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The famous Laws

Equilibrium Principle -- minus first Law

An isolated, macroscopic system which is placed in an arbitrary
initial state within a finite fixed volume will attain a unique
state of equilibrium.

Second Law (Clausius)

For a non-quasi-static process occurring in a thermally isolated
system, the entropy change between two equilibrium states is
non-negative.

Second Law (Kelvin)
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SECOND LAW

Quote by Sir Arthur Stanley Eddington:

“If someone points out to you that your pet theory of the universe is in disagreement
with Maxwell’s equations — then so much the worse for Maxwell’'s equations. If it is
found to be contradicted by observation — well, these experimentalists do bungle
things sometimes. But if your theory is found to be against the second law of
thermodynamics | can give you no hope; there is nothing for it but to collapse in
deepest humiliation.”

Freely translated into German:




MINUS FIRST LAW vs. SECOND LAW

-1st Law

R 2nd Law




Thermodynamic Temperature

0Q"" =TdS + thermodynamic entropy

S = S(E,V,Ny, Ny, ... M,P,..)

S(FE,...): (continuous) & differentiable and

monotonic function of the internal energy E
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microcanonical ensemble



Entropy in Stat. Mech.

S = ]{7]3 In Q(E, V, )

QM: Q¢ (E,V,.. 21

0<E,<E
classical
1

Gibbs: g = (N! hDOF> /dF@ (E — H(q,p;V, ))

0 Qg
OF

X /dF5 (E — H(q,p;V, ))

density of states

Boltzmann: (g = ¢
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Entropy in Stat. Mech.

S = kB In Q(E, V, )
~ flLDOF> /dF@ (E—H(q,p;V,...))

0 Qg
OF

Gibbs: Q¢ = (

Boltzmann: {2y = ¢

X /dF5 (E — H(q, p; V,...))

density of states



Ui
Microcanonical thermostatistics

P H(Z)=E

q
W
D-Operator DoS
S(E— H w(B, Z) = Ta[§(E — H)] > 0
rem z) = e
)= IntDoS
Thermodynamic Entropy ?
Se(F) = In (e w) Sa(F) =1n{)

VS.
Boltzmann (?) Gibbs (1902), Hertz (1910)




Boltzmann  vs. Gibbs 2

v(E,Z) = 0w/OE,
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Density of states of the pendulum in reduced units (complete elliptic integrals of the first kind).
Fig. 1 in reference: M. Baeten and J. Naudts, Entropy, 13, 1186-1199 (2011).
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Negative Absolute Temperature for
Motional Degrees of Freedom

S. Braun,™? J. P. Ronzheimer,™? M. Schreiber,* S. S. Hodgman,™? T. Rom,"?

I. Bloch,>? U. Schneider®?*

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure 1s required to account for the accelerating
expansion of the universe (/0).

v’ Carnot efficiencies > |

v’ Dark Energy
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‘Non-uniqueness’ of temperature

Temperature does NOT determine direction heat flow.
Energy is primary control parameter of MCE.



Second Law
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n:=-
Second law s

Gibbs Sc(E) =nQ

Q(Ea + E3)

/
Ex+Es E'
— / dE’/ dE"wa(E"\ws(Eaq+ Eg — E')
0 0

Es+Esg E 4
dE,/ dE”wA (E”)wg (EA + By — E’)
0

A Eg
— dE//w_A (E//) / dE//,CUB (E///)
0 0

= Qa(Eq) Qs(E3).

—>  Scas(Ea+Es) > Sau(Ea) + Sas(Es)
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Second Law

Hﬂ - Eﬂ HB - EB
before
coupling

SAEL)  SyEy)

HﬂB:Hﬂ_I_HB:Eﬂ _I_EB:E?(

.

S e Eong) = SA(E) + Sy(E,)

B

after
coupling




n:=-
Second law s

Boltzmann Sp(E) = In (ew)
Ea+E3
ew(EA —|—EB) = 6/ dE’wA(E’)wB (EA + Egp —E’)
0

Z cwalEa)ws(Es)

X



Erunt multi qui, postquam mea scripta legerint, non ad
contemplandum utrum vera sint quae dixerim, mentem
convertent, sed solum ad disquirendum quomodo, vel
iure vel iniuria, rationes meas labefactare possent.

G. Galilei, Opere (Ed. Naz., vol. |, p. 412)

There will be many who, when they will have read my
paper, will apply their mind, not to examining whether
what | have said is true, but only to seeking how, by
hook or by crook, they could demolish my arguments.



| T
First law

dEE = o0Q) + 0A = TdS—andZn

pi=T (8_‘9) ! <8_H>
! 0Z; E,Z,#7Z, 0Z; E

Gibbs & m— Boltzmann x

see also Campisi, Physica A 2007
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Entropy S(F) second law | first law | zeroth law |equip artition
Eq. (38) |Eq. (37)| Eq. (20) | equipartition
Gibbs In €2 yes yes yes yes
Penrose In Q2 + ln(Qoo — Q) — In Qs yes yes no no
Complementary Gibbs [In|2, — Q] yes yes no no
Differential Boltzmann |In|Q(E + €) — Q(E)] yes no no no
Boltzmann In ew) no no no no

Hilbert, Hanggi & Dunkel, in preparation, 2014
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Example |: Classical ideal gas

(27rm ) 4N/

~ NWIT(dN/2 + 1)

Q(E,V) = aEN2yN Q

Se(E,V,A) = kgIn[ew(FE)] Sa(E,V,A) = kgIn[Q(F)]

VS.

dN dN
E — <7 - 1) kBTB E — TkBTG




Example |: Classical ideal gas

(27rm ) 4N/

~ NWIT(dN/2 + 1)

Q(E,V) = aEN2yN Q

Sa(E,V,A) =kgIn|Q(F)]

VS.

dN
E — TkBTG




canonical ensemble



o(E) = Tr[8(E — H))
= Try {Trz [8(E — Hy — Hp)l}
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canonical ensemble J
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10 PRINCIPLES OF STATISTICAL MECHANICS [Ch.1,§6

gives an approximation to the number of states below E for a system con-
sisting of N identical particles. The indistinguishability of identical particles
introduces the denominator N! in the above expression because the N!
classical states t arising from a given phase point py, x;, ... py, Xy must be
identified with each other by this principle (see the Note to Chapter 2,
problem 33 for a more rigorous discussion).

Note: The denominator N! was very difficult to understand before the
principle of the indistinguishability of identical particles was introduced into
quantum mechanics. In spite of this, the necessity for this denominator term
had long been recognized in order to make the entropy defined by (1.18) an
extensive quantity as it should be.

O =

§ 1.6. NORMAL SYSTEMS IN STATISTICAL THERMODYNAMICS ‘

Asymptotic forms of the number of states and state density of a macroscopic
system: A system consisting of a great number of particles, or of a system
with an indefinite number of particles but with a volume of macroscopic
extension usually has a number of states Q,(E) which shows the following
properties (in which case the system will be called normal in the statistical-
thermodynamic sense): T ——
“(I) When the number N of particles (or the volume V) is large, the number
of states Q,(E) approaches asymptotically to

:—:) Qo ~ exp {Nd) (g)} or exp {VW <5>} : (1.24a)

18 1 E N
Qo ~exp{N¢><N N)} or exp{Vn/z(i},V)}. (1.24b)

If E/N (or E/V)is looked upon as a quantity of the order of O(1) 1, ¢ is also
O(1) (the same holds for /), and

6>0, ¢'>0, ¢"<0. (1.25)

(2) Therefore
Q =dQy/dE = ¢'exp(N¢p) >0,

dQ ¢//
2 12 N$ <
= 1.26
iE <¢ N> ~ ¢ (1.26)
; When som; of (p1, x1), (p2, x2) ... (pn, xn) coincide with each other, the number of

classical states produced by the permutation of particle states is less than N!. But the
chance for such coincidence is negligible in the limit of & — 0.
1t One writes y = O(x) and z = o(x) if lim y/x = finite # 0 and lim z/x = 0.

r— ®© T—> 0

Ch.1,§ 7] NORMAL SYSTEMS IN STATISTICAL THERMODYNAMICS 1

When N (or V) is large, 2, or Q increases very rapidly with energy E. No
general proof of these properties will be attempted here. If a system existed
which did not have these properties, it would show a rather strange macro-
scopic behavior, very different from ordinary thermodynamic systems (see
example 4, Chapter 1).

Entropy of a normal system: For the statistical entropy defined by (1.18),
one finds the following from (1.24)-(1.26):

(1) S = klog{QE)SE} ~ klog Qu(E) = kN¢ . (1.27)
The error involved here is o(N) (or o(¥)), and so is negligible for a macro-
scopic system (for which N, V, or E is very large).

(2) The statistical temperature 7(E) is introduced by means of the defini-
tion,

s 1
ETT o2y
" T(E) = ; >0. (1.29)

By (1.24) and (1.25) it will be shown later that this temperature in fact agrees
with the thermodynamic temperature (see § 1.9).

The allowance of the energy and the definition of entropy: By (1.24)-(1.26),
the function €, (E) is positive and increases monotonically with E. Therefore
one has

Q(E)OE < Qy(E) < Q(E)E,
thus S = klogQ(E)SE < klogQy(E) < klogQ(E)E.

Also by (1.24) and (1.25) and using the fact that £ = O(N), one finds:
k{log Q(E)E — log Qu(E)} = klogE-¢' = O(log N) = o(N) (or o(V))
and
k {log QE)E — log Q(E)SE} = klog E/6E = o(N)t (or o (V)).
Therefore (1.27) is seen to be valid.

§ 1.7. CONTACT BETWEEN TWO SYSTEMS

There can be various kinds of interactions between two systems in contact.

1 If one supposes that log E/0E = O(N) = aN, then éE = E exp (—alN). According to
the uncertainty principle (1.16) the time of the observation ¢ is then t ~ h/6E = (h/E)exp aN.
If « = O(1), this ¢ is astronomically long for a macroscopic system. Therefore, for a ¢
of ordinary length, 6E cannot be so small and thus one must have log E/JE = o(N)
(namely « = o(1)).



Thermal Casimir
forces and
quantum
dissipation

Introduction

Quantum
dissipation

Thermal Casimir
effect
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Finite bath coupling lN k Angsburg
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The definition of thermodynamic quantities for systems
coupled to a bath with finite coupling strength is not unique.
P Hénggi, GLI, Acta Phys. Pol. B 37, 1537 (2006)



An important difference

Route IT ‘

Trs,p (Hse PH)

E= Ec = (H) =
5= ) = e P
Z_TrS+B(e‘ﬁH) _ 0lnZ
~ Trg(e PH) - 0p

= U=(H)-(Hp)s

-+ o+ [CFRY P |

For finite coupling E and U differ!

Quantum
Brownian
motion and
the 3" Jaw

Specific heat and
dissipation

Two approaches
Microscopic model

Route |

Route Il
specific heat
density of states

Conclusions



Strong coupling: Example

System: Two-level atom; “bath”: Harmonic oscillator

€ 1 1
H= 502 +Q (aTa+ 2) + X02 <aTa+ 2)

Michele 6*

Campisi H* = EO'Z —l— ’y

e % sinh(Bx)
1— e 0 cosh(ﬁx))

1 | 1 — 2e 72 cosh(By) + e~25%
2 ( (1—e 7y >

. 2
€ :e+x+ﬁartanh<

"y:

Zs =Tre " Fs=—kyTInZs
OF oS
Ss = _Ze Cs = T—S
oT oT
M. Campisi, P. Talkner, P. Hanggi, J. Phys. A: Math. Theor. 42 392002

(2009)
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Entropy and specific heat

Q/e=3
Michele
Campisi

Q/e=1/3




Important UNSOLVED (open) Problems are:

1.) Quantum systems and discrete spectral parts: DoS becomes singular
===> g sum of delta-functions !!!

?7?7? Il best smoothing procedure 7?77?11l
2.) Canonical ensemble: ?
3.) Canonical ensemble and STRONG coupling:
Quantum case: Canonical specific heat can now become negative (!)

despite system being stable
Classical case: ?
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Erunt multi qui, postquam mea scripta legerint, non ad
contemplandum utrum vera sint quae dixerim, mentem
convertent, sed solum ad disquirendum quomodo, vel
iure vel iniuria, rationes meas labefactare possent.

G. Galilei, Opere (Ed. Naz., vol. |, p. 412)

There will be many who, when they will have read my
paper, will apply their mind, not to examining whether
what | have said is true, but only to seeking how, by
hook or by crook, they could demolish my arguments.
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A QUESTION ?
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