Seeking for a fingerprint: analysis of point processes in actigraphy recordings

Ewa Gudowska-Nowak

Plus ratio quam vis

M. Kac Center Complex Systems Research Center, M. Smoluchowski Institute of Physics and Malopolska Center of Biotechnology

Jagiellonian University in Kraków, Poland

7th International Conference on Unsolved Problems on Noise

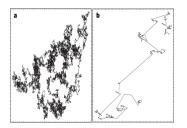
Barcelona, Casa Convalescència, Spain, July 13-17 2015

July 14, 2015

Ubiquity of power-law scaling (in general, non-Gaussian fluctuations!) and other manifestations of fractal and self-similar patterns (both in time/space) have been detected at all levels of neural organization...

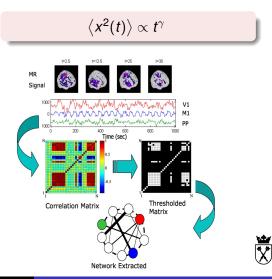
- dynamics of channel gating in neuronal membranes
- neurons discharge patterns (trains of neuron spikes)
- temporal structure and long-range correlations in EEG signals
- "brain criticality" detection of neural avalanches in fMRI dynamics
- measures of temporal organization ?, universality ?
- markers of pathophysiology of neurobehavioral diseases ?

Scale invariance in human motor activity

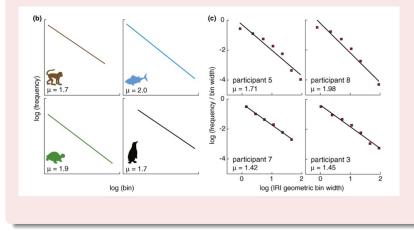


Collaboration/Funding

- Mark Kac Center for Complex Systems Research, Malopolska Center of Biotechnology, Jagiellonian University, Kraków, M.A. Nowak, E. Gudowska-Nowak, K. Oleś, J.K. Ochab, J. Szwed
- Department of Cognitive Neuroscience and Neuroergonomics JU, Kraków, T. Marek, M. Fąfrowicz, A. Domagalik, H. Ogińska
- CONICET, Buenos Aires, Argentina, D.R. Chialvo
- Institute for Medical Psychology, Albrechts University, Kiel,
 - E. Tagliazucchi


Criticality in neural systems...

- P. Bak Life laws Nature 391 652 (1998)
- D. Chialvo Complex emergent neural dynamics Nature Physics 6 744 (2010)
- E. Niebur, D. Plenz, H.G. Schuster Criticality in neural systems Wiley (2013) ISBN 978-3-527-41104-7


Spontaneous fluctuations of fMRI data show anomalous behavior of the variance and divergence of the correlation length

$$p(x) \propto x^{-(1+\alpha)}, \alpha < 2$$

Memory foraging...

Reaction time and word finding, Lévy strategies

C. T. Kello et al., Trends in Cognitive Sciences, 14 232 (2010)

Scale invariance

Patterns of animal foraging or human communication in social networks exhibit complex self-similar properties reproducible over multiple time scales

A. Proekt et al., PNAS, 109 10564 (2012)

Examples of scale-free dynamics	Scaling exponent (β + 1)
Time intervals between e-mail communications (2)	~1
Time it took Einstein and Darwin to reply to letters (3)	~3/2
Times that a human stays within a small area based on currency dispersal (4)	~1.6
Times that a human stays within a small area based on phone records (5)	~1.8
Times between movie ratings on Netflix (6)	~1.5-2.7
Times between car movements in Florence (7)	~0.97
Times between print job submissions (8)	~1.76
Times between hospitalizations for exacerbations of schizophrenia (9)	~1.21
Times that a healthy human stays at rest (10)	~1.9
Times that a depressed human stays at rest (10)	~1.7
Waiting times during foraging of spider monkeys (11)	~1.7
Lengths of step sizes (or times between changes in direction) during foraging of marine predators (12, 13)	1.4–3
Times between turns of a fruitfly in a featureless environment (14)	1–2
Times between turns of a fruitfly tracking an odor (15)	~1.3
Times that a mouse rests (16)	1.97
Times that a rat rests (17)	1.7

Scale-invariant distribution of time intervals characterizing the dynamics of many behaviors follow a power law—the probability of occurrence of a time interval (t) is p(t) ~ t^{-(p+1)}.

Example: actigraphy studies of spontaneous behavior

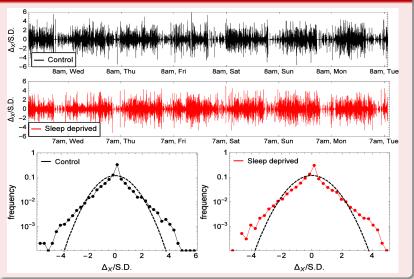
Ochab J., Tyburczyk J., Beldzik E., Chialvo D.R., Domagalik A., Fafrowicz M., Gudowska-Nowak E., Marek T., Nowak M.A., Oginska H., Szwed J. *Scale free fluctuations in behavioral performance: delineating changes in spontaneous behavior of humans with induced sleep deficiency* PLoS One **9** e107542 (2014)


- Actigraphy measurements were performed on healthy individuals over one week of their normal life [rested wakefulness (RW)] and one week of partial sleep deprivation (SD)
- The circadian cycle of both groups differs substantially: while RW individuals have relatively long nights and short days, members of the SD group are characterized by a reversed pattern of longer days and shorter nights, which clearly influences their activity/rest patterns.
- To overcome this problem normalization of the days and nights of both groups to the same length has been performed, followed by a statistical analysis.
- Bouts of activity/rest obey different distributions of duration

Accelerometer recordings

spontaneous locomotor activity of healthy individuals has been recorded a) during a week of regular sleep and b)

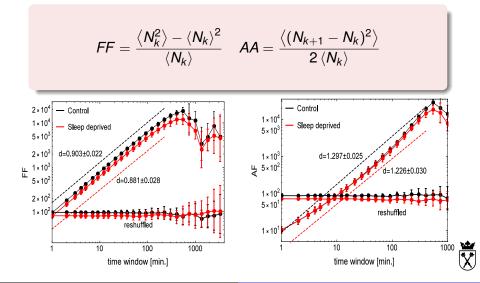
and a week of chronic partial sleep deprivation


transformed signal components...

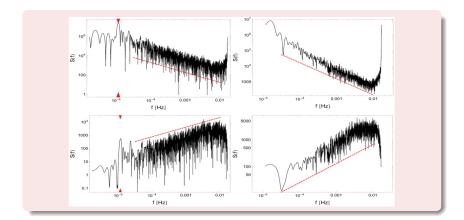
$$\dot{X}(t) + \int_{-\infty}^{t} \Lambda(\tau) X(\tau) = Y(t) + A \sin \Omega t + \xi(t)$$

Actigraphy studies

Non-Gaussian process



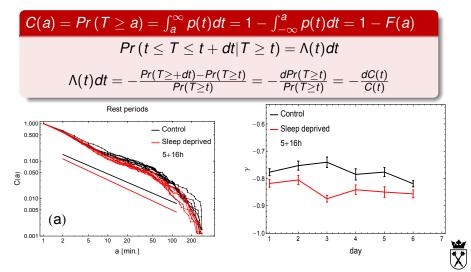
Ewa Gudowska-Nowak Scale invariant dynamics in human behavior


 $\overline{\mathbb{X}}$

Character of the event counts: point process

Measures of events clustering in time

Temporal universality of signal I(t) for a typical subject

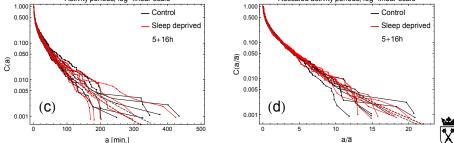


Spectral densities evaluated (left panel) for one-week experimental time series and (right panel) for 24 hr periods averaged over the week. $1/f^{\eta}$ slopes (dashed lines) with $\eta = 1.03 \pm 0.02$ (left panel) and $\eta = 1.09 \pm 0.02$ (right panel), respectively. Lower panels: similar spectral analysis for the time series of increments - $\eta' = -0.73 \pm 0.02$ (left panel) and $\eta = -0.71 \pm 0.02$ (right panel).

Character of the event counts: dwell time distribution

Dynamics of spontaneous fluctuations between activity and rest

Character of the event counts: duration of activity states


Dynamics of spontaneous fluctuations between activity and rest

$$C(a) = \Pr(T \ge a) = \int_{a}^{\infty} p(t)dt = 1 - \int_{-\infty}^{a} p(t)dt = 1 - F(a)$$

$$C(a) \sim \exp(-Da^{\beta})$$

$$\overline{\beta} = 0.49 \pm 0.03 \quad \overline{D} = 0.31 \pm 0.04$$
Activity periods, log-linear scale
$$C(a) \sim \exp(-Da^{\beta})$$

$$\overline{\beta} = 0.49 \pm 0.03 \quad \overline{D} = 0.31 \pm 0.04$$

Robustness of the results

- no clear difference between RW and SD individuals for the activity periods
- profiles of the rest periods cumulative distributions significantly different
- higher coefficient $\overline{\gamma} = 0.85 \pm 0.03$ for SD group more short periods of rest than in the RW group (fewer longer inactivity time intervals than in the control group)
- findings contrast with the results for the rest-time distributions of depressed humans, where lower scaling exponentss γ (and heavier tails) in the cumulative distributions were observed

Nakamura T., Takumi T., Takano A., Aoyagi N, Yoshiuchi K, et al. *Of mice and men - universality and breakdown of behavioral organization* PloS One **3** e2050 (2008). Nakamura T, Kiyono K, Yoshiuchi K, Nakahara R, Struzik Z, et al. *Universal scaling law in human behavioral organization* Phys. Rev. Lett. **99** 138103 (2007).

Character of the event counts: a model?

Dynamics of spontaneous fluctuations between activity and rest

$$C(t) = e^{-\lambda t}$$
 $p(t) = \lambda e^{-\lambda t}$

for a Poisson point process

Survival function under randomization of the rate $\Lambda(t)$

$$\begin{aligned} \Pr(T \ge t | \Lambda = \lambda) &= C(t | \Lambda \equiv \lambda) = e^{-\lambda t} \\ C(t) &= \left\langle e^{-\lambda t} \right\rangle = \int_0^\infty e^{-\lambda t} dF_\Lambda(\lambda) \\ \text{effective } \Lambda(t) &= -\frac{d}{dt} \log \int_0^\infty e^{-\lambda t} dF_\Lambda(\lambda) \end{aligned}$$

Survival function under randomization of the rate $\Lambda(t)$

$$\begin{array}{l} \Pr(T \ge t | \Lambda = \lambda) = C(t | \Lambda \equiv \lambda) = e^{-\lambda t} \\ C(t) = \left\langle e^{-\lambda t} \right\rangle = \int_0^\infty e^{-\lambda t} dF_\Lambda(\lambda) \\ \text{effective } \Lambda(t) = -\frac{d}{dt} \log \int_0^\infty e^{-\lambda t} dF_\Lambda(\lambda) \end{array}$$

Examples

- Gudowska-Nowak E., Psonka-Antończyk K., Weron K., Taucher-Scholz G. Distribution of DNA fragment sizes after irradiation with ions Eur. Phys. J. E 30 317 (2009)
- Dybiec B., Gudowska-Nowak E. Subordinated diffusion and CTRW asymptotics Chaos 20 043129 (2010)
- Ochab J., Tyburczyk J., Beldzik E., Chialvo D.R., Domagalik A., Fafrowicz M., Gudowska-Nowak E., Marek T., Nowak M.A., Oginska H., Szwed J. Scale free fluctuations in behavioral performance: delineating changes in spontaneous behavior of humans with induced sleep deficiency PLoS One 9 e107542 (2014)
- Chialvo D.R., Gonzalez-Torrado A.M., Gudowska-Nowak E., Ochab J.K., Nowak M.A., Tagliazucchi E. How we move is universal: scaling in the average shape of human activity arXiv:1506.06717v1

Summary

- Higher values of derived exponents for sleep-deprived subjects signal less heavy tails of waiting time PDFs in an immobile state than in an analogous distribution in the control group and can be associated with restlessness/inquietude and increased variability (burstiness) of activity in recorded time series.
- Such alteration of locomotor behavior can be a representative sign of disorders related to sleep-deficiency and possibly, a valuable diagnostic fingerprint discriminating between healthy and depressed/disordered individuals.
- What is the underlying mechanism generating "criticality"? Correlations between "brain criticality" and perceptual and behavioral processes?

Work in progress

Interrelation between measures of scaling laws in actigraphy and EEG recordings

