
.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Chronotaxic dynamics: when the characteristic
frequencies fluctuate and the system is stable
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Outline

...1 Unsolved problems

...2 Non-autonomous dynamics: Chronotaxic systems

...3 Reconstructing dynamics from time-series
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Unsolved problems

Complex, fluctuating dynamics abounds in nature.

Theoretical, or model-driven approach: Diffusion and flow in space and time; Energy and
information.

Data-driven approach: many insufficiently considered issues: non-stationarity, interactions
and couplings, time-variability, finite vs infinite time, non-autonomically, complexity.

So, how to bridge the model-driven and the data-driven approaches?
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Is this noise?
The wavelet transform may reveal clear evidence of determinism in signals which initially appear
to be noisy.

Data shown is sin(αx) from

α̇p = ωp

α̇x = ωx − ε sin(αx − αp) + η(t),

where ε = 15, noise strength =
2 and ωp varies according to

ω̇var (t) = Acos(2πfmt) + η(t)

ωp(t) = 2πfp + ωvar ,

where fm is the modulation
frequency (0.005 Hz), fp is the
average frequency (1 Hz),
A=0.1 and noise strength = 0.2.
Integration step = 0.01
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Outline

...1 Unsolved problems

...2 Non-autonomous dynamics: Chronotaxic systems

...3 Reconstructing dynamics from time-series
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Non-autonomous systems

Non-autonomous systems explicitly depend on time: the rhs of the corresponding differential
equations depend on time.

ẋ1 = f1(x1, ..., xn, t)

...

ẋn = fn(x1, ..., xn, t)

Conventional method to consider such systems – to introduce a new variable xn+1 = t, thus

ẋ1 = f1(x1, ..., xn, xn+1)

...

ẋn = fn(x1, ..., xn, xn+1)

ẋn+1 = 1

But often such an approach is not useful, and non-autonomous systems should be considered as
non-autonomous.
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Conventional autonomous models of oscillatory systems

The conventional theories are based on limit cycle oscillators, e.g. in polar coordinates (r , α)

ṙ = −εr (r − r0) ,
α̇ = ω.

They are described by a phase α with zero characteristic Lyapunov exponent.
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Limit cycle oscillators

Conventional limit cycle oscillators

A phase shift does not decay and does not grow, it stays the same

A phase can be easily perturbed by any external perturbation

A frequency can be changed by smallest continuous perturbation

Conventional: α̇ = ω + ξ New: α̇ = F (α, t) + ξ
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Main characteristics of chronotaxic systems
.

......

We therefore define a new class of non-autonomous oscillators:
chronotaxic systems (from chronos – time and taxis – order).

Suprunenko, Clemson and Stefanovska, PRL (2013); PRE (2014)

Their definition is based on
following concepts –

1) Non-autonomous
systems

2) Time-dependent
point attractor (driven
steady state)
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Chronotaxic systems: Defining concepts
Time-dependent point attractor (driven steady state) xA(t) in ẋ = g(x, t).

xA(t) satisfies mathematical conditions of pullback attraction (1), forward attraction (2) and
invariance (3):

limt0→−∞x(t, t0, x0) = xA(t)

limt→∞x(t, t0, x0) = xA(t)

x(t, t0, x
A(t0)) = xA(t)

Kloeden and Rasmussen, Nonautonomous Dynamical Systems (2011)

Attraction at all times: deviations only decay, δxA(t) = x(t)− xA(t),

d

dt
|δxA|2 = 2δxA T J(xA, t)δxA < 0 and J(x, t) =

1

2

(
∂g/∂x+ ∂g/∂xT

)
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Chronotaxic system in brief

A chronotaxic system is a non-autonomous oscillatory dynamical system x generated by an
autonomous system of unidirectionally coupled equations

ṗ = f(p), ẋ = g(x, p), (1)

where p ∈ Rn, x ∈ Rm, f :Rn → Rn, g :Rm × Rn → Rm; n and m can be any positive integers.

The system (1) is also called a drive and response system (Kocarev, 1996), or a master-slave
configuration (Haken, 2004).

The solution x(t, t0, x0) of Eqs. (1), depends on the actual time t as well as on the initial
conditions (t0, x0); whereas the solution p(t − t0, p0) depends only on initial condition p0 and on
the time of evolution t − t0.

The subsystem x is nonautonomous in the sense that it can be described by an equation which
depends on time explicitly, e.g. ẋ = g(x, p(t)).
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Chronotaxic properties from data

A chronotaxic system is described by x which is assumed to be observable, and p which may be
inaccessible for observation, as often occurs when studying real systems.

Rather than assuming or approximating the dynamics of p; we focus on the dynamics of x and
use only the following simple assumption:
the system p is such that it creates a time-dependent steady state in the dynamics of x.

Hence, the whole external environment with respect to x is divided into two parts

The part p which makes the system x chronotaxic.

The second part contains the rest of the environment and is therefore considered as
external perturbations.

The theory for the case where amplitudes and phases are separable have been introduced by Suprunenko, Clemson, Stefanovska,
PRL (2013), PRE (2013).
Subsequently expanded to include the generalized case of chronotaxic systems where such decoupling is not required Suprunenko
and Stefanovska, PRE (2014).
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Benefits?

When perturbations do not destroy the chronotaxic properties of a system, the
stable deterministic component of its dynamics can be identified (Clemson,
Suprunenko, Stankovski, Stefanovska, PRE (2013), Lancaster, Suprunenko,
Clemson, Stefanovska, Entropy (2015)).

This reduces the complexity of the system, enabling us to filter out the stochastic
component and focus on the deterministic dynamics and the interactions between
system x and its driver p.

For complex and open systems it has the potential to extract dynamical properties
of the system which were previously neglected, or considered as noise.

The theory of chronotaxic systems could facilitate more realistic insight into the
underlying dynamics of systems whose time-evolution is recorded.
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An example of chronotaxic phase oscillator system

{
α̇p = ω0(t)
α̇x = εω0(t) sin(αx − αp) + ξ(t)

ε is the coupling strength from the external variable p to the observed variable x.

The function ξ(t) is white Gaussian noise with standard deviation η =
√
2E , where ⟨ξ(t)⟩ = 0,

⟨ξ(t)ξ(τ)⟩ = δ(t − τ)E .

The frequency of αp is given as

ω0(t) = ω1 [1 + A sin(ω2t)] .
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Three chronotaxic modes

mode 1: [ω1 = 2π, ω2 = 0.016π, A = 1]
mode 2: [ω1 = 0.3π, ω2 = 0.005π, A = 0.15]
mode 3: [ω1 = 0.05π, ω2 = 0.001π, A = 0.025]
In each case |ε| = 1.5.

Example time series x(t)

x(t) = cos(αx,1t) + cos(αx,2t) + cos(αx,3t) + η1(t), (2)

where αx,i are the phases of each of the modes and η1(t) is a 1/f noise signal.

A second time series p(t), containing the external modes which drive the x, is

p(t) = cos(αp,1t) + cos(αp,2t) + cos(αp,3t) + η2(t),

where αp,i are the phases of the modes driving the system and η2(t) is a separate 1/f noise
signal.
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Outline

...1 Unsolved problems

...2 Non-autonomous dynamics: Chronotaxic systems

...3 Reconstructing dynamics from time-series
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Challenges in time-series analysis
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Phase and amplitude

and interactions
extraction

Dynamics

Challenges

This and the subsequent figures (slides 18–25) are taken

from the manuscript “Reconstructing Time-Dependent

Dynamics”, P. Clemson, G. Lancaster and A.

Stefanovska, which has been accepted for publication in

the Proceedings of the IEEE on 2 October, and will be

published in early 2016.

An illustration showing the challenges related to
each level of analysis and the corresponding
methods used to tackle them.

Time-frequency analysis

Identification and extraction of the phase
and amplitude of individual oscillatory
components using decomposition
methods

Characterisation of the dynamics of the
modes and detection how they interact
with each other

Given this information the properties of
an explicit physical model of the
dynamics provide an interpretation of the
system that generated the signal.
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Optimalisation of the uncertainty principle in
time-frequency analysis

STFT and continuous Morlet wavelet transforms of the time series defined by Eq. (2).
(a) and (b) STFTs for a 25 s and 250 s window respectively.
(c) and (d) Continuous Morlet wavelet transforms with the central frequencies f0 = 1 and f0 = 5 respectively.
White spaces indicate the limit of the cone of influence where the transform is not defined.
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Extraction of a few meaningful modes vs ”complete”
decomposition of meaningless modes

Decomposition of the time series defined in Eq. (2)
(a) The signal reconstructed from the first 19 IMFs from EMD is shown by the red line
(b) Reconstruction from NMD is shown by the red line
In both plots the black line corresponds to the original signal
(c) and (d) The amplitude of the modes transformed to the time-frequency domain using the Hilbert transform1 for
EMD and NMD respectively.

1The Hilbert transform generates the analytic signal of a sinusoidal oscillation, which can then be used to calculate its
instantaneous frequency. This offers a direct comparison with the results of time-frequency analysis.

20 / 28



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Tracking couplings between oscillations in time

Wavelet bispectrum analysis for the time series x(t) and p(t).

(a) The bicoherence for the various combinations of the cross-bispectrum. Without the time axis it is difficult to
distinguish the amplitude due to noise fluctuations from the amplitude contributions of genuine couplings.

(b) and (c) The bispectral amplitude and phase for the coupled frequency pair (1 Hz, 1 Hz) and unrelated frequency
pair (0.6 Hz, 1.4 Hz). While the amplitude is higher for the coupled pair, the coupling is also indicated by the fact that
the phase does not grow over time.
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Detecting common time-varying components in different
time series

Wavelet phase coherence between the time series x(t) and p(t).
(a) Significant phase coherence is when the coherence (black line) is greater than the 95th
percentile of 100 pairs of IAAFT surrogates (grey line).
(b) Windowed phase coherence. It reveals the time-variability of the modes but at the
cost of losing information about lower frequencies.
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Inferring the coupling functions from the time series of
two interacting systems

Dynamical Bayesian inference
analysis of the phases extracted
using NMD from the time series
x(t) and p(t).

(a), (b) and (c) The coupling
functions for the pairs of phases
extracted from each mode.

(d), (f) and (h) The inferred
value of ω0(t) (solid black line)
and the actual value (dotted
line).

(e), (g) and (i) The direction of
coupling calculated by taking the
ratio of the amplitudes for the
terms dependent on the other
phase for each coupling function.
D > 0 for a coupling in the
direction x → p and D < 0 for a
coupling in the direction p → x .

The model parameters were
inferred using a 20 s moving
window with 50% overlap for
mode 1, a 150 s window with
75% overlap for mode 2 and a
500 s window with 90% overlap
for mode 3.

In each case the propagation
constant had the value p = 0.2
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Measuring the strength of chronotaxicity from the fractal
nature of the observed perturbations

Identifying
chronotaxicity in the
data provides
information about the
underlying dynamics.

Chronotaxicity can be
identified by examining
phase fluctuations of
the oscillatory mode.

In a non-chronotaxic
system, these
fluctuations will
resemble a random
walk, whilst in a
chronotaxic system
they will appear closer
to white noise.
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Bispectral and dynamical Bayesian inference of EEG
The signal was measured for
20 minutes from the forehead
of a subject in anæsthesia.

Phases for the δ (0.8-4 Hz), θ
(4-7.5 Hz), α (7.5-14 Hz), β
(14-22 Hz) and γ (22-100 Hz)
waves, extracted using NMD.

(a) Bicoherence of the raw
EEG signal.

(b) and (c) Instantaneous
bicoherence and phase of the
bispectrum respectively for
the pairs of brain waves.

(d) Coupling functions for the
different pairs of extracted
phases are shown (couplings
between adjacent bands are
not shown due to frequency
spillage from imperfect
filtering).

(e) The magnitude of the
coupling functions for each
point in time, providing an
indication of the direction of
coupling between the phases.

The model parameters were
inferred using a 20 s moving
window with no overlap and
with the propagation constant
p = 0.2.
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More unsolved problems

How to detect chronotaxicity in systems where the amplitude and phase are not separable,
as e.g. is the case of brain dynamics? This will allow for studiyng amplitude-amplitude
and amplitude-phase interactions, in addition to the phase-phase dynamics.

How to include the spatial dynamics in addition to the current theory of temporal
dynamics? This will further widen the applicability, e.g. to cellular dynamics,
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