass state. It
is clear that usually the issue of the high frequency 1/f
noise cutoff is typically experimentally irrelevant because
the 1/f component simply disappears in the background
noise. In our case the cutoff was experimentally observed
due to high level of the 1/f noise in the investigated
crystals and relatively low level of background noise of
our electronic set-up.

The experiments were performed using
La0.82Ca0.18MnO3 crystals in-house grown by float-

ing zone method with radiative heating. As grown
crystal was cut into rectangular bars with the longest
dimension being parallel to [100] direction and equipped
by vacuum evaporated contacts for transport measure-
ments. The Curie temperature of the crystal, TC=182 K,
was determined by measuring dc magnetization as a
function of temperature in the field of 10 Oe.

For the noise measurements, voltages developing across
dc current biased sample were amplified by a chain of
very low noise preamplifiers and the further FFT anal-
ysis was processed by a computer. Because of relatively
high impedance of the samples, especially at low tem-
peratures, a particular attention was paid to the level
of the input signals at the amplifier chain in order not
to saturate the amplifiers and not to exceed the allowed
common voltage level during the data acquisition. In-
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FIG. 1. Normalized noise spectra at temperature T=120 K
for different currents flowing through the sample. The spectra
have been smoothed for better legibility.
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FIG. 2. Normalized noise spectra for different temperatures
at current I=100 µA flowing through the sample. The spectra
have been smoothed for better legibility.

strumental noise originating from the measuring chain
was eliminated by subtracting the reference spectrum,
recorded at zero current flow in the LCMO sample, from
the spectrum acquired with bias current.

Typically, noise spectra have 1/f -like form both be-
low and above the Curie temperature. However, with
temperature decreasing below TC a clear high frequency
lorentzian cutoff sets on in the 1/f spectra, as illustrated
in example shown in Fig. (1) The frequency of the cutoff
decreases with decreasing bias current and temperature
- see Fig. 1 and Fig. 2.

We tentatively associate the high frequency cutoff of
the 1/f spectra in the Coulomb glass regime with intrin-
sic limits of the appearance of 1/f noise in the hopping
regime. The conclusion of the existence of the glassy
state in the investigated material comes from the low
temperature dependence of conductivity following the
Efros-Shklovskii law and very strong increase of the noise
level following approximately the power law with an ex-
ponent close to 5.5.

The open questions following our experimental obser-
vations and proposed interpretation of the data will be
outlined in the presentation.
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I. INTRODUCTION

The electron velocity fluctuations during the nonlin-
ear transport of hot electrons in semiconductor struc-
tures subjected to static or ciclostationary electric fields,
have been extensively investigated during last decades1–4.
In fact, the presence of intrinsic noise both limits the
performance of semiconductor based devices and affects
their sensitivity. Furthermore, electronic devices are of-
ten imbedded into noisy environments that also can af-
fect their performance. In recent years increasing inter-
est has been directed toward the investigation of noise-
induced phenomena in nonlinear systems, with a focus
on possible positive cooperative effects between the noise
and the intrinsic interactions of the system5,6. In par-
ticular, theoretical studies have shown that, under spe-
cific conditions, the addition of external sources of noise
to intrinsically noisy systems may induce an enhance-
ment of the dynamical stability of the system, resulting
in a less noisy response7. The possibility of suppressing
the diffusion noise by the addition of a random fluctu-
ating contribution to the driving periodic electric field,
has been previously investigated in GaAs bulks8,9. By
superimposing an external noise source to the intrinsic
one, it has been possible to tune the dynamic electron
response and obtain noise enhanced stability phenomena
in the electron transport8,9. In this study, we employ a
semi-classical Monte Carlo (MC) approach to simulate
the non-linear transport of electrons inside low-doped n-
type InP crystals, embedded in sub-THz electric fields,
fluctuating for the presence of an external source of noise.
The electronic noise features are statistically investigated
by computing the correlation function of the velocity fluc-
tuations, its spectral density and the total noise power.
Main aim of this work is to deeply explore the occur-
rence of a noise reduction effect and the appearance of a
stochastic resonance-like phenomenon in the noise spec-
tra. Moreover, we will discuss the dependence of these
noise-induced positive effects on the relationship among
the characteristic times of the external fluctuations and
the temporal scales of complex phenomena involved in
the electron dynamics.

II. THE MODEL

The transport of electrons in InP bulks is simulated
by using a MC algorithm10. In our model the con-
duction bands of InP are represented by the Γ- valley,

by four equivalent L-valleys and by three equivalent X-
valleys. All possible scattering events of hot electrons
in the medium, the main details of the band structure,
as well as the heating effects, are taken into account.
The scattering probabilities are calculated by using the
Fermi Golden Rule and the scattering events are consid-
ered instantaneous. Scattering probabilities are assumed
to be field-independent. Accordingly, the influence of the
external fields is only indirect through the field-modified
electron velocities10. The table of parameters used in the
present work is given in Ref11. All results are obtained for
a doping concentration of 1019 m−3 (non-degenerate n-
type), at lattice temperature T = 77 K. The fluctuations
of the electron velocity around its average value corre-
spond to the intrinsic noise of the system. Therefore,
to characterize the stochastic properties of the electron
transport, we statistically analyze the velocity autocor-
relation function and the mean spectral density of the
velocity fluctuations. Since our sample is driven by a
periodic electric field, we calculate a two-time symmet-
ric electron velocity autocorrelation function 12, in or-
der to eliminate any regular contribution and describe
only the fluctuating part of v(t). The spectral density
of the electron velocity fluctuations is then calculated as
the Fourier transform of the correlation function. In our
simulations the electrons are driven by a fluctuating pe-
riodic electric field E(t) = Ecos(ωt) + η(t), where the
deterministic term has amplitude E and frequency f =
ω/2π. The stochastic component η(t) is modelled by an
Ornstein-Uhlenbeck (OU) process which obeys the fol-
lowing stochastic differential equation:

dη(t)

dt
= −η(t)

τc
+

√
2D

τc
ξ(t) (1)

where τc and D are the correlation time and the intensity
of the noise component, respectively8.

III. NUMERICAL RESULTS AND DISCUSSION

With the aim to quantify the noise-induced intrin-
sic noise suppression, we have calculated the Integrated
Spectral Density (ISD), i.e. the total noise power, which
corresponds to the variance of the electron velocity. In
the left panel of Fig. 1, we show the ISD as a function of
the noise correlation time τc when E=25 kV/cm, f=500
GHz, D1/2=10 kV/cm. In the presence of Gaussian
time-correlated fluctuations added to the periodic elec-
tric field, it is possible to observe a clear reduction up to
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FIG. 1. Left: ISD of the electron velocity fluctuations, normalized to the value obtained in the deterministic case, as a function
of the noise correlation time τc. Right: Spectral density of the electron velocity fluctuations for different values of the correlation
time τc. The values of the parameters are E=25 kV/cm, D1/2= 10 kV/cm, f= 500 GHz, T=77 K.

15% of the ISD, i.e. a less noisy response. The suppres-
sion enhances with the increase of the correlation time
of the external fluctuations up to τc ≈ 10 ps and then
stabilizes. Further studies are needed to deeply investi-
gate why under this regime, the external fluctuations con-
structively contribute to force the electrons to perform-
ing a more ordered dynamics (confirmed by a lower total
noise power). In the rigth panel of fig. 1 we show how
the shape of the spectral density of the electron velocity
fluctuations modifies around the frequency of the oscil-
lating field in the presence of Gaussian time-correlated
fluctuations. The ”effective” electric field experienced by
the electrons changes. This implies a modification in the
number of intervalley tranfers with respect to the case
in which the external noise is negligible. This fact could
be responsible of the changes in the height of the peak in
the spectral density. The most interesting effect arises for
noise correlation times greater than 10 T (2 ps). In fact,
in such cases, the presence of time-correlated fluctuations
makes the peak strictly resonant at the frequency of the
driving periodic field. This resonance-like phenomenon
could be an evidence that electrons transfer among the
different energy valleys exactly at the same frequency of
the applied field, reaching a new more stable equilibrium
state.

IV. CONCLUSION

We report the results from a many-valley MC study
on the electron non-linear dynamics in low-doped n-type
InP crystals operating under a fluctuating sub-Thz elec-
tric field. A less noisy response is found, being the cor-
relation time of the electric field fluctuations a crucial
quantity for the reduction effect. This noise-induced
phenomenon seems to indicate that, under specific time
scales, the complex dynamics of electrons in the crystal
benefits from the cooperative interplay between the fluc-
tuating electric field and the intrinsic fluctuations of the
system itself. Therefore, time-correlated fluctuations on
a driving electric field could play a relevant role on con-
trolling and tuning the electronic noise in InP based elec-
tronic devices. For noise correlation times greater than
10 T , a resonance-like phenomenon in the noise spectra
is found. This response critically depends on the rela-
tionship among the characteristic time of the external
noise and the time scales characterizing the complex elec-
tron dynamics. However, these preliminary findings leave
several open problems on the intrinsic physical mecha-
nism beyond this effect, which will be further investigated
mainly in terms of (i) different frequencies of the driving
field, (ii) different intensities and typologies of the exter-
nal fluctuations, (iii) different semiconductors materials.
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I. INTRODUCTION 

The Centre National d’Etudes Spatiales (CNES), Toulouse, 

France and the FEMTO-ST Institute, Besancon, France, 

investigate the origins of 1/f noise in bulk acoustic wave 

resonators. Several European manufacturers of high quality 

resonators and oscillators are involved in this partnership. The 

goals are first to improve the yield of excellent resonators and 

second to assess the intrinsic lower limit for the resonator noise. 

In this contribution, we first give some relevant information 

about the realization of the 5 MHz SC-cut resonators used in this 

study. Then, we report the resulting short term stability of the 

resonators as a function of the position of the resonators inside the 

crystal block. Concerning the second goal, a theoretical approach, 

based on the fluctuation-dissipation theorem, is used in order to 

put numerical constraints on a model of 1/f noise caused by an 

internal (or structural) dissipation proportional to the amplitude 

and not to the speed. The order of magnitude of the noise is then 

discussed using a candidate physical process. Finally, we conclude 

on the work that could be done to solve the remaining open 

problems. 

II. RESONATOR REALIZATION 

For this investigation, quartz crystal resonators have been cut 

from a quartz crystal block supplied specifically for this study on 

1/f noise (cf. Fig. 1). This crystal block is obtained from a seed cut 

in a previous synthetic crystal which was grown using a natural 

seed. 

 

Figure 1 : Quartz crystal resonators according to their positions in the 

mother block. 

Its dimensions were approximately 220 mm along the Y-axis, 

36 mm along the Z-axis and 110 mm along the X-axis. Two Y-cut 

slices have been cut before and after an oriented block used to 

achieve ten quartz bars. The Y-cut slices are used to obtain 

dislocations evaluation by X-ray topographies. The red marks 

show how the crystal is cut in order to get SC-cut blanks from 14 

initial bars. First, Fourteen quartz bars pre-oriented on the first 

rotation angle have been achieved. The length of the bars was 

about 70 mm. Taking into account the width of the cutting saw, 

about 24 blanks could be obtained in each bar. They were 

distributed to the various manufacturers part of the project, so that 

they could make 5 MHz SC-cut resonators out of them and give 

them back for analysis to FEMTO-ST and CNES. 

III. EXPERIMENTAL RESULTS 

The passive technique using carrier suppression is used to 

characterize the inherent phase stability of the ultra-stable 

resonators. 

 

Figure 2 : Short-term stability of quartz crystal resonators according to the 

position in the mother block. 

The short-term stabilities of a large portion of these resonators 

have been measured to be lower than 810-14. However, rest of 

them shows much worse results around few 10-12, though they 

have been fabricated with exactly the same process alike the best 

ones. Although the positions of the blanks are known, no clear 

correlation between the noise results and the blanks positions (e.g. 

center or edges) can be found for theses bars. We are consequently 

carrying investigations on the origin of these differences. 

IV. THEORETICAL APROACH 

The fluctuation-dissipation theorem1,2 (FDT) is used to estimate 

the power spectral density of thermal noise coming from 

fluctuations in the thickness (2h) of quartz resonators (cf. Fig. 3). 

 

Figure 3 : Resonator design. 

An internal friction term,  is added in the formulation, in 

order to obtain a 1/f spectrum at low frequencies. Indeed, for this 

141



UPON 2015, BARCELONA, JULY 13-17 2015                                                                                                                           

 

 

mode (characterized by the mechanical displacement inside the 

resonator   (    )), the fundamental principle of dynamics for 

continuum media can be written as: 

  
    

   
    (    )

    

   
     

    

   
   

 (1) 

with     the elastic constant and     the viscoelastic damping 

constant of quartz crystal.  is an internal friction coefficient1,2,  

the quartz mass per unit volume. Searching for solutions of the 

type: 

   (    )  [    (   )      (   )] 
    (2) 

with limit condition given by: 

   (    )     
    ⁄  (3) 

with F the modulus of the harmonic mechanical force applied to 
the surface S of the electrodes (perpendicular to x2). The complex 
mechanical admittance of the system is defined by: 
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      (  )
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The FDT then states that the spectral power density of the 
thickness fluctuations in a bandwidth   , can be computed by1,2: 
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with   the absolute temperature (in K) and    the Boltzmann 
constant (in J/K). 

The assumptions     and         ⁄  lead to: 

 
  
 (    )

  
 
     

     
 (         ) (6) 

Moreover, we can consider that the circular frequency at 

resonance r ~ 1/h, thus: 

   ( )  
(   )

 

     
 
  
 (    )
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(
   

   
   ) (7) 

where V is the volume of the resonator. One can then see from the 
previous expression that for circular frequencies lower than 
       ⁄ , the internal friction becomes dominant and gives a   ⁄  
spectrum, with an Allan standard deviation given by: 

            √   ( )
    

    
  (8) 

We note that   could depend upon the temperature and that no 

assumption where made about this possible dependence. We 

consider here numerical values typical for a 5 MHz oscillator 

equipped with an SC-cut quartz crystal resonator. Due to the 

rotation of the axis, the 2 axis is not the usual one, so that the 

constants must be evaluated in the rotated basis:  c22 = 115 GPa,  

22 = 1.36103 Pas, T = 350 K and V = 0.104 cm3. This gives: 

                   
   √  (9) 

In order to recover measured values of            with this 

expression, we would need to have   between      and     , 

which would mean that even at resonance the internal damping 

would be dominant over viscoelastic damping. We therefore 

conclude that internal damping of thickness fluctuations by any 

force proportional to strain and independent of frequency, may not 

be the dominant noise mechanism for the best SC-cut quartz 

resonators. However, other modes may be noisier… 

Nonetheless, we try to evaluate this coefficient by the 

modified Granato-Lücke theory3 of the energy loss due to some 

kinds of dislocation motion in the low frequency range. They 

supposed first that the pinning force   of the impurity atom which 

arises from elastic interactions depends on the orientation of the 

dislocation line. Second, they supposed that, once a dislocation 

has broken away from its pinning points, its motion is not 

necessarily limited by its line tension, but that the distance it 

moves may be determined by the stress field of neighboring 

impurity atoms. With these assumptions, they found an expression 

of the decrement for the impurity spacing controlled dislocation 

motion that, in the small stress amplitude limit, is given by: 

   
     

      
 (10) 

Where β is a parameter having approximate value of 1.5. N is the 

total length of dislocation line in a unit volume of material     

surface dislocation density. This value is of the order of 6 cm/cm3 

judging from an X-ray image of the surface of one of the 

resonator. b is the mean length of a Burger’s vector ≈ 3×10-8 cm. 

LN is the network length =√(3⁄N). c is the atom fraction of 

impurity which must be lower than 1 ppm to get Q values as high 

as a few 106. ϵ is the fractional difference between the radius of 

impurity and host atoms taken to be of the order of 20 %. Finally, 

we recall that, previously, we saw that                    , 

with            
    

   
. Therefore at low frequencies        

 . Hence, we attempt to identify   with    at low frequencies, in 

a first approximation in spite of the fact that we are not in the 

dominantly viscous regime. This would give        
  and 

      in the low frequency regime, which would be an 

interesting order of magnitude to attribute at least some non-

negligible part of the 1/f noise to the fluctuations of thickness. 

However, this would also mean that at resonance 
 

    
 

 

        
 

                    , hence that the viscous 

damping would not be dominant at resonant frequency which is 

contradictory to experimental facts. 

V. CONCLUSION 

We have seen that it is possible to find 1/f noise through the 

fluctuation-dissipation theorem, by adding a constant complex 

part to the elastic constant in the usual differential equation 

characteristic of a viscously damped harmonic oscillator. This 

corresponds to a frequency independent energy loss in the limit of 

small frequencies. The hysteretic motion of the dislocations 

described by a modified Koehler-Granato-Lücke model could a 

priori describe such a loss mechanism. Indeed, it could provide an 

explanation for the experimental observations that the logarithmic 

decrement generally decreased when the dislocation density 

decreased when quartz were not as good as now and that 

sometimes a slightly higher concentration of impurity could 

improve the quality factor. However, numerical estimations seem 

to provide values that are at least an order of magnitude too high. 

Hence the physical origin of 1/f noise in quartz crystal ultra-stable 

oscillators still remains an open question. We therefore plan to 

study another approach based on thermally activated nucleation 

and motion of kink-antikink pairs along dislocations, with 

possibly several different activation energies. This could lead to 

1/f noise by the mechanism of Lorentzian summation. 
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I. INTRODUCTION

It is generally believed (and found in many
textbooks1–4) that the electron transit time is the ulti-
mate responsible for the high-frequency noise behaviour
of the state-of-the-art ballistic electronic devices. In fact,
the constant progress in high-frequency applications dur-
ing the last 50 years has been based mainly on the idea
of reducing the electron transit time1–4, either by scaling
their lengths or introducing materials with higher elec-
tron mobility. In this conference, we argue that the ul-
timate responsible of the high-frequency noise is not the
electron transit time, but a new shorter time related to
the duration of the current peak detected on a particular
surface, say S, while the electron is crossing the device.

It is well-known that the electron movement inside the
device generates a time-dependent electric field ~E(~r, t)
on a particular surface S. Such time-dependent electric
field implies a displacement current on S. This displace-
ment current, which is present even when the electron is
not crossing the device, determines the duration of the
current peak5–7. The total current, which includes the

particle current density, ~J(~r, t), gives:

i(t) =

∫
S

~J(~r, t) · d~s+

∫
S

ε(~r)
∂ ~E(~r, t)

∂t
· d~s, (1)

where ε(~r) is the inhomogeneous electric permittivity. In
the definition of the duration of the current peak due to
an electron travelling along the device, there are scenarios
where the exact transit time of the electron is not at all
a relevant parameter. In addition, we will show that
a proper understanding of the relationship between the
electron movement and the displacement current opens
new unexplored possibilities for the manipulations of the
high-frequency performance of electronic devices.

II. DISPLACEMENT CURRENT AND
TRANSIT TIME

Ramo6 and Shockley7, in the 30’s, were the pioneers in
determining how the high-frequency performance of elec-
tronic devices is related to the electron dynamics inside
the active region. They showed that an electron moving
with velocity ~v = {vx, 0, 0} between two (infinite) metal-
lic plates separated by a distance Lx generates a current
peak in one of the plates equal to i(t) = −q ·vx/Lx during
0 < t < τ , being q the (unsigned) electron charge. The
time-integral of the current during τ = Lx/vx gives the
expected transmitted charge −q. In this particular case,

FIG. 1. Power spectral density (PSD) of the current fluctu-
ations (in arbitrary units) as a function of frequency for a
GAA FET with different geometries (and identical channel
length Lx) operating under DC conditions.

the relevant time for the current is effectively the electron
transit time τ = Lx/vx. Can we envision other scenarios
where the displacement current collected on a particular
surface is not related to the electron transit time? Below,
we answer positively to this question.

To go beyond the previous Ramo-Shockley result is
mandatory to deal with, at least, a three terminal device
that ensures that the instantaneous current in the source
is not equal to that in the drain, while still satisfying the
instantaneous current conservation. For this reason, we
consider the three terminal Gate-All-Around Field Effect
Transistors (GAA FETs). In Fig. 1, we plot the power
spectral density (PSD) of the current fluctuations for a
particular GAA FETs. Numerical simulations for differ-
ent geometries (Lx is the transport source-drain direction
and Ly and Lz are the lateral directions) of this particular
GAA FETs are shown in Fig. 1. We clearly see how the
high-frequency cut-off frequency of current fluctuations
is independent of the electron transit time τ = Lx/vx. A
variation of an order of magnitude of the noise spectrum
range can be achieved without changing the device active
region Lx = 8 nm nor its (average) velocity vx. For such
particular FETs, the high-frequency performance can be
improved without neither length scaling nor using mate-
rials with higher electron mobility8.

We consider now the same device operating under
AC conditions. The conventional small-signal admit-
tance parameter model for the GAA FETs is drawn
in Fig. 2. We compute numerical simulations of the
gate and drain transients currents i1(t) = iG(t)− iDC

G (t)

143



UPON 2015, BARCELONA, JULY 13-17 2015

FIG. 2. h21 parameters as a function of frequency for the
volume Lx × Ly(W ) × Lz(H). (a) Two-port (admittance)
small-signal circuit. (b) Source current autocorrelation with
DC bias. The FET with larger lateral area does not satisfy
the single band quantum wire requirement, but it is included
to show the tendency of the results.

and i2(t) = iD(t) − iDC
D (t), being iDC

G (t) and iDC
D (t)

the DC value before the voltage step. A Fourier trans-
form of i1(t) and i2(t) directly provides the small-signal
admittance parameters Y2,1(f) and Y1,1(f). The in-
trinsic cut-off frequency, fT , can be computed then as
|h2,1(fT )| = |Y2,1(fT )/Y1,1(fT )| = 1. To see clearly the
effect of the cross section area, we have presented the in-
trinsic cut-off frequencies in Fig. 2. We notice that for
the same longitudinal length Lx, the cut-off frequency in-
creases from fT = 0.62 THz up to fT = 10.20 THz when
the later area is scaled down, as seen in Fig. 2. These
results confirm that the geometry of the GAA FETs (for
a fixed Lx) has a relevant role in their high-frequency be-
haviour. In order to confirm the role of the current pulse
on the results, we present the correlations of the source
current with DC bias for the previous FETs. The results
in Fig. 2(b) clearly show that the larger the lateral area
is, the wider the current temporal pulse9.

III. WHERE IS THE FRONTIER BETWEEN
ELECTRONICS AND ELECTROMAGNETISM?

In this conference we present an original strategy to op-
timize radio-frequency (or digital) performance of GAA
FETs by modifying their lateral areas, without Lx scal-
ing or mobility improvement. The ultimate reason of
such improvement is that the transit time τ = Lx/vx
is no longer a limiting high-frequency factor for those
GAA FETs where the lateral dimensions Ly, Lz are sim-
ilar or smaller than their length Lx. A time shorter than
τ = Lx/vx controls their intrinsic signal and noise high-
frequency performance.

The proper understanding of the relationship between
the electron movement and the displacement current
opens new unexplored possibilities for the influence on
high-frequency electronic devices. Traditionally, elec-
tronics is based on the manipulation of the particle cur-
rent (first term in Eq. (1)), while partially neglecting the
displacement current (second term of Eq. (1)). On the
contrary, electromagnetism is based on the manipulation
of the displacement current due to variations of the elec-
tric (and magnetic) fields at scenarios where the particle
current becomes practically irrelevant. For dimensions
shorter than Lx = 0.1µm, the electromagnetic vector po-
tential can be reasonably neglected at frequencies lower
than around 100 THz. As a consequence, a new type of
electronic devices, in the frontier between electronics and
electromagnetism, is envisioned by controlling the shape
of the displacement current (i.e. electric field) instead of
the particle current (i.e. the electron charge).
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I. INTRODUCTION 

Resistive Random Access Memories (RRAMs) are one of the 

most promising candidates to replace the current flash memories 

due to their low power operation, fast switching and great 

scalability1,2. Despite these excellent characteristics, RRAMs 

present some reliability problems such as the occurrence of 

current fluctuations on the different resistive states due to random 

telegraph noise (RTN)3,4. The RTN spectra can be crucial to 

determine the memory window and the correct memory cell 

performance. Therefore, a precise characterization of the RTN 

fluctuations in emerging RRAM cells becomes necessary. Until 

now, standard characterization equipment has been used to 

characterize RTN, such as semiconductor parameter analyzers 

(SPAs), with a measuring time resolution of ~2ms. In this work, 

we propose an experimental method to measure RTN that allows a 

higher characterization time resolution than that available with 

standard characterization equipment. This new method provides 

additional and relevant information about the RTN phenomenon, 

which cannot be detected using standard characterization setups. 

 

II. MEASUREMENT SETUP AND 

RESULTS 

Devices under test (DUT) consist on a stack of Ni/HfO2/Si with 

a 200nm thickness of Ni as the top electrode, an oxide (HfO2) 

thickness of 20nm, and highly-doped n-type Si as bottom 

electrode. The devices area is 5x5µm2. Firstly, the devices were 

subjected to 30 resistive switching cycles, changing successively 

the dielectric conductivity between a high and a low resistance 

state (HRS and LRS respectively) with a current limit of 10µA to 

reach the LRS. Secondly, with the device at HRS, a RTN signal 

was sought by applying different voltage bias. When current 

fluctuations were detected, a sequential RTN measurement (using 

both SPAs and oscilloscope captures) were carried out. Fig. (1) 

shows a schematic of the advanced experimental setup used to 

characterize RTN.  

 

“FIG.1:Schematics of the experimental setup to measure RTN 

signals. Vapp is the applied voltage from the semiconductor 

parameter analyzer and VDUTis the voltage drop across the DUT”. 

 

The voltage, at which RTN appeared (Vapp), was applied to 

one of the terminals of the DUT by the SPA, which also allows 

measuring the current through this terminal. The other terminal of 

the DUT was connected to a high impedance buffer, which allows 

measuring the voltage drop across the DUT, and to a logarithmic 

current-to-voltage converter (Log-IVC), which converts the 

current into an equivalent voltage to be derived to the oscilloscope 

(digital storage oscilloscope, DSO).  

 

“FIG.2:Block diagram of the RTN measurement process once 

the RTN signal is detected”. 

 

Fig. (2) shows the block diagram of the RTN measurement 

process. During the SPA measurement, several oscilloscope 

captures are registered at different time scales. When the SPA 

measurement finishes, the sequence defined in Fig. (2) starts 

again. In this work, about 325 SPA measurements were done and 

21 oscilloscopes captures were obtained in each measurement. 
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“FIG.3: (Left) Typical multilevel RTN signal measured by a 

semiconductor parameter analyzer at Vapp=1.25V, step time 

~6ms and number of measured points 8000. (Right) Trap levels 

obtained by using the WTLP method”. 
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“FIG.4: (a) Oscilloscope measurement captured between 7.26s 

and 9.68s of the SPA measurement with 40µs time resolution. (b) 

Capture between 9.68s and 12.15s with a time resolution of 20µs. 

(c) Capture between 19.5s and 21.93s with a time resolution of 

1µs”. 

 

Fig. (3 left) shows a typical multilevel RTN signal measured by 

the SPA with a time resolution of 6ms. On the other hand, Fig. (4) 

shows three oscilloscope captures at different time scales (40, 20 

and 1µs), i.e. different time resolution, measured during the same 

SPA measurement. In all of them some charge trapping and 

detrapping processes responsible for the RTN signals appear with 

emission and capture times below 6ms. These fast current 

fluctuations would be impossible to detect with the SPA. 

Therefore, it is proved that with the oscilloscope captures it is 

possible to determine both the current jumps of existent traps 

detected in the SPA measurement and new traps not detected with 

the SPA. In addition, by using the weight time lag plot (WTLP) 

method5 the different states (or levels) of the traps can be 

accurately calculated (Fig. 5), where the peaks of the diagonal of 

the WLTP correspond to trap levels.  

In Fig. 5a, 9 levels (From L1to L9) are obtained from the RTN 

signal measured with the SPA shown in Fig. (3 left) using the 

WTLP method. These levels are also represented in Fig. (3 right). 

Besides that, the levels detected in the three oscilloscope captures 

of Fig. (4) are also shown using the WTLP (Fig. 5b, c and d). 

Comparing these figures with Fig. (5a), a new trap level (L10) at 

200nA is observed. This latter state does not appear in the SPA 

measurement, indicating that a new trap is detected but with a low 

probability of occurrence. 

III. CONCLUSIONS 

A new high time resolution method to characterize RTN signals 

is presented. The method is able to detect accurate time constants 

in the microsecond range and fast traps not detected by using 

standard RTN characterization methods. 
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“FIG.5:WTLP method applied to a)the RTN measured by the SPA (Fig. 4a). 9 trap levels are detected; b) Oscilloscope capture with a 

time resolution of 40μs (Fig. 4b), where 3 trap levels appear; c) Oscilloscope capture with time resolution of 20μs with 3 trap levels (Fig. 

4c); d) Oscilloscope capture at lower time resolution  of 1μs with 2 trap levels (Fig. 4d)”. 
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I. INTRODUCTION

In Landauer’s work “Irreversibility and Heat Genera-
tion in the Computing Process”1 it was argued that com-
puting machines inevitably involve devices which perform
logical functions that do not have a single-valued inverse.
This logical irreversibility is associated with physical ir-
reversibility and requires a minimal heat generation typ-
ically of the order of kT for each irreversible function.
This dissipation serves the purpose of standardizing sig-
nals and making them independent of their exact logi-
cal history. Commonly known as Landauer’s principle,
this seminal paper has led to considerable interest in the
study of reversible computing. Recently, physical exper-
iments have tested Landauer’s principle2,3.

Landauer’s principle can be argued in terms of the first
and second laws of thermodynamics for an overall closed
system. However, much less is known about the role of
the thermodynamic laws in open quantum systems far
from equilibrium4–6, for example nanoelectronic devices.
Typically, the concept of entropy production in nanoelec-
tronic devices is discussed in terms of heat generation. In
this conference, we will focus on the role played by the
local electrical power (i.e. the rate at which kinetic en-
ergy is generated or subtracted from a particular region
of the space) on the local generation of heat. The electric
power is usually understood as a (mean field) observable
defined as the product of the current by the (mean field)
voltage drop,

Pmf (t) = 〈I(t)〉〈V (t)〉. (1)

with 〈...〉 denoting the quantum ensemble average. We
will show that a proper treatment of the many body prob-
lem can actually induce the breaking down of this def-
inition for open quantum systems. Even while overall
electric power of the total system can be still defined as
the standard product Pmf (t), individual parts of a sys-
tem may violate this definition.

II. OBERVIEW OF THE PROBLEM

The openness of quantum electron systems has been
studied extensively in the literature, but few works are
devoted to discuss its effect on the computation of electric

power. Here, we provide a novel expression for the accu-
rate estimation of the electric power in nanoscale open
systems deduced from a many-particle electron trans-
port formalism that goes beyond the standard mean field
approximation7,8. Surprisingly, we show that the usual
expression of the electric power in the device active re-
gion, i.e. Pmf (t) is inappropriate when dealing with
systems with strong (time-dependent) Coulomb correla-
tions. Once such correlations are taken into account, a
much more complex recipe is needed to compute the elec-
tric power in the active region.

In order to go beyond the mean field approximation, we
formulate the problem in terms of the correlation between
the (Bohmian) velocity of the i-th electron vi(t) and the
electrostatic force qiEi(t) made by the rest of electrons
of the whole (closed) system on it. It can be shown that
the exact mean electric power, Pcorr, associated to the
N(t) electrons enclosed in an open system reads:

Pcorr =

N(t)∑
i=1

qi〈vi(t)Ei(t)〉T , (2)

Only when the electric filed acting on the ith particle is
roughly equal to its mean field value, i.e. Ei(t) ≈ Emf (t),
expression (2) for an open system becomes equal to (1).
Let us notice that, although the electric power defined in
(2) refers only to those N(t) electrons in the open system,
its value is clearly affected by all the M particles compos-
ing the whole closed circuit. Since energy is continuously
entering and leaving an open system through the interac-
tion among carriers inside and outside its spatial limits,
it is of critical importance to properly model the bound-
ary conditions through which the dynamics of electrons
within and outside the open system become correlated9.

III. CHALLENGES

Given the above result, we will provide new insights
into the use of electron Coulomb correlations to manip-
ulate the local heat generation of a given device. More
specifically, we will address the following question:

Can we design electron-electron Coulomb
correlations to manipulate the way in which
energy is dissipated along different regions of
a circuit?
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The answer to this question could be quite relevant con-
sidering the fact that power consumption is one of the
main drawbacks that electronics must affront when scal-
ing down any new technology10. Moreover, from a the-
oretical point of view, the results of this work shed new
light into how many-body interactions could affect the
thermodynamic limits of computing machines.
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I. INTRODUCTION

Many processes observed in nature, technology and
some other areas can be viewed as consisting of many
separate events. Such events are localized in time in the
sense that their contribution to the whole process is sig-
nificant only in time intervals that are much shorter than
the observation time of the whole process. The processes
are usually measured as a change of some quantity y in
time t that can be called a signal y(t). Each discrete event
that contributes to the process in question can therefore
be represented by a pulse in the signal y(t) with definite
time of occurrence and duration1.

Even though the underlying discreteness of the process
may not be obvious due to the fact that often only a
collective effect of a large number of contributing sources
can be observed, the understanding of many phenomena
still requires the insight into the discrete nature of entities
creating the signal. Most notable, much researched, but
still not completely solved problem is the 1/f noise in
electronic devices2.

We investigate stochastic signals that consist of rect-
angular pulses. The stochasticity here appears as a con-
sequence of random variation of pulse duration and tim-
ing of the pulse occurrence. The power-spectral densities
(PSD’s) of such sequences of pulses under appropriate
conditions have a power-law shape1. Since the power-
law-shaped PSD’s are ubiquitous in natural phenomena,
technology and even quantitative social sciences, the in-
vestigation of the conditions under which pulse sequences
exhibit such PSD’s can be useful for the better under-
standing of a wide range of phenomena.

In this contribution we present the conditions under
which the PSD S(f) of the sequence of pulses obtains
power-law shape for small frequencies S(f) ∼ 1/fβ and
how the spectral power β depends on the statistical pa-
rameters of pulse timing. We also present a model of
charge carrier trapping in disordered materials that sat-
isfies the conditions for producing 1/f noise.

II. OVERLAPPING AND NON-OVERLAPPING
PULSES

Let us consider a process that consists of discrete
events and can be represented by a signal y(t) – a se-
quence of pulses. y(t) can be expressed as a sum of indi-
vidual pulses xk(t) shifted in time:

y(t) =
∑
k

xk(t− tk) (1)

Here xk(t) is the shape of the k-th pulse and tk - the
time of its occurrence. The shape of each pulse xk(t) is
described by a set of parameters (for example, the am-
plitude, duration etc.) which can obtain random values.

We investigate a simple case of stationary sequences
of rectangular pulses of constant amplitude whose dura-
tions {τk} are independent identically distributed (i.i.d.)
random variables.

The timing of pulses can be defined either by the time
interval θk = tk+1 − tk between the occurrence of suc-
cessive k-th and (k + 1)-st pulses or by the time interval
δk = tk+1− tk − τk between the end of the k-th pulse (at
time tk+τk) and the start of the (k+1)-st pulse (at time
tk+1 > tk + τk). We will call δk the gap between succes-
sive pulses. We assume that one of these two quantities –
either θk or δk – together with the pulse duration τk are
i.i.d., and thus there are two distinct possibilities for the
construction of the pulse sequences in this case: (possi-
bly) overlapping pulses where the duration and timing of
pulses are defined by two independent quantities τk and
θk, and non-overlapping pulses where the (k+1)-st pulse
begins only after the k-th pulse ends, and therefore the
two independent quantities describing the pulse duration
and timing are τk and δk.

A schematic representation of a signal described above
in the case of rectangular pulses with constant amplitude
a is given in Fig. 1.

III. SPECTRAL PROPERTIES

The one-sided power-spectral density (PSD) of the sig-
nal y(t) is defined as follows:

S(f) = lim
T→∞

〈
2

T

∣∣∣∣ ∫ tf

ti

dt y(t) e−i2πft
∣∣∣∣2〉 (2)

Here T is the observation time, T = tf − ti.
Under the assumptions of stationarity and ergodicity

of y(t) (1) with pulses xk(t) sufficiently localized in time,
one gets the following PSD’s for rectangular pulses with
exponentially distributed durations τk:

S(f) =
4 ν̄ a2τ̄2

1 + (2πfτ̄)2

[
Re

{
χθ(f)

1− χθ(f)

}
+ 1

]
(3)

for possibly overlapping pulses and

S(f) =
4 ν̄ a2τ̄2

1 + (2πfτ̄)2
Re

{
1− i2πfτ̄(1− χδ(f))

(1− χδ(f))− i2πfτ̄

}
(4)
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for non-overlapping pulses (this case is often called ran-
dom telegraph noise). Here Re denotes the real part,
χθ(f) and χδ(f) are the characteristic functions of θk
the and δk, respectively. ν̄ is the average rate of pulse
occurrence which is ν̄ = θ̄−1 and ν̄ = (θ̄+ δ̄)−1 for the re-
spective cases (3) and (4), and τ̄ , θ̄ and δ̄ are the averages
of the quantities τk, θk and δk, respectively.

FIG. 1. A schematic representation of a signal, consisting
of rectangular pulses with constant amplitude a. The three
quantities that define pulse timing (only two of them inde-
pendent): pulse duration τk, gap between successive pulses
δk and interpulse time (time between the occurrence of suc-
cessive pulses) θk.

IV. POWER-LAW SPECTRA

Analytical and numerical calculations suggest that, for
sequences of rectangular pulses (1) with exponentially
distributed pulse durations, the power-law PSD with
power β for small frequencies

S(f) ∼ 1

fβ
(5)

can be obtained in both cases (3) and (4) when either
the times between the occurrence of successive pulses θk
or the gap durations δk between pulses are power-law
distributed with the power γ > 1 or, alternatively, γ =
1 + α with α > 0:

p(ϑ) ∼ ϑ−(1+α) , ϑmin ≤ ϑ < ϑmax , (6)

Here p(ϑ) denotes the probability density of the quantity
ϑ which can be one of the quantities θk or δk and the
bounds of the power-law region ϑmax � ϑmin.

The additional condition for the occurrence of the
power-law PSD (5) is that the average τ̄ of the expo-
nentially distributed pulse duration τk must be greater
than the average inter-pulse time ϑ̄, that is τ̄ � ϑ̄.3 For

α > 1 we can get the finite average value ϑ̄ = α
α−1ϑmin

for ϑmax → ∞. However, in order for ϑ̄ to be finite in
the case α ≤ 1, ϑmax must be finite.

If the above conditions are fulfilled, then we get the
power-law PSD (5) for the frequencies between fmin ≈
ϑ−1max and fmax ≈ ϑ−1min where the power β depends on α
as follows:

β(α) ≈

 α α < 1
2− α 1 ≤ α < 2

0 α ≥ 2
(7)

We see that the 1/f noise (β=1 in (5)) is obtained
when α = 1, i.e., the distribution of the inter-pulse time ϑ
(either θk or δk) has a power-law distribution p(ϑ) ∼ ϑ−2
for a wide range of ϑ. Such case is shown in Fig. 2.

V. CHARGE CARRIER TRAPPING

The results presented above have been applied to the
model describing current fluctuations in defective mate-
rials due to the charge carrier trapping4.

The model states that a charge carrier moving through
some disordered material is successively trapped in and
released from trapping centers with widely distributed re-
lease rates. For the appropriately chosen distribution of
the release rates, the resulting current corresponds to the
signal of non-overlapping pulses with power-law distribu-
tion of gaps between pulses with the power −2, resulting
in the 1/f PSD in a wide range of frequencies.

FIG. 2. The PSD S(f) resulting from the model of charged
particle trapping. The thick red line shows the exactly calcu-
lated spectrum, dashed and dotted lines are approximations
for different frequency regions (see legend).
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I. INTRODUCTION

In the past two decades, there has been a strong inter-
est in spin effects in semiconductors for applications in
spintronics1,2. The use of electron spin for information
processing, storage and transmission naturally demands
a detailed knowledge of the spin dynamics within the host
material.

When a spin imbalance is created in a semiconduc-
tor, typically there are three mechanisms that will try
to restore equilibrium, namely (a) the Elliot-Yafet (EY)
mechanism3,4, related to the fact that states with a gen-
eral k are not strict spin eigenstates, and thus there is
a finite probability for a spin flip at an otherwise spin-
independent scattering event; (b) the Bir-Aronov-Pikus
mechanism5, related to a hyperfine-like interaction be-
tween electrons in the conduction band and holes in the
valence band; and (c) the D’yakonov-Perel’6 (DP) mech-
anism, related to spin precession about a random mag-
netic effective field caused by the spin-orbit interaction
in a non-centrosymmetric system.

As of lately, the interest in the dynamics of spins in
2DEGs has revived due to the special characteristics of
graphene7. In the traditional analysis of the DP mech-
anism6,8, expressions are obtained for the spin lifetime
tensor in the strong scattering regime, meaning that
ωLτp � 1, where ωL is a characteristic Larmor frequency
for spin precession and τp is the momentum relaxation
time. Under these conditions, it can be shown6,8–11 that
the spin lifetime τs is proportional to τ−1p , a feature that
is extensively used to discriminate the DP mechanism
from other forms of spin decay. Experimental observa-
tions in graphene have found that at low temperatures
τs ∝ τp, as characteristic for the EY mechanism12; how-
ever, results at low carrier densities suggest that a com-
bination of both mechanisms is at play13.

We will present in this conference theoretical evidence
that the results in graphene can be understood from the
DP mechanism operating in the weak scattering regime,
e.g. ωLτp � 1. There have been some passing com-
ments14,15 that τs ∝ τp when ωLτp � 1, and here we
will present a series expression for the spin lifetime valid
in the general ωLτp case confirming the weak scattering
behavior ωLτp � 1. Obtaining a closed (or few-term)
form for the general case remains an open question.

II. RESULTS

The Hamiltonian describing the spin-orbit interac-
tion for electrons in the conduction band of an n-
dimensional semiconductor can usually be written as

H(k) = ~/2 ΩΩΩ(k) · σσσ, where ΩΩΩ is a precession vector,
which depends on the electron momentum k, and σσσ is a
vector composed of the three Pauli matrices. This Hamil-
tonian indicates that spins evolve deterministically until
the electron scatters, when a new k is obtained proba-
bilistically. Thus, the overall evolution of a single spin is
a stochastic problem.

The time evolution of a single spin can be cast quan-
tically as

i~
∂|ψ〉
∂t

= H[k(t)]|ψ〉, (1)

where |ψ〉 is the spinor describing the state of an indi-
vidual state. The spinor univocally determines an expec-
tation value; and the converse is also true except for an
overall phase of the spinor. If we define s ≡ 〈ψ|σσσ|ψ〉, a
standard derivation from Eq. (1) readily yields the clas-
sical expression

ṡ = ΩΩΩ[k(t)]× s = Ω[k(t)] s, (2)

where Ω is an antisymmetric matrix providing the vector
product of ΩΩΩ with whatever follows.

Since, in general, Hamiltonians at different times do
not commute, the time evolution operator cannot be

written as U(t, t0) = exp
{
−i/~

∫ t
t0
H(t′) dt′

}
. Most

commonly, the solution to Eq. (1) is written as a Dyson
series16, though lately the Magnus expansion17 applied
to Eq. (2) has gained favor18 because it preserves the
unitarity of the evolution to all orders in the series.

The techniques from the preceding paragraph and oth-
ers8,11 are well suited for the study of spin dynamics in
the strong scattering regime. In the conference, we will
present a highly intuitive approach naturally suited to
the study of the weak scattering regime. Let us study the
evolution of a single spin, initially at si from an initial
time t0 to a final time t. Class n processes will be those
where the electron momentum has scattered n times dur-
ing the interval (t− t0), and the spin has evolved into a
value sn(t) given by

sn(t) =
n∏
j=0

1

tj+2 − t0

∫ tj+2

t0

dtj+1R [(tj+1 − tj)ΩΩΩ(kj)] si,

(3)
where tj is the time at which an individual scatter-
ing event takes place, tj≥n = t and proper averaging
of the times of the scattering events has been made19.
The probability that evolution from t0 to t has actually
been of class n will be given by a Poisson distribution
with mean τp, the momentum scattering time. From
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Eq. (3) the following recurrence relationship immediately
follows:

sn(t) = R [(t− tn)ΩΩΩ(kn)] sn−1(tn) , pn =
(t/τp)

ne−t/τp

n!
,

(4)
where R [tΩΩΩ] is a rotation of angle t|ΩΩΩ| about the vector
ΩΩΩ, and with the Poisson distribution explicitly stated.
The time evolution of an ensemble will necessarily involve
additional integrations over the distribution of momenta
of the particles.

The results above are valid for any values of ωLτp, but
it is hard to extract any information valid for all regimes.
However, under weak scattering conditions only the first
terms in the series will need to be taken into account.
In the case of a 2D material with spherical bands and
isotropic elastic scattering, for a given energy one readily
has

〈s(t)〉 ' e−t/τp
{

1

2π

∫ 2π

0

dθ0R [(t− t0)ΩΩΩ(k, θ0)] +

1

(2π)2τp

∫ 2π

0

dθ0

∫ 2π

0

dθ1

∫ t

0

dt1R [(t− t1)ΩΩΩ(k, θ1)]×

R [(t1 − t0)ΩΩΩ(k, θ0)]
}
si, (5)

where 〈〉 denotes an ensemble average.
Equation (5) clearly shows that in the weak scattering

regime the spin lifetime will be exactly the momentum
relaxation time, ie. τs = τp, even though we are in a
situation where only the DP spin relaxation mechanism

is allowed. Such conditions are expected to take place
in high quality graphene, with mean free paths of the
order of 1 µm at room temperature and 100’s of µm’s
at low T20, which translate into momentum relaxation
times of the order of 1-100 ps, for a precession frequency
of ∼120 THz for graphene on Au(111)21.
Discussion – Among the many surprising properties of

graphene, one of them might be that it is the first mate-
rial where the DP spin relaxation mechanism manifests
itself in the weak scattering regime, with the spin lifetime
having the same temperature dependence as the momen-
tum relaxation time. The treatment that will be pre-
sented at the conference allows obtaining results under
a few specific conditions, but a more general formalism
is still missing. The study of the information that can
be provided by the characterization of the fluctuations
in the spin signal is in its infancy22,23. Finally, it should
always be kept in mind that a problem very similar to
DP spin relaxation is studied in Nuclear Magnetic Res-
onance, and any insight from one field would have an
immediate impact on the other.
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23 J. Hübner, F. Berski, R. Dahbashi, and M. Oestreich, phys.
stat. sol. (b) 251, 1824 (2014), ISSN 1521-3951.

152



UPON 2015, BARCELONA, JULY 13-17 2015

Current Fluctuations Originating from Non-Metallic (Physical) Leads

Guillermo Albareda,1 Liping Chen,2 Xavier Oriols,3 and Ignacio Franco4

1Institute of Theoretical and Computational Chemistry and Physical Chemistry Department,
Universitat de Barcelona, 08028 Barcelona, Spain

e-mail address: albareda@ub.edu
2Department of Chemistry, University of Rochester, Rochester NY 14627, United States

e-mail address: liping.chen@rochester.edu
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I. OVERVIEW OF THE PROBLEM

The modelization of the conductance in nanoscale sys-
tems requires the consideration of overall charge neutral-
ity and current conservation1,2. Imposing overall charge
neutrality assures that unbalanced charges at the bor-
ders of the active region bring about the correct voltage
drop along the leads and reservoirs through the Poisson
equation. In addition, the total (particle and displace-
ment) current in the active region must be equal to the
total current measured on the surface of an ammeter lo-
cated far away from the active region, in the reservoir,
i.e. current conservation.

The conservation of the electrical current

The conservation of the electrical current, i.e. the to-
tal (conduction plus displacement) current computed on
a surface in the simulation box is equal to the total cur-
rent measured on a surface of an ammeter located far
from the sample, is a necessary requirement for the pre-
diction of ac conductances, specially at high frequencies.
The explicit consideration of the displacement current
assures that the total current density is a divergenceless
vector. Important theoretical contributions were done by
Büttiker and co-workers for predicting ac properties of
mesoscopic systems within a frequency-dependent scat-
tering matrix formalism, in weakly nonlinear regimes1,3.

The overall charge neutrality

The importance of overall charge neutrality, i.e. that
the total charge in the whole device is zero, was clari-
fied by the work of Landauer, Büttiker, and co-workers4

on the “two-terminal” and the “four-terminal” conduc-
tance of ballistic devices. The well-known standard text-
book expression of the dc (zero-temperature) conduc-
tance through a tunneling obstacle is known as the two-
terminal equation because it is defined as the current
divided by the voltage drop sufficiently far from the ob-
stacle. However, the original formulation of the conduc-
tance proposed by Landauer5 in 1957 was known as the
four-terminal conductance because its experimental val-

idation needs two additional voltage probes to measure
the voltage drop close to the tunneling obstacle. The
presence of resistances in the leads explains the differ-
ence between both expressions. The ultimate origin of
such resistances is the requirement of overall charge neu-
trality that transforms unbalanced charges in the leads
into a voltage drop via the Poisson (Gauss) equation. As
a relevant example of their deep understanding of time-
dependent mesoscopic scenarios, they predicted the value
of the resistance in a quantum RC6 which has been re-
cently experimentally confirmed7.

Quantum transport models

Electron-transport models do include reasonable ap-
proximations that guarantee the accomplishment of the
overall charge neutrality requirement. In addition, those
simulators that are developed within a time-dependent
or frequency-dependent framework can also assure the
current conservation requirement. However, the expen-
sive treatment of quantum and atomistic effects can only
be applied to a very limited number of degrees of free-
dom. In fact, a very small simulation box is a manda-
tory requirement in modern electron transport simula-
tors. Small means here that the leads, the spatial region
separating ideal metallic conditions from the active re-
gion of the electronic device, are excluded from the sim-
ulations. For most circuit designs it can be assumed that
the leads do not contribute to the electrical effects of in-
dividual components. This assumption, however, begins
to break down at high frequencies and very small scales.
Capacitances between the ends of the leads where they
connect to the device and inductances and resistances
along them can become important at high frequencies
and even crucial when trying to predict the noise perfor-
mance of such devices.

II. CHALLENGES

In principle, the problem of excluding the leads from
the simulation box could be solved by providing ade-
quate boundary conditions (BCs) on each of the “open”
borders of the simulation box8. Unfortunately, at far
from equilibrium conditions, neither the charge density,
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the electric field nor the scalar potential have easily pre-
dictable values at the borders of the active region, spe-
cially when an external time-dependent field is being
applied9. Among several attempts to formulate accu-
rate BCs that reach both overall charge neutrality and
current conservation none is accurate enough to capture
far from equilibrium conditions. Moreover, the perfor-
mance of these algorithms for time-dependent scenarios
is usually even worse.

Based on the recent development of a time-dependent
BCs algorithm that is able to preserve both current
conservation and overall charge neutrality10,11, in this
conference we will present new insights into the time-
dependent fluctuations of electrical characteristics that
arise from the assumption of a more realistic contact
model. We will focus, in particular, on the current fluctu-

ations originating from finite screening lengths in molecu-
lar devices operating under the effect of an external elec-
tromagnetic field12.

ACKNOWLEDGMENTS

This work has been partially supported by the “Min-
isterio de Ciencia e Innovación” through the Spanish
Project TEC2012-31330 and by the Grant agreement no:
604391 of the Flagship initiative “Graphene-Based Rev-
olutions in ICT and Beyond”. G. A. acknowledges the
Beatriu de Pinós Program for financial support through
Project No. 2010BP-A00069.
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Single-stranded DNA (ssDNA) plays a major role
in several biological processes, such as replication or
transcription. Therefore, it is of fundamental interest to
understand how the elastic response and the formation
of secondary structures are modulated by non specific
base pairing and the electrostatic interactions. In
general,these are non-specific interactions that make
the elastic properties of ssDNA more complex than
for double-stranded DNA (dsDNA). Furthermore, its
properties have been less well studied than for dsDNA.
Single-stranded DNA is obtained by mechanically unzip-
ping a DNA hairpin attached to two micron-sized beads
using optical tweezers, and the thermal fluctuations play
a major role since the energies involved in the formation
of this secondary structure are of the order of kBT . The
mechanical response of ssDNA has been collected in
four different-length DNA-hairpin molecules: 6770bp,
3665bp, 1758bp and 480bp, and it shows two different
regimes.

I. ELASTIC RESPONSE OF SSDNA

Over 15pN (at room temperature) the elastic be-
haviour of the force-extension curves can be fitted using
the Worm-Like Chain model:

f =
kBT

Lp

[
1

4

(
1 − x

L0

)−2

+
x

L0
− 1

4

]
. (1)

Where Lp and L0 are the persistence length and the
contour length, the charasteristic elastic parameters
of the studied molecules. The force only depends on
the relative x/L0 since the original hamiltonian is
obtained by only considering local deformation terms,
which agrees with previous data1, within the uncertainty.

II. SECONDARY STRUCTURE OF SSDNA

Under stretching forces of 10pN, the ssDNA molecules
show a plateau that indicates the formation of a non-
specific secondary structure.
Nucleic acids, specially RNA, have been found2,3 to be
able to create long-range structures. In the force-relative
extension curves shown in Fig. (1), they would ap-
pear in the form of differences between the force-plateau
of different-length molecules: higher plateau-forces for
longer molecules. Despite what has been previously

FIG. 1. Data of Short (480bp), Mid-length I (1758bp), Mid-
Length II(3565bp) and Long (6770bp) are depicted in this
semilogarithmic Force-Normalized Extension. It can be seen
the elastic response over 15pN, and under 10pN the emergence
of a secondary structure that does not depend on the length
of the studied molecules. Data has been averaged in order to
minimize the thermal fluctuations.

shown1, this differences are not found in the random se-
quences we are working with. Furthermore, a cinematic
model based on a previous one4 of structural disorder is
being develop in order to describe the results shown in
Fig. (1).
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In the last decades a large number of astonishing
molecular nano-structures and nano-machines operating
inside the cell have been discovered. Examples range
from the DNA double helix, the most dense memory
support in nature, to molecular motors, which are far
more efficient than macroscopic machines. In the study
of these objects, one of the most important new technolo-
gies are optical tweezers (OT).

OTs can trap and manipulate microscopic objects in
a non-invasive way using light1. They consist of highly
focused laser beams and can trap nano and microscopic
dielectric objects, from neutral atoms to plastic micro-
beads. By trapping we mean the ability to exert forces
on one object and thus to constrain its position in a cer-
tain region of space. For example we are able to exert
force on a single cell, or to measure the force required
to unfold the secondary structure of a double stranded
deoxyribonucleic acid (dsDNA) molecule2.

As temperature plays a key role in all biological pro-
cesses, slight changes of temperature may lead to com-
pletely different behaviours of biological systems, or in
our case the behaviour of a short DNA hairpin. In fact,
living matter carry out its function in a small range of
temperature. Therefore, it is interesting to study and un-
derstand what is the effect of temperature in biological
systems. In this project we aim to understand and char-
acterize the thermodynamic, kinetic and elastic response
of a DNA hairpin at different temperature.

We have used the OT technique in order to measure
and exert force in a DNA hairpin. Under the effect
of a mechanical force at different temperatures we
can perform two kinds of experiment: 1) Equilibrium
(Hopping) experiment and 2) Non-equilibrium (Pulling)
experiments.

A DNA hairpin is a single stranded deoxyribonucleic
acid (ssDNA) that can fold into themselves to form a
hairpin structure. This structure has two different part,
the first one that is called stem is the region of the
ssDNA that can form base-pairs (in our case 20 base-
pairs), it means that when the DNA hairpin is folded
the stem forms a dsDNA. The other part of the hairpin
is called loop. The loop is the region of the ssDNA that
can not form base-pairs, this part connects each strand
of the dsDNA when the hairpin is unfold, in our case
we have a tetraloop (4 bases). This molecule is attached
between two polystyrene microscopic beads flanked by
two dsDNA handles at each side of the molecule. The
aim of the handles is to prevent non-specific interactions

(Fig 1-a).

To exert mechanical force to the molecule one bead is
trapped in the optical trap, whereas the other bead is
held fixed at the tip of a micro-pipette. With this set-
up we can exert force on the molecule maintaining one
bead fixed on the tip of the micro-pipette, and manipu-
lating the other using the optical trap. Controlling the
distance between the centre of the OT and the tip of the
micro-pipette, distance λ, we can increase or decrease
the exerted force on the molecule. To perform hopping
experiments we maintain constant λ, while to perform
experiments out of equilibrium we increase/decrease λ
to change the exerted force. Then we obtain the elastic
response of the molecule in a Force-Distance curve (FDC)
(Fig. 1-b).

By fitting the stretching response (FDC) of DNA hair-
pin to a semi-flexible polymer model, equation 1, we have
obtained the temperature dependence of the persistence
length, Lp

3.

Lp =
kBT

fU

 4(
1− xssDNA

Lc

)2 +

(
xssDNA

Lc

)
− 4

 , (1)

where fU is the measured force when the molecule be-
comes unfolded. Lc is contour length, kBT is the product
between the temperature and the Boltzmann constant
and finally xssDNA is:

xssDNA =
∆f

kFeff
+ d0 ·

(
coth

fU · d0
kBT

− kBT

fU · d0

)
. (2)

In equation 2 ∆f is the difference of force at the mo-
ment when the stem breaks. kFeff is the slope of the FDC
at moment of the molecule breaks in the branch when the
molecule is folded. Finally d0 is the diameter of the DNA
hairpin when is folded.

Taking into account this elastic parameter we can char-
acterize the free energy difference, ∆G0, between the
folded and unfolded state of the molecule. To calcu-
late ∆G0 we calculate de energy difference between both
states performing hopping experiment (Fig. 1-c). To
measure this we use the Kramer’s theory that relates
differences in energy whit the kinetic involved in each
transition, Fig. 1-d.
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FIG. 1. a) The molecular construct is attached between two beads, one held by the suction of a micro-pipette and the other
captured in the optical trap. b) Elastic response of a DNA hairpin presented in a Force-Distance curve (FDC). The rip in the
FDC shows the moment when the molecule unfolds. c) Force-Time curve obtained during a hopping experiment. The blue
points (high forces) are obtained when the molecules is folded while the red ones (low forces) are obtained when the molecule
is unfolded. d) Kinetic rates at different force and temperature. The kinetics increase with temperature. The coexistence force
is defined as the moment when both kinetics , unfolding and folding are equals. Lines (solid and dotted) are fits of equation 3
(blue) and 4 (red) e) Coexistence force as a function of temperature. The coexistence or the necessary force to open the hairpin
decreases with temperature. f) ∆G0 as a function of temperature.

kF→U =
1

〈tF 〉
= k∗0 exp [β (xU · f)] (3)

kF←U =
1

〈tU 〉
= k∗0 exp [β (∆G− xF · f)] (4)

In equations 3 and 4 k∗0 is the attempt rate, 〈ti〉 is the
average life time at each state, xi is the distance between
the minimum of potential for each state and the poten-
tial barrier. This barrier is the potential barrier that the
molecule needs to overcome to change its state, (i = F
or U). Finally ∆G is the energy difference between the
folded and unfolded state. As we can see at a certain
value of the force,fc, both kinetic are equals, at this mo-

ment we say that the molecule are in coexistence, kc.

∆G0 = ∆G−Whandles −Wtrap −WssDNA −Wd (5)

To find the free energy difference we need extract the
contribution of each element to the energy difference
(equation 5)4. Wtrap is the work done by the OT,
Whandles is the work done by the handles, Wd is the
work performed to orient de DNA hairpin when is folded
and finally WssDNA is the work to stretch the ssDNA
when the stem is unfolded.

In this report we present data obtained in a temper-
ature range between 10 and 50 degrees. In Fig.1 are
presented some significant results and also some plots to
understand the main ideas behind this experiments.

1 A. Ashkin, et. al., Phys. Rev. Lett. 24(4), 156-159 (1970)
2 M.T. Woodside, et. al., PNAS 314, 1001-1004 (2006)
3 A. Alemany and F.Ritort, Biopolymers 101(12), 1193-1199

(2014)
4 N. Forns, et. al., Biophysical Journal 100, 1765-1774 (2011)
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I. INTRODUCTION

Several studies have indicated the significance of a tym-
panum temperature (TT) as a physiological index. The
TT has been regarded as a substitute for the temper-
ature of the brain, especially hypothalamus, which has
been known as the control center of the autonomic ner-
vous systems (ANS). Since a very little has reported that
a forehead temperature (FHT) has had a strong correla-
tion with the TT, which has been indicated that the FHT
could be possible index as a substitute for the TT. Mean-
while, a nasal skin temperature (NST) has been known
as a physiological index strongly related for ANS activity.
A declining NST has been the sign of the activation of
the sympathetic nervous system (SNS), which has been
a part of ANS. And the FHT has been considered as a
’reference’ for the core body temperature, which has been
stable and has had less relation with ANS activity in NST
studies. Thus, there has been a inconsistency in interpre-
tation of the FHT in physiological aspect, and this has
been considered as one of the unsolved problem on noise
in biological systems. The relationship between the tem-
peratures have to be clarified, however, those has never
been analyzed from the view of the biological system.
The objective of present study is to analyze the causal
relationship between body temperatures as an ANS ac-
tivity index. The multidimensional directed coherence
(MDC) has been know as an quantitative index of causal
relationship between periodical signals1,2. In this paper,
MDC has been calculated between body temperatures
time series measured in psychophysiological experiment.

II. EXPERIMENTAL

Experiment was conducted for six 22- to 23-years-old
healthy subjects (three males and three females). Sub-
ject sat on chair in front of desk while the experiment.
Experiment was constructed with six 90-seconds experi-
mental periods for a task and six 60-seconds experimen-
tal periods for a rest. Six experimental periods for a
task were T1, T2, T3, T4, T5 and T6, and R1, R2, R3,
R4, R5 and R6 those for a rest assigned in chlonological
order. Each experimental period for a rest was aligned
after the period for a task, respectively. Thus, each task
came in every 150 seconds. In the period for a task, the
subject was instructed to perform a mental arithmetic
task (MAT) as fast as possible in order evoking an acute
stress. The MAT was an addition of two double-digit
numbers without carrying, which presented every 5 sec-

onds by PC installed in front of the subject. The subject
had to type the answer to the PC with numerical key-
board on the desk. In the period for a rest, the subject
was instructed to sit with closing the eyes. Physiological
data time series were measured through the experimental
periods at a sampling frequency of 0.5 Hz, which were
right FHT (FHTR), left FHT (FHTL), NST, right TT
(TTR), left TT (TTL) and mean blood pressure (MBP).
The data were subjected to MDC analysis after resam-
pling process at a sampling frequency of 4 Hz with a
linear interpolation.

III. MULTIDIMENSIONAL DIRECTED
COHERENCE ANALYSIS

The causal interrelations between an arbitrary num-
ber of time series signal are calculated as follows. A
model of linear system for generating multi-channel se-
quences is described as multidimensional autoregressive
model (MAR model) such that

xn =

M∑
m=1

αmxn−m + βwn (1)

The order M is optimized by Akaike’s Information Cri-
terion (AIC). amij is the autoregressive coefficients, the
input sequence wi is the signal source that is white noise
satisfying (2) of the output time sequence xi(n), and β
is a weighting factor.

µ =
1

N

N∑
n=1

wi(n), σ =

√√√√ 1

N

N∑
n=1

(wi(n) − µ)2 (2)

where µ is the average of wi(n) and σ is the standard
deviation. Fourier transform of (1) is given as

X(f) = A(f)βW (3)

Here respectively Xi(f) and Wi(f) are Fourier transfor-
mation of xi(n) and wi(n), I is identity matrix, and ∆t
is a sampling interval.

The power spectrum Pxi(f) and the cross spectrum
Pxixj (f) are defined using X(f) as follows: Px1

(f) · · · Px1xk
(f)

. . .
Pxkx1(f) · · · Pxk

(f)

 = E[X(f) ·Xt(f)]

= A(f) · β · β∗ ·A(f)
∗

(4)
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FIG. 1. The examples of the MDC gain of signals. (Subject F)

where E is an ensamble mean, ∗ is transposed ma-
trix, and an overline is the complex conjugate. The
power spectrum Pwi

(f) of the signal source wi(n) sat-
isfies Pwi

(f) = 1. MDC of an output sequence xi from a
signal source Wxi

is defined as

γxixj
(f) =

PxiWxj
(f)√

Pxi
(f) · PWxj

(f)

=
bxixj

Axixj
(f)√

Pxj
(f)

(j = 1, 2, · · · , k) (5)

These directed coherence also signify a composition ra-
tio between Pxi

and PWxi
. A generation source of xi(n)

is wi(n), therefore, the power spectrum Pxi
(f) must be

generated from any of PWxi
(f). Considering the compo-

sition ratio, the gain transformed from Wxi
(f) of Pxj

is
represented

Gxi→xj
(f) =

∣∣bxixj
Axixj

(f)PWxi
(f)
∣∣2

Pxj
(f)

=

∣∣bxixj
Axixj

(f)
∣∣2

Pxj
(f)

(6)

A correlation between the directed coherence and the
power composition ratio is given as follows by (5) and
(6)

Gxixj
(f) =

∣∣bxixjAxixj (f)
∣∣2

Pxi(f)
=
∣∣γxixj

(f)
∣∣2 (7)

IV. RESULTS AND DISCUSSION

Fig.1 shows total combinations of the MDC gains of
the physiological signals. Horizontal axis represents fre-
quency of the signal, and MDC gain is on vertical axis.
Hereinafter, MDC gain of A on B is referred to as GA→B.
The MDC gains aligned on the diagonal lines from upper-
left to lower-right in the figure indicate a ’signal source’
referred to as GA, which represents MDC gain of A on
itself. Higher gain in the signal source indicate that the
signal flows more to itself, lower gain indicates less, as
well. Frequency bands around 0.01 Hz and 0.20 Hz are
focused. It is assumed that 150-seconds task-rest period
make the signals have 0.01 Hz frequent responses, and
5-seconds repeated MAT questionnaire periodically re-
flects on the signals as 0.20 Hz fluctuations as well. GTTL

shows low gain in a frequency band of 0.01 Hz in the fig-
ure, which indicates TTL is the source and has an impact
on other signals in the band. Corresponding to the low
gain in GTTL

, GTTL→FHTR
and GTTL→FHTL

have high
gains in the band around 0.01Hz, while GFHTL→FHTR

has
high. Those clarifies that thermal signal flows from left
tympanum to forehead. Regarding GFHTR

as a source,
GFHTR

has slight low gain in the band around 0.01 Hz,
and GFHTR→MBP has high gain in the band, while GMBP

has high gain in the band. GMBP→NST shows a small im-
pact MBP on NST, while TTL recurrently has the impact
from MBP. It is assumed that the thermal signal gener-
ated in left tympanum flows to blood pressure and nasal
region by way of forehead region from the view point of
biological system.

1 Bjorn Schelter et al., Journal of Neuroscience Methods,
152(1), 210-219 (2005)

2 Luiz A. Baccala et al., Biological Cybernetics, 84(6), 463-
474 (2001)
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I. INTRODUCTION

Chronic Myeloid Leukemia (CML) is a cancer of blood
where too many myeloid cells (one of the main types
of white blood cells) are produced and released into the
blood when they are immature and unable to work prop-
erly. Despite the front line therapy for the treatment
of CML, based on the administration of highly effective
tyrosine kinase inhibitors (TKI), represents the first ex-
ample of a successful molecular targeted therapy, the
appearance of resistance is observed in a proportion of
patients. The evolutionary dynamics of cancer initia-
tion and progression can be theoretically approached by
mathematical deterministic equations 1,2 or stochastic
models3–6, both using the basic idea that cancer arises
when a single non-differentiated cell experiences multiple
mutations.

In this work, we study the fluctuations on cancer
growth dynamics in patients affected by CML and devel-
oping resistance to the standard therapy. The evolution-
ary dynamics of cancerous cell populations is modeled in
numerically simulated patients treated by an intermittent
targeted therapy (IT). In our model, initially healthy cells
can experience genetic mutations and change their repro-
ductive behavior, becoming leukemic clones. We simulate
a TKIs-based treatment of CML by modifying the fitness
and the death rate of cancerous cells. In CML context, a
temporary interruption of the therapy was found to sig-
nificantly reduce the presence of leukemic cells in a resis-
tant patient7,8. Here we explore the fluctuations occur-
ring in patient leukemic cells treated by a therapy where
the simulated drug administration follows a continuous
or pulsed time scheduling. A permanent disappearance
of leukemic non-resistant clones is achieved with a con-
tinuous therapy. However, our findings demonstrate that
an intermittent therapy could represent a valid alterna-
tive in patients with high risk of toxicity, being a suitably
tuned pulsed therapy more effective to reduce the prob-
ability of developing resistance.

II. THE MODEL

In our model cells are distributed over four popula-
tions: healthy cells (type-0), first-mutated cells (type-
1), double-mutated leukemic cells (type-2) and resistant
leukemic clones (type-3). Each population is assumed to
be composed of the sum of stem cells, progenitors, differ-
entiated and terminally differentiated cells. We study the
dynamics of N= 104 replicating cells. This value is sev-

eral orders of magnitude lower than the typical total con-
tents of blood cells in humans, but it is great enough for
the statistical study of the cancer development in a sin-
gle blood compartment. In order to simulate the random
process of cell selection for reproduction, mutation and
death we adopt a Monte Carlo approach, as already done
in several theoretical studies4–6. Each elementary step of
the stochastic process consists of a birth and a death
event, i. e. a Moran process9. For the birth, one of the N
cells is randomly chosen proportionally to its capacity to
reproduce. The fitness of type-0 and type-1 cells are set
equal to 1 as already adopted in other theoretical stud-
ies4,6. In the absence of therapy, the reproductive rate of
a leukemic cell is assumed to be 10 times that of a nor-
mal cell. The treatment lowers this value only for those
cells which are sensitive to the drug. The reproductive
capability of resistant cells remains unchanged. Fitness
values have been chosen in order to match the response
of type-2 leukemic cells to that experimentally observed
in patients treated by TKIs-based targeted therapy1,3.

Healthy cells mutate to cells of type-1 (first allele mu-
tation) at a rate M01 equal to 0.0005; type-1 cells mutate
to type-2, which are leukemic cells sensitive to the ther-
apy, at a rate M12 equal to 0.002. These values, compa-
rable with the mutation rates adopted in the models of
Refs.1,4, guarantee a good agreement between our find-
ings and clinical results. For the same reason, in our
model we have assumed that type-2 cells become resis-
tant type-3 by mutating at a rate M23 which has not
a constant value, but increases with the number N2 of
leukemic double-mutated cells. The specific set of chro-
mosomal mutations that causes the cancerous cell to be-
come resistant can be considered an evolutionary reaction
of the cell against the drug. On this basis we assume
that, during the periods of absence of therapy, the mu-
tation rate M23 is reduced to such very low values that
we reasonably keep it equal to zero. In our simulations
time is measured in units of cell divisions, and we assume
500 cell divisions per day. Using this time scaling from
cell divisions to days we get a complete restore of healthy
cells in almost 100 days, as experimentally observed in
clinical cases of optimal therapy response1,3.

III. NUMERICAL RESULTS AND DISCUSSION

Our simulated patients, subjected to a continuous ther-
apy for the first 100 days, are then treated by three dif-
ferent therapeutic strategies characterized by: (i) con-
tinuous drug administration (namely, ”CT”), (ii) long
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FIG. 1. Distributions of type-2 leukemic cells among patients. Blue symbols/curves refer to patients treated by a continuous
therapy. Red and green diamonds/curves are used for intermittent therapies with breaks of 7 days and 1 day, respectively.

interruptions (7 days of stop after 21 of continuous ther-
apy, namely ”IT21-7”) or (iii) short breaks (one day yes,
one day no, namely ”IT1”). In Fig. 1 we show how the
number of type-2 leukemic cells is distributed among all
the simulated patients after the first 100 days, at fixed
time steps of 7 days for 10 weeks. In particular the blue
colour is used for patients treated by CT, red for IT21-7
and green for IT1. Fig. 1 also shows the distribution of
patients with a given number of type-2 leukemic cells.
The crucial point for patient long-term survival to CML
is avoiding those mutations causing a type-2 leukemic cell
to become type-3 resistant to the therapy. In our model
the occurrence probability for such harmful mutations
depends on the presence of the drug, and increases with
the number of type-2 leukemic cells. This is the reason
why the study of fluctuations in the number of type-2
leukemic cells is so crucial for a clear estimate of the bal-

ance between the benefits of the therapy and the risk of
developing cancer resistance. Of course the best results,
in terms of lower levels of the type-2 leukemic cells, are
achieved with a continuous therapy. However, the re-
sults shown in Fig. 1 demonstrate that an IT could also
represent a valid choice in patients who cannot assume
drug continuously due, for example, to a problem of tox-
icity. In fact, even if an increase of the average number
of type-2 leukemic cells is observed during an intermit-
tent therapy, this effect is partially counterbalanced by
a reduction in the probability of developing resistance.
Finally, our IT results clearly show the presence of mul-
tiple states of dynamical equilibrium in the number of
type-2 leukemic cells. But, unfortunately, the most pop-
ulated equilibrium state has always the highest number of
leukemic cells. The possibility of achieving a population
reverse in CML progression is still an unsolved problem.

∗ dominique.persanoadorno@unipa.it
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I.  INTRODUCTION 

During walking or running, we execute voluntary and repeated 

activities where repeated voluntary activities need a conscious    

mind 1,2 . In this study, we introduce the term repeated voluntary 

movement which refers to repeated movements during daily 

activities. These movements need a certain mental workload. By 

clarifying the correlation between repeated voluntary movement 

and mental workload, it becomes possible to improve the workers’ 

well-being and safety at work. In order to confirm the correlation 

between repeated voluntary movement and mental workload, we 

selected handwriting as an everyday repeated activity which 

imposes a mental workload 3-7. In our study three terms of 

cognitive control, physical control and cognitive load are going to 

be used in order to extract the features of repeated activities.     

II. EXPERIMENTAL METHOD  

Dual-task method was selected for the experiment’s procedure 

in which two tasks are to be performed simultaneously (for our 

experiment, writing at a specific timeframe). The experiment’s 

system is consisted of two PCs. These PCs control a pen tablet, 

generate an auditory stimulus, and measure biometric signals 

(ECG, EEG and also body temperature). There are three tasks of 

writing as shown in Fig. (1), in which each task was performed by 

the subject at three different writing speeds which is considered as   

the task difficulty (low, medium and high speed). The experiment 

was performed during 6 non-consecutive days so that on the first 

three days a set of tasks WZ, and on the last three days a different 

set of tasks WL were performed. In this report we have applied 

obtained data of one male student at the age of 24 for the analysis.  

 
FIG. 1. Writing Tasks 

III. EXPERIMENTAL PROTOCOL 

The experimental protocol is shown in Fig. (2). First the 

subject fills in two questionnaires to measure the psychological 

factors, Profile of Mood States (POMS) and State–Trait Anxiety 

Inventory (STAI). Then, the subject rests with closed eyes for 150s 

and performs a task of writing with a specific speed by 250 times. 

Finally, the subject rests with closed eyes for 150s and answers to 

the POMS/STAI questionnaires again.  

 

 

 

 

 

FIG. 2. Experiment's Protocol 

IV. ANALYSIS METHOD  

  Synchronization error between writing and audio-stimulus and 

spatial error tend to occur during performing each task. It means, 

depending on the task difficulty, the subject will find it difficult to 

synchronize repeated-handwriting with the audio-stimulus. 

Furthermore in each set, each writing task has different start and 

stop point. In this study we applied the Synchronization error 

between writing and audio-stimulus as a factor of our analysis and 

for simplicity we refer to it as WSE (Writing Synchronization 

Error) which is shown in Fig. (3) 8,9.  

  For the procedure of the analysis, first measured data was 

normalized to N (0, 1), then the autocorrelation coefficient was 

applied to the WSE: 

 

𝑐(𝑖) = ∑
N[𝑘]×N[k+1]

𝐿

𝐿−𝑖

𝑘=1
      ( 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐿 − 1)      (1) 

 

Where L is the length of the normalized data, N[k] and N[k+1] 

are Kth and (K+1)th term of the normalized data. After that, Fast 

Fourier Transform was applied to the autocorrelation coefficient in 

order to calculate the Power Spectral Density (PSD). Finally Self-

Similarity Feature and Natural Period Feature were derived from 

the PSD.  

 

 

 

 

 

 

FIG.3. WSE (Writing Synchronization Error) 

 

A. SELF-SIMILARITY FEATURE  
The Power Spectrum Density of the WSE on a log-log plot is 

inversely proportional to the frequency. Generally this feature is 

referred to as 1/f noise, Eq. (2) explain the general form of the 1/f 

noise in which 𝛼  has a range of -2 to 0.  

 

       𝑆(𝑓)  ∝  𝑓𝛼      − 2 < 𝛼 < 0                                    (2) 
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We applied the least squares method in order to find the best 

fit line (linear regression) to the PSD where the gradient of this 

line represents the value of α in Eq. (2). Our results show that the 

value of 𝛼  for each writing task is statistically self-similar.       

Fig. (4) shows the result of the experiment for the Self–Similarity 

Feature of WSE. The horizontal axis represents the writing tasks 

where WZ is related to the writing task, W of the WZ set, and WL is 

related to the writing task, W of the WL set. The vertical axis 

represents the value for 𝛼 of each writing tasks. The red, brown 

and yellow bars are related to the highest, medium and lowest 

writing speeds, respectively. Obviously, the value of 𝛼 in each set 

is dramatically proportional to the writing speed. When 𝛼 has a 

more negative value, the task needs less mental workload and  the 

physical control is dominant, and when 𝛼 has a value near to zero, 

the task needs more mental workload and the cognitive control is 

dominant. The reason of this matter is that at the highest writing 

speed, the subject only performed a physical activity and found it 

difficult to synchronize his writing flow with the audio-stimulus. 

On the other side, at the lowest writing speed the subject has 

concentrated better on the task and easily has synchronized his 

writing flow with the audio-stimulus. For the medium speed of the 

writing task, both of the cognitive control and the physical control 

took part in controlling the writing activity. In this study, when 𝛼  
tends to approach to -1 the case is called "tendency to 1/f noise 

(pink noise)"   , this happened at the medium speed of the writing 

task in our experiment; and when 𝛼 tends to approach to zero, the 

case is called "tendency to the white noise" which happened at the 

lowest speed of the writing task. But when we want to talk about 

the difficulty of writing letters not writing speed, we can't easily 

distinguish the difference between the writing tasks. For instance 

the writing task of W has more breaking points than the writing 

task of L and it would be more difficult to write, so the cognitive 

control should be dominant. Therefore we'd have expected that at 

the writing tasks of W the cognitive control would have more 

influence on the task but it wasn’t satisfied. We conclude that one 

of the reasons of this problem is that the control of the writing task 

was influenced by other controls of different tasks on the mental 

workload during experiment.       

 

          FIG.4. the Self–Similarity Feature of WSE 

 

B. NATURAL PERIOD FEATURE 
Difference between the PSD and the linear regression of the 

PSD (DPower(f)) is another factor that expresses the frequency 

characteristics.  The mean value of the DPower(f) was defined as 

μ and the standard deviation of the DPower(f) was defined as σ. 

The number of points that the value of the DPower(f)  exceeds  μ 

+ σ  was defined as Power(f). By dividing the Power(f) by the 

length of the DPower(f) a new term can be derived which we call 

it PeakT. In Fig. (5) we can see the value of the PeakT for each 

writing task. We can see that except for writing task of L, the other 

writing tasks at the lowest speed (yellow bars) have greater values 

for PeakT than of the highest speed (red bars). It means, the 

lowest speed of the writing task has a higher level of the cognitive 

load than the highest speed. At the highest writing speed (red 

bars), the values of PeakT are on their lowest values which means 

the cognitive load is at its lowest level. And finally for the 

medium speed, depend on the writing task the cognitive load has 

variable value and it is difficult to recognize the level of the 

cognitive load at this stage of the study and more experiments 

must be performed to make it more clear. The parameter 

“difficulty of writing letters” in this section is the same as what we 

have discussed in the previous section and to discover the detailed 

reasons of the misclassification problem, more experiments must 

be performed.   

FIG.5. the Natural Period Feature of WSE 

 
 

1 D. Kahneman and A. Treisman, Varieties of attention 

(Academic Press, Inc, 1984), pp. 29-61. 
2 W. Schneider and R. Shiffrin, Psychological Review, 84, 

pp.1-66. (1977). 
3 Y. Kimura, K. Odaka and M. Uchida, SICE (Proceedings of 

ISBPE / 22nd BPES), pp.187-190, (2008). 
4 M. Nishizawa, M. Uchida, K. Odaka and Y. Kimura, SICE 

(Proceedings of ISBPE / 22nd BPES), pp.191-194, (2008). 
5 K. Odaka, Y. Kimura and M. Uchida, SICE (Proceedings of 

ISBPE / 22nd BPES), pp.195-198, (2008). 
6 K. Saito, Y. Park and M. Uchida, ICROS-SICE International 

Joint Conference 2009, 2C12-3, (2009). 
7 K. Saito, Y. Park and M. Uchida, The Fifteenth International 

Symposium on Artificial Life and Robotics 2010 (AROB 

15th `10), OS1-3, (2010). 
8 T. Komatsu and Y. Miyake, Trans. of SICE, 39(10), pp.952-

960, (2003). 
9 Y. Miyake, Y. Onishi and E. Poppel, Trans. of The Society 

of Instrument and Control Engineers, 38(12), pp.1114-1122, 

(2002). 

163



UPON 2015, BARCELONA, JULY 13-17 2015

Probabilistic characteristics of noisy Van der Pol type oscillator with polynomial
damping

A.A. Dubkov1 and I.A. Litovsky1

1Radiophysical Department, Lobachevsky State University,
Gagarin ave.23, 603950 Nizhni Novgorod, Russia

e-mail address: dubkov@rf.unn.ru
e-mail address: litovskii@list.ru

The Van der Pol oscillator has a long history of being

used in both the physical and biological sciences
1,2

. For
instance, in biology, FitzHugh and Nagumo extended the
Van der Pol equation in a planar field as a model for

action potentials of neurons
3,4

. The equation has also
been utilized in seismology to model the two plates in a

geological fault
5
.

For noisy Van der Pol oscillator the unsolved problem
can be formulated as: Is it possible to distinguish be-
tween soft and hard excitation of self-oscillations using
the probabilistic characteristics of amplitude?

Trying to solve this problem, we consider a noisy Van
der Pol type oscillator which is governed by the following
equation

ÿ + λF (y)ẏ +
[
ω2 + η(t)

]
y = ξ(t), (1)

where: λ is a small parameter (λ � ω), F (y) =∑k
n=0 Cny

n is the nonlinear polynomial damping, ξ(t)
and η(t) are statistically independent white Gaussian
noise sources with zero mean and the intensities 2D and
2D1 respectively. Introducing by the usual manner the
phase variables

y = A cos Ψ ,

ẏ = −Aω sin Ψ , (2)

where Ψ = ωt+ Φ, and applying a functional approach
6

to derive the Fokker-Planck equation for the joint prob-
ability density function (PDF) of amplitude and phase,
we arrive at

∂P

∂t
= −

(
∂

∂A

sin Ψ

ω
+

∂

∂Φ

cos Ψ

Aω

)[
λPF (A,Ψ)Aω sin Ψ

− D1

ω
A cos Ψ

[
∂

∂A

(
AP

2
sin 2Ψ

)
+

∂

∂Φ
(P cos2 Ψ)

]
− D

(
∂

∂A

P sin Ψ

ω
+

∂

∂Φ

P cos Ψ

Aω

)]
. (3)

Using the standard procedure of averaging over the os-
cillation period and integrating over the phase, one can
obtain from equation (3) the following truncated equa-
tion for the probability distribution of the amplitude

∂P

∂t
=
λ

4

∂

∂A

[
AP [a0(A) − a2(A)]

]
+

D

2ω2

(
∂2P

∂A2
− ∂

∂A

P

A

)
+

D1

4ω2

[
1

2

(
∂

∂A
A

)2

P − ∂

∂A
AP

]
. (4)

FIG. 1. The stationary probability distribution of the am-
plitude for different values of the intensity D1 of frequency
fluctuations. The parameters are: λ = 0.01, ω = 3, D = 1,
α = 1, β = 2.

Here a0(A) and a2(A) are two coefficients of Fourier
series expansion of the polynomial damping function
F (A cos Ψ).

The stationary probability density function of the am-
plitude can be easily found from equation (4) and takes
the form

Pst(A) = C0A exp

[
− 2λω2

∫
a0(A) − a2(A)

4D +D1A2
AdA

]
,

(5)
where C0 is the normalization constant.

As an example, we explore the Van der Pol oscillator
with the nonlinear damping F (y) = −1−αy2 + βy4 cor-
responding to the hard excitation of self-oscillations. As
a result, we obtain the following Fourier coefficients

a0 =
3

4
βA4 − αA2 − 2 ,

a2 =
1

2
βA4 − 1

2
αA2 .

and stationary PDF

Pst(A) = C0A

(
D +

D1A
2

4

)q
exp [−S(A)] , (6)
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FIG. 2. The probability distribution of the amplitude: 1 - in
the presence of only additive noise source; 2 - in the presence
of both noise excitations; 3 - in the presence of only frequency
fluctuations. The parameters are: λ = 0.01, ω = 1, D = D1 =
1, α = β = 1.

where

q = −2λω2

D1

[
2β

(
D

D1

)2

+ α
D

D1
− 1

]
,

S(A) =
λω2

D1

[
βA4

8
−
(
α

2
+ β

D

D1

)
A2

]
.

The 3D plot of PDF P (A,D1) as a function of the am-
plitude A and the intensity D1 of multiplicative noise is

depicted in Fig. (1). It is clearly visible the characteristic
peak corresponding to the limit cycle. The maximum of
PDF decreases with increasing the intensity of frequency
fluctuations.

In the absence of additive noise the PDF (6) takes the
form

Pst(A) = C0A
qη exp [−Sη(A)] , (7)

where

qη = 1 +
2λω2

D1
, Sη(A) =

λω2

D1

(
βA4

8
− α

2
A2

)
.

In the absence of multiplicative noise from equation (6)
we have

Pst(A) = C0A exp [−Sξ(A)] , (8)

where

Sξ(A) =
λω2

48D

(
βA6 − 3αA4 − 24A2

)
.

The plots of PDF P (A) for different noise excitations
of the Van der Pol oscillator (1) are shown in Fig. (2). As
seen from Fig. (2), the PDF of the amplitude in the case
of only one multiplicative noise is wider than in the case
of only one additive noise source of the same intensity.

Our results demonstrate that it is quite difficult to dis-
tinguish between soft (β = 0, α < 0) and hard excitation
of the Van der Pol oscillator using only the stationary
PDF of the amplitude.
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Bistable systems are encountered in many different situations. 
Classical examples in chemistry and biology include relaxation 
kinetics in chemical reaction [1] and stochastic resonance 
processes such as neuron firing [2,3]. Likewise, bistable systems 
play a key role in signal processing and information handling at 
the nanoscale, giving rise to intriguing applications such as optical 
switches [4], coherent signal amplification [5,6] and weak forces 
detection [5].  

The interest and applicability of bistable systems are intimately 
connected with the complexity of their dynamics, typically due to 
the presence of a large number of parameters and nonlinearities. 
Moreover, the presence of non-negligible noise in the system 
makes appropriate modeling and analytical approaches quite 
challenging. In spite of increasing the complexity of a system, the 
presence of noise can play a crucial role in some situations, being 
for example responsible for the activation of switching between 
the stable states and for giving access to resonant conditions 
triggering stochastic resonances.  

 
The possibility to experimentally recreate noisy bistable 

systems in a clean and controlled way, where the noise can be 
properly tuned, has recently become very appealing. With this 
aim, we combined optical tweezers with a novel active feedback-
cooling scheme to develop a well-defined opto-mechanical 
platform reaching unprecedented performances in terms of Q-
factor, frequency stability and force sensitivity [7,8]. Our 
experimental system consists of a single nanoparticle levitated in 
high vacuum with optical tweezers, which behaves as a non-linear 
(Duffing) oscillator under appropriate conditions. We introduce a 
controlled source of noise by modulating the power of the 
trapping laser with a white Gaussian noise signal of variable 
amplitude.  

We demonstrate bistable dynamics of the nanoparticle by noise 
activated switching between two stable oscillation states, 
discussing our results in terms of a double-well potential model. 
We also show the flexibility of our system in shaping the potential 
at will, in order to meet the conditions prescribed by any noisy 
bistable system that could therefore then be simulated with our 
setup.  

 
 

 
FIG.1 Experimental set-up. A silica nanoparticle is trapped 
inside a vacuum chamber by means of a tightly focused laser 
beam. The beam intensity is modulated via an electro-optical 
modulator (EOM) according to a signal which is a compound of 
three contributions: the feedback signal responsible for the 
parametric cooling of the particle, the driving signal that gives 
access to the nonlinear regime leading to bistability and the noise 
signal that activates stochastic switching within the two stable 
oscillation states. 
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I. INTRODUCTION

Many systems show large fluctuations of macro-
scopic quantities that follow non-Gaussian, heavy-tailed,
power-law distributions with the power-law temporal
correlations1, scaling, and the fractal features2,3. The
power-law distributions are often related both with the
nonextensive statistical mechanics4–6 and the power-law
behavior of the power spectral density, i.e., 1/fβ noise
“ambiguity” (see, e.g.,3,6–8 and references herein).

One common way for describing all the above-
mentioned forms of evolution is by means of the stochas-
tic differential equations7,9,10. These nondeterministic
equations of motion are used in many systems of inter-
est, such as simulating the Brownian motion in statistical
mechanics, field theory models, the financial systems, bi-
ology, and in many other areas.

One of the principal statistical features characterizing
the activity in financial markets is the distribution of fluc-
tuations of market indicators such as the indexes. Fre-
quently heavy-tailed long-range distributions with char-
acteristic power-law exponents are observable. Power
laws appear for relevant financial fluctuations, such as
fluctuations of number of trades, trading volume and
price. The well-identified stylized fact is the so-called
inverse cubic power-law of the cumulative distributions,
which is relevant to the developed stock markets, to the
commodity one, as well as to the most traded currency
exchange rates. The exponents that characterize these
power laws are similar for different types and sizes of
markets, for different market trends and even for differ-
ent countries—suggesting that a generic theoretical basis
may inspire these phenomena11–14.

Here we model the long-range dependent inverse cu-
bic cumulative distributions by square multiplicative
stochastic differential equations7,10 and taking into ac-
count a transition from Stratonovich to Ito convention
in noisy systems15 according to Wong-Zakai theorem16,
with decrease of the driving noise correlation time when
the market proceeds from turbulent to calm behavior.

II. STOCHASTIC DIFFERENTIAL EQUATIONS

We start from the squared stochastic differential equa-
tion (SDE)

dx = x2 ◦α dWt (1)
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FIG. 1. The steady-state probability distribution function,
cumulative distribution, power spectral density and autocor-
rrelation function of the variable x generated by Eq. (3) for
different parameters α = 0; 1/4; 1/2 and 1 with restriction
between xmin = 1 and xmax = 104.

where Wt is a Wiener process and α is the interpreta-
tion (convention) parameter, defining the α-dependent
stochastic integral in Eq. (1),∫ T

0

f(x(t)) ◦α dWt ≡ lim
N→∞

N−1∑
n=0

f(x(tn))∆Wtn . (2)

Here tn = n+α
N T , 0 ≤ α ≤ 1. Common choices of the

parameter α are: (i) α = 0, pre-point (Itô convention),
(ii) α = 1/2, mid-point (Stratonovich convention) and
(iii) α = 1, post-point (Hänggi-Klimontovich, kinetic or
isothermal convention). More generally, the value of α
may be variable, even coordinate x and/or the system
parameters dependent quantity. Eq. (1) with α 6= 0 may
be transformed to Itô equation

dx = 2αx3dt+ x2dWt (3)

Eq. (3) is a particular case of the general Itô equations

dx =

(
η − λ

2

)
x2η−1dt+ xηdWt, η 6= 1, (4)

yielding the power-law steady-state, Pss(x) ∼ x−λ, dis-
tribution of the signal with the power-law spectrum,
S(f) ∼ 1/fβ , with the exponent

β = 1 +
λ− 3

2(η − 1)
. (5)
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FIG. 2. The steady-state probability distribution function,
cumulative distribution, power spectral density and autocor-
relation function generated by Eqs. (6)–(9) with xc = 100 and
restriction between xmin = 1 and xmax = 104.

The relations between the parameters α and λ in Eqs. (3)
and (4) for η = 2 are: λ = 4(1−α), α = 1−λ/4. It should
be noted that for the cumulative inverse cubic distribu-
tion P>(x) ∼ x−3, i.e., λ = 4, according to Eq. (5) β > 1,
for all η > 1 and, therefore, the modeled process is not
long-range dependent. [Note that the definition of the
long-range process corresponds the power-law autocorre-
lation function C(t) ∼ 1/tγ with 0 < γ < 1, which takes
place for 0 < β < 1 and γ = 1− β.] Fig. 1 demonstrates
statistics of solutions of Eq. (3) for different values of the
parameter α = 0; 1/4; 1/2 and 1, i.e., for λ = 4; 3; 2 and
0.

III. LONG-RANGE DEPENDENT INVERSE
CUBIC DISTRIBUTION

For modelling of this phenomena we generalise
Eqs. (1)–(4) with α(x)-dependent parameter, e.g.,

α(x) =
1

2

[
1− exp

{
−
(
x

xc

)2
}]

, (6)

where xc is the process crossover parameter,

dx = 2α(x)x3dt+ x2dWt (7)

Eqs. (6) and (7) represents transition from Stratonovich
to Itô convention with decreasing variable x and the driv-
ing noise correlation time for small x, according to Wong-
Zakai theorem. The calculations are performed with the
variable step of integration

∆tk = κ2/x2k (8)

with κ� 1, yielding to the difference equation

xk+1 = xk + 2κ2α(xk)xk + κxkεk. (9)

Here εk is a set of uncorrelated normally distributed ran-
dom variables with zero expectation and unit variance.
Fig. 2 demonstrates results of the numerical calculations.

IV. CONCLUSION

Equations (6) and (7) with the variable dependent con-
vention parameter α(x), according to Wong-Zakai theo-
rem modeling decrease of the driving noise correlation
time when the market proceeds from turbulent to calm
behavior, may reproduce the long-range dependent in-
verse cubic phenomena.
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I. EXTENDED ABSTRACT

In this contribution our attention is devoted to the fun-
damental role of mechanical noise1 to favor the working of
a complex electromechanical system. In the literature it
has been studied how uncertainty allows self-organization
of pendulums arrays2. The idea of our contribution is to
show that mechanical noise can play a fundamental role
in the self-organization of complex electromechanical sys-
tems.

The considered system is essentially based on a low
weight mechanical structure that supports very simple
rotating coils. With this term we indicate coils realized
with few turns of a copper wire. The i−th coil can be
described with a nonlinear dynamical model:

{
Ẋi = Yi
Ẏi = 1

J (IaSB sin(Xi) −K1Yi)
(1)

where Xi (i = 1, . . . , N with N indicating the number
of coils) represents the phase of the coil, Yi the angular
velocity, J the angular momentum, K1 the damping fac-
tor, Ia is the current flowing into the coil and is given

by Ia = Va−Y SB sin(Xi)
Ra

with Va the voltage supplied to
the coil, S the coil area, B the magnetic field and Ra the
contact resistance, which, due to the coil construction

constraint, is nonlinear: Ra =

{
0.4Ω ifX < π
10kΩ ifX ≥ π

.

The structures that are considered are of the type
shown in Fig. 1, where the coils are hosted in the var-
ious slots and powered by a unique voltage source.

(a) (b)

FIG. 1. Structures used to host the coils: (a) rectangular
structure with 5 slots; (b) rectangular structure with 10 slots.

The investigated structures are classified in the family
of large scale dynamical systems, in the sense that the
low weight of the structure, including the coils, is negli-
gible with respect to the volume. The task that we want
to achieve is, at the first step, to have the complete start

up of the various coils and, then, to get a complete syn-
chronization of the coils, both as regards their angular
speed and phase.

The mechanical structure is a flexible structure3 where
the natural modes have the main frequency between 10Hz
and 30Hz. The coils, even if they are easy represented by
the model in equation (1), globally should be considered
nonlinear uncertain systems, due to the practical diffi-
culties in building identical coils. Another source of un-
certainty derives from the fact that the coils are located
in the mechanical structure free of moving in the three
directions. Moreover, the structure and the slots, where
the coils are located, are different each other. Therefore,
there are tremendous negative conditions to get a regular
behavior of the system.

Depending on the initial conditions, when the power
is switched on, typically it occurs that some coils start
rotating, while others do not. The idea is to design flex-
ible structures that, mechanically excited by their self-
oscillations, allow the coils which are not working to re-
ceive solicitations in order to win the off condition and
to start working. This should occur globally and due to
the mechanical vibrations that couple each coil with the
other. Therefore, the mechanical vibrations should allow
the self-organization of the system in order to win the
uncertainties.

In the structure of Fig. 2(a) the mechanical vibrations
elicited by those coils, which do start when the power
supply is switched on, are enough large to let the other
coils to also start. So, in the structure of Fig. 2(a), over
a relevant number of trials under the same power supply
conditions, the various coils work. In Fig. 3 the trends
of the angular velocities of the five coils are reported and
in Fig. 2(b) the horizontal mechanical displacement that
allows the self-organization of the coils is shown.

(a) (b)

FIG. 2. (a) Structure of Fig. 1(a) with the coils. (b) Hori-
zontal displacement of the structure.

Coupling more structures of this type, as shown in
Fig. 4, by using mechanical springs a global start up of a
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FIG. 3. Angular velocity for the 5 different coils.

system with 10 coils can be achieved, while for the struc-
ture of Fig. 1(b) an active solution has to be envisaged.

FIG. 4. Two structures with 5 coils coupled through two
springs.

The resulting structure is more rigid, and, therefore,
the self-generated vibrations of the coils cannot allow the
complete start up of all the coils of the system. In or-
der to overcome this drawback, a shock system actuated
with low power electromechanical transducer has been
conceived to excite the mechanical structure to favor ac-
tive vibrations helping the start up of coils. The electro-
magnetic actuator is driven by a chaotic signal generated
by a Chua’s circuit4. This signal works in the range of
the natural frequencies of the mechanical system, to give
suitable electrical signal in order to stimulate in an ac-
tive way the system to start. In Fig. 5(a) the proposed
structure is reported. In Fig. 6 the trends of the angular
velocities of the various coils are reported and in Fig. 5(b)
the induced mechanical vibrations. After the start up of
the system, the actuator is switched off.

The project will consist of coupling a great num-
ber of coils and study the possibility to favor the self-
organization of the coils by using different ways such as:
self-elicited oscillation of the structure, passive coupling
and active generation of mechanical vibrations. The
project is conceived in order to design and realize experi-
mentally a system with hundreds of coils. The main idea
is to establish the conditions under which a global behav-
ior can be obtained in high order structures of coils by
exploiting the self-organization principle and using pas-

(a) (b)

FIG. 5. (a) Structure of Fig. 1(b) including the coils and
the active shock system. (b) Horizontal displacement of the
structure.
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FIG. 6. Angular velocity for the 10 different coils.

sive low level power induced fluctuations or external pow-
ered devices; this latter solution is needed only during the
complete start up of the system.

1 J.J. Thomsen, Vibrations and stability (McGraw Hill,
1997).

2 Y. Braiman, J. F. Lidner, and W. L. Ditto, Nature, 378,
465467 (1995).

3 W. Gawronski, Balanced control of flexible structures
(Springer, 1996).

4 L. Fortuna, M. Frasca, and M.G. Xibilia, Chua’s Circuit
Implementations: Yesterday, Today and Tomorrow (World
Scientific Series on Nonlinear Science, Series A - Vol. 65,
2009).
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I. INTRODUCTION 

The problem of studying and predicting the natural phenomena 

evolution of our planet is vital for all of us and for the Humanity 

as a whole. At present, there are steadily increasing changes of the 

natural conditions in various geospheres on the Earth’s surface. It 

is widely believed that the rise in the average temperature on the 

Earth's surface in the past few decades is caused by the increasing 

human activity. Based on this assumption, trillions of dollars are 

spent to fight the global warming. 

At the same time, the opponents of this concept argue that the 

periods of relative cooling and warming repeatedly alternated in 

the Earth’s history without any human intervention. Suffice it to 

mention that only 20 000 years ago the whole territory of North 

Europe was occupied by a glacier with a thickness reaching 2.5 - 3 

km. It is known for sure that approximately 9 – 10 thousand years 

ago this monstrous ice armour melted without any impact of 

human activity. 

The only scientific way to try to predict the future trends of 

these changes is by making a correct analysis of the climatic 

changes in the past. The Paleo-Sciences have accumulated over 

the years of studies tens of thousands of very different records 

related to climatic changes. Such important parameters as solar 

insolation, temperature, content of the oxygen isotope (18O), 

atmospheric radiocarbon, deuterium, etc., have been recorded and 

analyzed. The researchers have tried to identify periodic and 

quasi-periodic processes in these paleoenvironmental records. In 

this paper, we show that this analysis is incomplete, and that 

random processes, namely single-time-constant random processes 

(noise with a Lorentzian noise spectrum) play a very important 

and, perhaps, a decisive role in numerous natural phenomena. 

 

II. METHOD OF CALCULATIONS 

We consider a paleoenvironmental record of some quantity  as 

a random function (“noise”) (t). The spectral density of 

fluctuations ( )S f
is calculated as follows. Another random 

function '( )t is introduced defined as '( ) ( )t t    , where 

 is the average value of (t) over a long time interval T: 

 

2

2

1
( )

T

T

t dt
T

 


   (1) 

The average value of ' ( )t is zero, so it describes the deviation 

of ( )t from the mean. The spectral noise density of 

fluctuations ( )S f
 can be expressed through the Fourier 

transform ( )f  of the '( )t  function: 

21
( ) ( )S f f

T

  ,   (2) 

where

2

2

( ) '( )exp( 2 )

T

T

f t i ft dt  


  , T   (3) 

The function ( )S f
 was calculated numerically. 

 

III. RESULTS AND DISCUSSION 

Paleoenvironmental records have, at first sight, the form of 

noise (so called “grass”). As an example, Fig 1 shows the time 

dependence of the virtual axial dipole moment (VADM) for last 

800000 years (800 Ka)1.  
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Fig. 1 The time dependence of the virtual axial dipole moment 

(VADM) for 800 Ka1. 

 

Of course, periodic and quasi-periodic processes can be (and 

should be) identified in the dependence shown in Fig. 1. At the 

same time, this dependence can be regarded as “noise”. In this 

case, the frequency dependence of the spectral density S(f) of this 

“noise” should be calculated.  

Fig. 2 presents the frequency dependence of the spectral density 

fluctuations ( )DMS f  for the time dependence of virtual axial 

dipole moment (VADM) presented in Fig. 1. 
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Fig. 2. The frequency dependence of spectral density 

fluctuations for the time dependence of VADM presented in Fig. 

1. The lines are guidelines to the eye. 

 

It can be seen in Fig. 2 that the overall run of 
DMS curve in the 

frequency range 10-5f 10-3.5 1/year is quite well described by a 

single Lorentzian with a characteristic time constant 0~ 104.7/2  

8000 years. This means that, along with the possible periodic and 

quasi-periodic processes in the time dependence of VADM, an 

important (and possible dominant) influence is exerted by a 

random process with a characteristic time constant 0 ~ 8000 

years. 

We calculated spectral densities of fluctuations for several very 

important paleoenvironmental records.  

Fig. 3 presents the frequency dependence of spectral density 

fluctuations,
2HS for the deuterium content (Vostok Ice Core 

Deuterium Data for 420,000 years2).  

 
Fig. 3. The frequency dependence of spectral density 

fluctuations for the deuterium content2.  

 
It is seen from Figure 3 that the overall behavior of 
2HS dependence in the frequency range f  10-5 1/years is well 

described by a single Lorentzian with an characteristic time 

constant 0 ~ (104.5-104.7)/2 (58)103 years. 

Very similar dependence was observed for the deuterium data 

for 740,000 years from EPICA Dome C Ice Cores3. 

It is interesting to compare the data presented in Figs. 2 and 3 

with 
18OS

dependence for the content of oxygen 18O isotope4 

(Fig.4). 

 
Fig. 4. The frequency dependence of spectral density 

fluctuations for globally distributed benthic 18O records4.  

 

The data presented in 4 span 5.3 Myr and are an average of 57 

globally distributed benthic 18O records, aligned by an automated 

graphic correlation algorithm. It can be seen from Fig. 4 that there 

are two characteristic parts in the frequency dependence of 

spectral density, in which the dependence follows the law S~ 1/f2. 

For the part in the frequency range 10-4.7 f  10-4.0 1/year, the 

value of 0 is close to the values of 0, found for the plots shown in 

Figs. 2 and 3. For the “low-frequency” part 10-6.3f 10-5.3 1/year, 

the value of 0 cannot be found from the data presented. It is 

obvious, however, that 0 for this random process, exceeds 105 

years. 

The above-mentioned random process with the same time 

constant 0 ~ (104.5 __ 104.7)/2 years for several records is 

certainly not universal. 

For example, the frequency dependence of the spectral density 

of the atmospheric radiocarbon content fluctuations5 is quite well 

described by a Lorentzian with a characteristic time constant 0~ 

300 years . 

Obviously, the most intriguing problem is the physical 

interpretation of the data, i.e., the identification of the random 

processes with a single time constant which are responsible for the 

appearance of single Lorentzians in the S(f) dependences analyzed 

in this paper.  

IV. CONCLUSION 

The time dependences of several important paleoclimatic 

parameters are considered for the first time as random processes 

("noise"). It is shown that single-time-constant random processes 

(noise with a Lorentzian noise spectrum) play a very important 

and, perhaps, a decisive role in some such important dependences. 

To the best of our knowledge, this is the first indication of the 

role played by random processes in climate variations. 

Identification of the random processes responsible for the 

appearance of single Lorentzians in the S(f) dependences that were 

revealed in this work will allow a better understanding of the 

nature of climatic changes 

 

 
1 Y. Guyodo, and J.P. Valet, Nature 399, 249–252 (1999). 
2 J.R. Petit et al., Nature 429, 429–436 (1999). 
3 Epica community members., Eight glacial cycles from an 

Antarctic ice core. Nature 429, 623-628, (2004). 
4 L.E. Lisiecki and M.E. Raymo, Paleoceanography  

20, PA1003 (2005) 
5 M. Stuiver et al., Radiocarbon 40, 1041-1083 (1998).  
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