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The role of the coupling in the energy
transfer between two stochastic systems
coupled to different thermal baths

e Two electric circuits

* Two Brownian particles
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On the heat flux between two
reservoirs at different temperture

A) In the stationary case for the heat flux between
two reservoirs at different temperatures

heat flux
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Power spectral density

THERMAL AGITATION OF ELECTRIC CHARGE of the electric noise
IN CONDUCTORS*

By H. Nyquist

ABSTRACT

The electromotive force due to thermal agitation in conductors is calculated by means = 2 —_ 4k R T

of principles in thermodynamics and statistical mechanics. The results obtained ’/r} | - B

agree with results obtained experimentally.

R. J. B. JOHNSON! has reported the discovery and measurement of an

electromotive force in conductors which is related in a simple manner
to the temperature of the conductor and which is attributed by him to the
thermal agitation of the carriers of electricity in the conductors. The work
to be resported in the present paper was undertaken after Johnson's results
were available to the writer and consists of a theoretical deduction of the
electromotive force in question from thermodynamics and statistical me-
chanics.?

Consider two conductors each of resistance R and of the same uniform
temperature 7" connected in the manner indicated
in Fig. 1. The electromotive force due to thermal
agitation in conductor I causes a current to be set

R p Uup in the circuit whose value is obtained by dividing
1 I the electromotive force by 2R. This current causes .
a heating or absorption of power in conductor 11, In 1928 well before Fluctuation
the absorbed power being equal to the product of R .. . .
Fig. 1. and the square of the current. In other words power DISSIPatlon Theorem (FDT)’ this
is transferred from conductor I to conductor 1I. In was the second example, after the
precisely the same manner it can be deduced that power is transferred from . . . .
conductor I to conductor I. Now since the two conductors are at the same EInSteIn relatlon fOI" Brownlan

temperature it follows directly from the second law of thermodynamics motion relating the dissipation of
that the power flowing in one direction is exactly equal to that flowing in ’

the other direction. It will be noted that no assumption has been made as a system to the amplitude Of the
thermal noise.




FIS DELYON What are the consequences of removing
the Nyquist equilibrium conditions ?

What are the statistical properties
of the energy exchanged between
the two conductors kept at different temperature ?

We analyse these questions in an electric circuit
within the framework of FT.

(@)




ENSDEDEN What are the consequences of removing

the Nyquist equilibrium conditions ?

What are the statistical properties
of the energy exchanged between
the two conductors kept at different temperature ?

We analyse these questions
1n an electric circuit
within the framework of FT.

i R

V1 lC % V2 What 1s the role of correlation
between Viand V2 ?

How the variance of Vi and V>
are modified because of the
heat flux ?




—i Electric Circuit
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x R

V1 V2

T1 is changed with a nitrogen vapor
circulation

T,=296K is kept fixed

C is the coupling capacitance = 100pF and 1000pF
C1 and C2 are the cable and amplifier capacitances ~ 500pF’
Ri1= Ro= 10MQ

T, ~ 0.01s




— N — Electric Circuit and
the mechanical equivalent
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C is the coupling capacitance = 100pF and 1000pF
C1 and C2 are the cable and amplifier capacitances ~ 500pF’
Ri1= Ro= 10MQ

T, ~ 0.01s
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—  — Electric Circuit and

ENS DE LYON the dissipated cnergy

(@) - .. :
{— n @ 1y, current flowing in the resistance m
V1 V2
© : o .
1C,,, current flowing in the capacitance Cn
e | Ny 2 S c2
() 2 ic  current flowing in the capacitance C
| I
Qm = Vi im Power dissipated in the resistance m=1,2
. . . . L C de ’L L Cd(‘/é T Vl)
Im = tc —1C,, lC,, — m—dt C = dt

Qm, — V;wzi-rrz, — % (V;n — nm) — ‘/m (Cm + C) Vm — C“/m’]

m

m' =2ifm=1,andm’ =1ifm = 2




] — Electric Circuit and

ENS DE LYON the dlSSlp ated cnergy

Power dissipated in the resistance m=1,2

<« . " |

- =C| - Qm — mzm — Vm[(Cm + C)Vm — CVm’]

Ct T T2 c2 m' =2ifm=1,andm' =1ifm = 2

....... i Integrating on a time 7~

Qm,T — Wm,T — AU’H’L,T

Qm.» = / o i Vo dt heat flowed in the time 7
| t from reservoir m’ to reservoir m
T AV .
W, . = / cv, 2™ q¢ work performed by the circuit m
| t dt on m’ in the time 7
AU, » = (Cm +C) (Vo (4 7)2 — Vo (£)) Potential energy change of

2 the circuit m in the time 7.




o Statistic of the work and heat

T =T,=296K

7 =0.5s

P(Xm,'r) — A/BX’ITL,T
P(_Xm,T) kB>

FT for W, et Q. S(Xm,r) =log
for 7 — o0

with AB — (TQ/Tl — 1)




== svor  On the heat flux and entropy produced
by thermal fluctuations
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The heat flux as a function of T2-T
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ENS DE LYON How the equilbrium variance of
V1 and V:is modified

b)
107
2 107
o5, 18 =
. o 7
the variance of V,, 107 =
1/ |—V2
e prediction
O RE A N prediction ,
——equilibrium 3
; —equilibrium -
1035 5 0 5 o
) ) V[0 V]

0 (T Tont) = 0y oo (Tin)+ < Qm > R,  which is an extension
to two temperatures

2 (T )= kpT, 'V X of the Harada-Sasa
Um’eq( ) = kpTn(C+C)/ relation




— = — On the entropy produced
ENS DE LYON .
by thermal fluctuations

AS, . =Q1,+/T1 + Qo /T related to the heat exchanged

with the reservoirs

Following Seifert, (PRL 95, 040602, 2005)
who developed this concept for a single heat bath,
we introduce a trajectory entropy for the evolving system

Ss(t) = —kplog P(Vi(t), Va(t))

and the entropy production on the time t

PWVi(t+71),Va(t+ 7))
P(Vi(t), V(1))

ASs; - = —kplog

The total entropy is :

AStOt,T — AST,T ‘|‘ ASS,T
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Statistical properties of
the total entropy

ASiot.r = ASy - + AS; ;

—T,=88K

---T,=88K

@ | 11 (b -
it § #3434 § 4

0.0l <exp(-AS, /K,)>

fot B
50 100 150 -|-1 200 250 300

independently of AT and of T,
the following equality always holds

<exp(—AStOt/kB)> =N\




™ et Statistical properties of
the total entropy
11} (b)

(exp(—ASyoe/kp))y=1 1 1 #4433 4§ 4

0ol <exp(-AS, /K,) >

tot B
50 100 150 -|-1 200 250 300

implies that P(AS;¢)
satisfies a F'T

~T@
ol oter) g Dot T
P(—AStot) kB \E; : T:=256K 1=0.55
vr, AT N P e
0 i ' 3 4

2
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On the heat flux and entropy produced
by thermal fluctuations

1.1} (b)
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<exp (- A étot/'kB) >_‘
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—_— Summary of the experimental and theoretical results
ENS DE LYON “>On the heat flux and entropy produced

by thermal fluctuations”

® The mean heat flux < Q > (T, — T)

® The pdf of W,/ < W,, > satisfies an asymptotic FT whose
prefactor is the entropy production rate < W,,, > (1/Ty, — 1/T)/).

e The out of equilibrium variance :
02 (T, Tynr) = U%,eq(Tm)—F < Qm > Rn
(Extension of Harada-Sasa relation)

® The total entropy AS;.; satisfies a conservation law which
implies the second law and imposes the existence of a F'T
which is not asymptotic in time.

e AS,, is rigorously zero in equilibrium,
both in average and fluctuations

® The electrical-mechanical analogy makes these results
very general and useful
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(mi(t)n; (t')) = 20i;kpTiR;6(t — t')

—  — On the heat flux and entropy produced
by thermal fluctuations

Theory
= gm is the charge flowed
<_V1 | Vﬂé in the resistance R,,
M
< | SR o 2| e q1 = (Vl - VQ)C+V1 Cy
b ”Iz q2 = (Vl — VQ) C — VQ CQ
Cs C
Rign = —qg3 — _ —
141 G T (g2 q1)X + 11
C C
Rogo = —qo — _ —
2G> a2~ T (@1 QQ)X + 12




— N — Electric Circuit and
the mechanical equivalent

(@) (b)
x e

VA1 V2

/ KA1 K K2
ol R g e Ry amllays @@%
n1 n2
"""" — !
gm the displacement
Cy C of the particle m
Rigg = —g1 — + — —
141 G~ (@ —a)x +m
C4 C im 1ts velocity
Rogo = —qo — + o) —
2G> 42— (@1 —a2) 5+

K., = 1/C,, the stiffness
of the spring m

. () = 26::kpTiR;6(t — ¢
(i (t)n; (¢)) 0ijkpTiR;jo(t — 1) K = 1/C the stiffness
of the coupling spring

X = 0201+C(01 —I—CQ)

R,,, the viscosity.
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On the heat flux bewteen two particles at two
different temperature

A. Bérut, A. Petrosyan and S. Ciliberto,

Laboratoire de Physique, C.N.R.S. UMR5672,
Ecole Normale Supérieure, France

Energy flow between two hydrodynamically coupled particles kept at different effective temperatures
A. Bérut, A. Petrosyan and S. Ciliberto, EPL, 107 (2014) 60004
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Two Brownian particles trapped by two laser beams.
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Two Brownian particles trapped by two laser beams.

Difficulty of having an harmonic coupling between the particles.
The main source of coupling is hydodynamic (viscous)
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A1 T2

Two Brownian particles trapped by two laser beams.

Difficulty of having an harmonic coupling between the particles.
The main source of coupling is hydodynamic (viscous)

Difficulty of having two close Brownian particles at two
different temperatures

The temperature gradient is done by forcing the motion of
one particle with an external random force




ENS DE LYON

Experimental results

Spectra of excited particle

[R—
I

[e—

N

10 F L room GO0 K)

— 470K SESHESEEREEEER L L Y N

— 790 K .......
—1330K b %
2100K S HERHE R\, |

-------------------------------

Power spectrum (m%*Hz)

[R—
OI

(S

0
III T T T LI

— — —Lorentzian fit [

R S A S T
0 1
10 10

Frequency (Hz)




ENS DE LYON

Variances and cross
variances as a function
of the random driving

voltage (force) at

d = 3.2 um
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Variances and cross
variances as a function
of the distance betwen

the beads for a fixed

driving of 1.5V
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asoevon — From a suitable hydrodynamic model
one can compute the variances

2 _ o\ _ kB(TH+AT) ks e2kpAT
o1 = (#181) = "7 By Fi+ks
2 <T T > . EkBAT

712 =\ T R 4k,

2 S e _ kT EszAT

922 = (T222) = k2 | k1+k2

where :
e is the coupling coefficient of the particle.
It has to depend on the distance but not
on the random driving amplitude

AT is the temperature difference induced by the random driving.

k1 and ko are the stiffness of the optical traps.




asoevon — From a suitable hydrodynamic model
one can compute the variances

2 _ /. .\ _ k(TH+AT) ko €e2kp AT
011 T <llll> o k Al k1+k2
2 <T T > . GkBAT
12 = \W182) = T,
2 S e _ kpT EszAT
039 = <‘l'2‘l'2> ko | k1+k2
where : e, T and AT are the unknown

e is the coupling coefficient of the particle.
It has to depend on the distance but not
on the random driving amplitude

AT is the temperature difference induced by the random driving.

k1 and ko are the stiffness of the optical traps.
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2 _ fo o\ _ kB(THAT) kg kAT
oy = (r1) = " S - R
2 _ < - >_ ekBAT
0—12 —_— l‘ll.2 —_— k1+k2
2 .\ _ kpT 2k AT
O22 = (z2x2) = k2 T k1+k2

Values of the parameters from the

e, I' and AT are the unknown
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=== ==== Values of the parameters from the
N | I .
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iT 1
i?Q

Fi:

P The standard hydrodynamic model

H =

— N Fy . .
=X\ g two coupled Langevin equations

coupling Rotne-Prager diffusion tensor

/v €/ _ 3R R\3
(6/7" 1/'7') ¢= 3~ (a)
and forces in equilibrium
D A . (fi(t)) =0
ki X i + fi (fi(t)f;(t')) = 2kpT (H™")i; 0(t — t')




P The standard hydrodynamic model

,-‘. F
( T ) =H X ( F; > two coupled Langevin equations

i?Q

coupling Rotne-Prager diffusion tensor

_(1/y €[y _ 3R R\3
"= (e/vf 1/’7’) ©T (d)
and forces in equilibrium
N (i(t)) = 0

Out of Equilbrium : forcing on bead 1 f* = kyxo(t)
f* is a delta correlated noise
Bead 1 has an effective temperature T* =T + AT
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The standard hydrodynamic model

It follows that the system of equations is:

{ ’)“i‘?l o —kll‘l + 6(—]{?21’2 + fg) + f1 + f*
Yo = —kowy + €(—kiz1 + f1 + ) + fo
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ENS DE LYON e correlation functions
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The standard hydrodynamic model

It follows that the system of equations is:

{ V&1 = —k1z1 +€(—kozo + fo) + fi + 7
YZ2 = —kozo + e(—kiz1 + f1 + f7) + fo

comparison with the electric case

Ch C

R = —qg — _ -
1G1 N~ + (q2 Q1)X +m

. C C
Rogo = —qo yl + (q1 — QQ)X + 12
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The standard hydrodynamic model

It follows that the system of equations is:

{ yx1 = —k121 + €(—kozo + fo) + f1 + [
Yo = —koxo + €(—k1z1 + f1 + f7) + fo

heat exchanged by the beadiin the time T

-~

N & = 2(fit+efot f)
Qi(T) = vz — &) Ti dt
2i(T) A (72 /81 Ti §2 = %(f2+€f1+€f*)

ii — — fOT r;x; dt

Qi(T) iqii j4ij Gij = —fOT r;x; dt




—: = The heat flux
(7)) = k:gis + ekesqe Qii = —
Q'z(T) = RiQii T €R;q;; _
qij = —
x10 "
potential energy  3f
< gy >=10 ——{q,,

S
W

——{q,,)
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— The heat flux
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x 107"

(O8]
—

——{a,,) < Q’i,j >= ekj < Qi >

22

e}
n

——{q,,)

o
T

As for the electric case
one obtains that

Normalized heat (ym?)
"

2 2 ,
i = 04 equilibrium X< QZ >

1
T

0 500 1000 1500 2000
AT (K)

but < Q2,1 >= —Z—; < Q172 > and

< Q21>+ <Q12>#£0




ENS DE LYON

The Fluctuation Theorem and
the effective Temperature
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—  — Dependence of A3 on AT
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F'T is satisfied both for (Y21 and ()1 2 but with different AfS




aeoevon— Conclusions on particle interactions

 The differrence between out-equilibrium and
equilibrium variance is proportional to the heat flux

* A hydrodynamic models precisely described the
experimental data

e The FT seems to correctly estimate the effective
temperature within experimental errors.

J The definition of heat is doubtful !




