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1 Motivation:
Many textbooks explain quantum phenomena by emphasizing their differences from classical ones. However, in reality, quan-
tum and classical mechanics are not so different. Indeed, it is not necessary to abandon all classical knowledge to properly
understand quantum concepts; rather, one can make a smooth transition between the two.

1.1 Classical and quantum mechanics predictions are different, but they do not need to use dif-
ferent languages

Landau and Lifshitz in the introduction of their famous book on quantum mechanics wrote
Thus quantum mechanics occupies a very unusual place among physical theories: it contains classical mechanics
as a limiting case, yet at the same time it requires this limiting case for its own formulation. [1]

It seems evident that a more fundamental physical theory, such as quantum mechanics, includes a less fundamental one,
like classical mechanics, as a particular case. In this sense, classical mechanics can be derived from the principles of quantum
mechanics in specific scenarios, particularly those involving phenomena related to decoherence.

What is less common, however, is that a more fundamental theory is constructed using the concepts and elements of the
less fundamental one as its foundational building blocks. For example, to predict the behavior of an electron inside a hydrogen
atom, quantum mechanics employs the classical expression for kinetic energy (momentum squared divided by twice the mass)
and the classical expression for potential energy (given by the Coulomb interaction between the electron and the proton). The
quantum Hamiltonian, which is the fundamental element for predicting the dynamics of quantum systems, is essentially derived
from these familiar classical concepts. The classical Hamiltonian becomes a quantum one when it undergoes a modification
known as canonical quantization, where the variables of the classical Hamiltonian are transformed into operators [1–4].

The similarities between classical and quantum systems are not only found in the Hamiltonians involved but also in the
elements used to describe these systems. Typically, trajectories are used to describe classical systems, while wave functions
are used for quantum systems. However, the classical Hamilton-Jacobi theory demonstrates that it is possible to describe an
ensemble of classical systems using a classical wave function [5]. Similarly, de Broglie and Bohm showed that it is possible
to describe a single quantum system using a quantum trajectory [5–7].

The main motivation of this project is to emphasize the similarities between classical and quantum systems (rather than
their differences) as a way to facilitate learning in the phenomena occurring when light interacts with matter. This idea of
showing a smooth transition between classical and quantum concepts is particularly well-suited for studying the interaction
between light and matter, not only because the quantum and classical Hamiltonian are the same, but also because, in many
cases, only one part of the system —either the matter or the light— is treated quantum mechanically, while the other is
approached classically. The phenomena that arise from the interaction of light and matter in classical, semiclassical, and
fully quantum systems are distinct, yet they share many underlying similarities. By recognizing these similarities (borrowing
concepts from one formalisms to the other), the understanding of the fundamental concepts and phenomena occurring when
light interacts with matter can be significantly enhanced.

1.2 Different learning goals, theory sections and simulated experiments
After discussing the main motivation for this project, we provide an overview of what the sections are about and the learning
goals. Apart from this section devoted to the motivation of this project, this document is divided into 4 additional section:

• The section Theoretical background in 2 develops the Hamiltonian dealing with light and matter that will be used
in all classical and quantum examples. In particular, we consider a non-relativistic electron, whose kinetic energy is
given by the momentum squared divided by twice the mass. The electromagnetic field is regarded as a single-mode
monochromatic polarized light.

• The section Types of theories/models in 3 develops the classical and quantum equations of motion derived from this
Hamiltonian. Particular attention is devoted to explaining the perturbative approximation, the absorption and stimulated
emission processes, and the Rabi oscillations in the semiclassical formalism. Such concepts are later revisited in the
full quantum formalism of ligth and matter.

• The section Simulated experiments in 4 provides a list of representative examples where the student can visualize
through animations the theoretical concepts mentioned in the previous section. To run the examples, the student needs
to install the software QCslim.exe.
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In addition, at the end of the document, there is a list of solutions to several proposed exercises that detail some theorethical
developments needed in the manuscript. The bibliography with referecne to books and articles is presented at the end of the
document. In the table below, a list of the specific items discussed in this document and the link to the theorethical discussion
and simulated experiments is presented.

Num Learning goal Section Simulated
experiment

Cla
ss.

Ma
tte

r
Cla

ss.
Lig

ht
Qu

an.
Ma

tte
r

Qu
an.

Lig
ht

1 A simple light-matter Hamiltonian Sec. 2
Energy of light in terms of canonical variables Sec. 2.2
The long wave-length approximation Sec. 2.3

2 Classical regime: Hamilton equations Sec. 3.1 simulation 4.1.1
Classical light-matter interaction Sec. 3.1 simulation 4.1.2
Classical statistical description Sec. 3.1 simulation 4.2.1

3 Semiclassical regime: electrons in an infinite well Sec. 3.2 simulation 4.3.1
Absorption and stimulated emission: exact, per-
turbative and rotating wave approximation Sec. 3.2.2 simulation 4.4.1
Semiclassical Rabi oscillations Sec. 3.2.2 simulation 4.5.1
Semiclassical statistical description Sec. 3.3 simulation 4.6.1

4 Photon: a quantum of energy Sec. 3.4 simulation 4.7.1
Probability distribution of electromagnetic fields Sec. 3.5 simulation 4.7.2

5 Quantum regime: strong light-matter interaction Sec. 3.6 simulation 4.8.1
Quantum Rabi oscillations Sec. 3.6.1 simulation 4.8.1
Spontaneous emission Sec. 3.6 simulation 4.9.1
Quantum statistical description and weak values Sec. 3.6 simulation 4.10.1

Table 1: List of main learning goals and subgoals in the present documents. The involved theory section, simulated experiment and the quantum or classcial
fromalism for light and matter are indicated.
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2 Theoretical background
In this section, we develop the final Hamiltonian that defines the physical system consisting of an electron interacting with an
electromagnetic field. In particular, we consider a non-relativistic electron, whose kinetic energy is given by the momentum
squared divided by twice the mass, and an electromagnetic field described by a single-mode monochromatic polarized light.
The final Hamiltonian will be the same for a classical or quantum phenomena discussed in this document.

2.1 General Hamiltonian
The electron has a mass 𝑚 and charge −𝑒. Its position is defined by r and its momentum by p. Along this document, vectors
are defined by bold letters. The electromagnetic field is define by the electric field:

E = −∇𝐴0 −
𝜕A
𝜕𝑡

(1)

and the magnetic field:
B = ∇ × A, (2)

where A and𝐴0 are the vector and scalar electromagnetic potentials, respectively. These electromagnetic potentials are gauge-
dependent in the sense that any set of potentials (indicated by the superscript 𝑔) given by

A𝑔 = A + ∇𝑔(r, 𝑡) and 𝐴𝑔0 = 𝐴0 −
𝜕𝑔(r, 𝑡)
𝜕𝑡

, (3)

keeps the overall observable properties identical in any gauge [2, 3]. Here, 𝑔(r, 𝑡) is any regular enough real function.
Exercise 2.1.1 — Guage invariance of the electromagnetic fields

Show that the electric and magnetic fields in Eq. (1) and Eq. (2) are not dependent on the selected gauge function
𝑔(r, 𝑡) in Eq. (3)
See the detailed solution of this exercise in 5.1 at page 45

The general classical or quantum Hamiltonian that describes the interaction of an electron (or another particle) of mass 𝑚𝑒with an electromagnetic field, in the so-called minimal coupling [2–4], is given by:

𝐻 =
(p − 𝑒A)2

2𝑚𝑒
+ 𝑒𝐴0 + 𝑉 (r) +𝐻𝑅, (4)

where 𝐻𝑅 is the energy of the electromagnetic field. The term 𝑉 (r) corresponds to an additional external potential energy
seen by the electron. 1

2.2 The energy of the electromagnetic field
The term 𝐻𝑅 in Eq. (4) is the energy of the electromagnetic field [3] defined as:

𝐻𝑅 =
𝜖0
2 ∫ 𝑑3𝑟

(

E2
𝑇 + 𝑐2B2) , (5)

where 𝜖0 is the dielectric constant (permittivity) and 𝜇0 the permeability of free space, givin 𝑐 = 1
√

𝜖0𝜇0
the speed of light.

In writing Eq. (5), the electromagnetic field in Eq. (1) is defined as the sum of a transversal (zero divergence) component E𝑇plus a longitudinal (zero rotational) field E𝐿, i.e., E = E𝐿 + E𝑇 . The magnetic field, by construction, has only a transversal
component. 2

1For example, 𝑉 (r) can be the barriers of an infinite well. Strictly speaking, such barriers reflect some type of interaction of the electron with other
particles, but we want to neglect such other particles to reduce the computational burden. Thus, the barriers are an external potential in the sense that the
electron r is affected by the barrier, but the barrier is not affected by the electron.

2The energy in Eq. (5) only depends on the transversal component of the electric field because the energy linked to the longitudinal component is given
(in the Coulomb gauge defined as the 𝑔(r, 𝑡) function that ensures ∇ ⋅A = 0) by the scalar potential, 𝐴0. We will see that for a single electron 𝐴0 = 0 because
one electron has no Coulomb interaction with itself.
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Exercise 2.2.1 — Longitudinal and transversal electromagnetic fields

Show that the electric field in Eq. (1) defined as E = E𝐿 + E𝑇 = −∇𝐴0 −
𝜕A
𝜕𝑡 can be written as E𝐿 = −∇𝐴0 and

E𝑇 = − 𝜕A
𝜕𝑡 when the Coulomb gauge (defined as ∇ ⋅ A = 0) is used.

See the detailed solution of this exercise in 5.2 at page 45

To further develop Eq. (5) is useful to decompose the electric and magnetic fields into their Fourier components. In general,
the transversal electric field can be written as a superposition of the spatial Fourier components as:

E𝑇 (r, 𝑡) =
∑

𝛾
e𝛾 𝐸̃𝛾 (𝑡)𝑒𝑖k𝛾r and 𝐸̃𝛾 (𝑡) =

1
𝑉 ∫ 𝑑3𝑟 e𝛾E𝑇 (r, 𝑡)𝑒−𝑖k𝛾r (6)

where 𝛾 labels the different components. The polarization vector e𝛾 is perpendicular to the direction of vector k𝑔𝑎𝑚𝑚𝑎. Iden-
tically,

B(r, 𝑡) =
∑

𝛾
e’𝛾 𝐵̃𝛾 (𝑡)𝑒𝑖k𝛾r and 𝐵̃𝛾 (𝑡) =

1
𝑉 ∫ 𝑑3𝑟 e’𝛾B(r, 𝑡)𝑒−𝑖k𝛾r (7)

with e’𝛾 =
k𝛾
|k𝛾 |

× e𝛾 . By construction, each Fourier component has a well defined wave vector k𝛾 that implies a well-defined
angular frequency 𝜔𝛾 with 𝑐 = 𝜔𝛾∕|k𝛾 |.

Exercise 2.2.2 — Maxwell equation in the Fourier space

Using Eq. (6) and Eq. (7), show that the following Maxwell equation (for the transversal fields) can be written as:

∇ × E𝑇 (r, 𝑡) = −
𝜕B(r, 𝑡)
𝜕𝑡

and 𝜕𝐵̃𝛾 (𝑡)
𝜕𝑡

= −𝑖|k𝛾 |𝐸̃𝛾 (𝑡) (8)

and the following Maxwell equation (for the transversal fields) can be written as:

∇ × B(r, 𝑡) = 𝜇0

(

J(r, 𝑡) + 𝜖
𝜕E𝑇 (r, 𝑡)

𝜕𝑡

)

and 𝜕𝐸̃𝛾 (𝑡)
𝜕𝑡

= −𝑖𝑐𝜔𝛾 𝐵̃𝛾 (𝑡) −
1
𝜖0
𝐽𝛾 (𝑡) (9)

where the (transversal) component of the current density J𝑇 (r, 𝑡) is decomposed into:
J𝑇 (r, 𝑡) =

∑

𝛾
e𝛾𝐽𝛾 (𝑡)𝑒𝑖k𝛾r (10)

See the detailed solution of this exercise in 5.3 at page 45

The right hand of Eq. (8) and Eq. (9) is a coupled system of equations of motion. It is convenient to decouple the above
two equations to describe the energy of the electromagnetic field in terms of canonical variables [2–4]. For that reason, we
define:

𝛼𝛾 (𝑡) =
1

2𝑍𝛾

[

−𝑖𝑐𝐵̃𝛾 + 𝑖𝐸̃𝛾
] and 𝛽𝛾 (𝑡) =

1
2𝑍𝛾

[

−𝑖𝑐𝐵̃𝛾 − 𝑖𝐸̃𝛾
] (11)

where 𝑍𝛾 is an arbitrary function. Notice that we can use arbitrary units for 𝛼𝛾 (𝑡) as far as the units of 𝛼𝛾 (𝑡)2𝑍𝛾 are the units
of electric field.

Exercise 2.2.3 — Maxwell equation in terms of 𝛼𝛾 (𝑡) and 𝛽𝛾 (𝑡)

Show that the equation of motion for 𝛼𝛾 (𝑡) and 𝛽𝛾 (𝑡) in Eq. (11) are given by:
𝜕𝛼𝛾 (𝑡)
𝜕𝑡

= 𝑖𝜔𝛾𝛼𝛾 (𝑡) − 𝑖
1

2𝑍𝛾𝜖0
𝐽𝛾 and 𝜕𝛽𝛾 (𝑡)

𝜕𝑡
= −𝑖𝜔𝛾𝛽𝛾 (𝑡) + 𝑖

1
2𝑍𝛾𝜖0

𝐽𝛾 (12)

See the detailed solution of this exercise in 5.4 at page 45
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Exercise 2.2.4 — Electric and magnetic field in terms of 𝛼𝛾 (𝑡)

Show that the electric and magnetic fields can be written as:
E𝑇 (r, 𝑡) = 𝑖

∑

𝛾
e𝛾𝑍𝛾 [𝛼𝛾 (𝑡)𝑒𝑖k𝛾r − 𝛼∗𝛾 (𝑡)𝑒

−𝑖k𝛾r] (13)

and,
B(r, 𝑡) = 𝑖

∑

𝛾
e’𝛾
𝑍𝛾
𝑐
[𝛼𝛾 (𝑡)𝑒

𝑖k𝛾r − 𝛼∗𝛾 (𝑡)𝑒
−𝑖k𝛾r] (14)

See the detailed solution of this exercise in 5.5 at page 46

It can be straightforward demonstrated, using the orthogonality of the different e𝛾 involved, that expression Eq. (5) can be
written as:

𝐻𝑅 =
𝜖0
2 ∫ 𝑑3𝑟

(

E2
𝑇 + 𝑐2B2) = 2𝜖0𝑉

∑

𝛾
𝑍2
𝛾 |𝛼𝛾 (𝑡)|

2 (15)

Finally, by defining:

𝑞𝛾 (𝑡) = 2𝑍𝛾

√

𝜖0𝑉
𝜔𝛾

𝐼𝑚(𝛼𝛾 (𝑡)) (16)

𝑠̃𝛾 (𝑡) = 2𝑍𝛾

√

𝜖0𝑉
𝜔𝛾

𝑅𝑒(𝛼𝛾 (𝑡)) (17)

The radiation energy can be written as:

𝐻𝑅 =
𝜖0
2 ∫ 𝑑3𝑟

(

E2
𝑇 + 𝑐2B2) =

∑

𝛾

𝜔𝛾
2
(𝑞𝛾 (𝑡)2 + 𝑠̃𝛾 (𝑡)2) (18)

2.3 The long wave-length approximation
In usual experimental setups, the relevant wavelength of the external field 𝜆 is much larger than the spatial extent of the region
where the electron can move. We may therefore expand the spatial dependence of the vector potential A(r, 𝑡) in powers of r,
which yields a series of multipole moments of increasing order, and in good approximation keep only the lowest-order term
A(0, 𝑡). In this scenario, we can look for the following gauge transformation [2–4]

𝑔(r, 𝑡) = −A(0, 𝑡)r (19)
Then, the electromagnetic potentials from Eq. (3) can be written as

A𝑔 = A(0, 𝑡) + ∇𝑔(r, 𝑡) =���A(0, 𝑡) −���A(0, 𝑡) = 0 (20)
and using Eq. (1)

𝐴𝑔0 = 𝐴0 −
𝜕𝑔(r, 𝑡)
𝜕𝑡

= 𝐴0 + r𝜕A(0, 𝑡)
𝜕𝑡

, (21)

Finally, using Eq. (1) in the new gauge, we get:

E𝑔 = −∇𝐴𝑔0 − 𝜕A𝑔𝜕𝑡 = −
𝜕A(0, 𝑡)
𝜕𝑡

. (22)

Then, Eq. (4) can be written in the new gauge as:

𝐻 =
p2

2𝑚𝑒
− 𝑒rE𝑔 + 𝑉 (r) +𝐻𝑅, (23)
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Thus the interaction between the light and the matter (the fact that they do not evolve independently) is due to the term −𝑒rE𝑔
involving degrees of freedom of the matter and light. In our case with a single electron simulated explicitly, we notice that
the term 𝐴0 in Eq. (4) corresponds to the Coulomb interaction between electrons, which can be set to zero since there is no
interaction of an electron with itself, and it is not included in Eq. (23).3

2.4 Single mode monochromatic polarized light
To further simplify the discussion we can assume that the electromagnetic field E𝑇 (0, 𝑡) = {−𝐸, 0, 0} has only dependence
on the 𝑥 direction. Then, if we are interested in the interaction of light and matter, we only need to deal with the 1D equation:

𝐻 =
𝑝2

2𝑚𝑒
+ 𝑉 (𝑥) +𝐻𝑅 + 𝑥𝐸, (24)

where we define 𝐻𝑀 = 𝑝2

2𝑚𝑒
and 𝐻𝐼 = 𝑥𝐸. If we consider that we are just considering a monochromatic polarized traveling

wave, then the energy of the electromagnetic field in Eq. (18) can be defined as

𝐻𝑅 =
∑

𝛾

𝜔𝛾
2
(𝑞𝛾 (𝑡)2 + 𝑠̃𝛾 (𝑡)2) =

𝜔
2
(𝑞(𝑡)2 + 𝑠̃(𝑡)2) (25)

We avoid the subscript 𝛾 because is now irrelevant and we use a tilde to emphasize that we are dealing with canonical variables
of the electromagnetic field. The light is considered to be confined in an optical cavity of length𝐿𝑐 so that the optical frequency
can be defined as:

𝜔 = 𝑐𝜋
𝐿𝑐

(26)
where we have assumed that 𝐿𝑐 = 𝜆∕2 and the dielectric constant equal to the value in the vacuum in all the cavity.

Exercise 2.4.1 — Electric field in terms of the canonical variables 𝑞(𝑡)

Show that the electric field in a Eq. (13) for a single mode under the long-wavelength approximation can be written
as:

E𝑇 (r, 𝑡) = e
√

𝜔
𝜖0𝑉

𝑞(𝑡) (27)
with e the linear polarization vector.
See the detailed solution of this exercise in 5.6 at page 46

By using Eq. (27), we get the final Hamiltonian:

𝐻 = (𝐻𝑀 +𝐻𝑅 +𝐻𝐼 ) =
𝑝2

2𝑚𝑒
+ 𝑉 (𝑥) + 𝜔

2
(𝑠̃2 + 𝑞2) + 𝛼

√

ℏ
𝑥𝑞, (28)

We see that the term 𝜔
2 (𝑠̃

2 + 𝑞2) has units of energy so that 𝑞 and 𝑠̃ have units of √ℏ because ℏ𝜔 already has units of energy.
The following change of variables:

𝑠̃→ 𝑠
√

ℏ and 𝑞 → 𝑞
√

ℏ (29)
is considered. Then, the Hamiltonian with the new variables will lead to

𝐻 = (𝐻𝑀 +𝐻𝑅 +𝐻𝐼 ) =
𝑝2

2𝑚𝑒
+ 𝑉 (𝑥) + ℏ𝜔

2
(𝑠2 + 𝑞2) + 𝛼𝑥𝑞, (30)

where 𝛼 is a parameter that controls the light-matter interaction and it is proportional to
√

𝜔
𝜖0𝑉

.4
3Strictly speaking, the origin of the electromagnetic field in Eq. (4) can also be attributed to other electrons interacting with the electron that we are

explicitly simulating. However, including the other electrons in Eq. (4) would increase the computational burden enormously. To keep the computational
burden under control and not to obscure the didactic explanation we avoid the simulation of other particles and keep the electromagnetic field without further
discussing its physical origin.

4Notice that now, 𝑞 and 𝑠 do not have units in Eq. (30) because ℏ𝜔 already gives units of energy. Unless indicated, we will use the Hamiltonian Eq. (30)
so that the degrees of the electromagnetic field 𝑞 and 𝑠 will have no units. Of course, the units of the electric field in Eq. (27) is given by Volt/meter
E𝑇 (r, 𝑡) = −e

√

𝜔
𝜖0𝑉

𝑞(𝑡) = −e
√

𝜔
𝜖0𝑉

√

ℏ 𝑞(𝑡).
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3 Types of theories/models
The final Hamiltonian in Eq. (30) is valid for either classical or quantum systems. In this section, we will evaluate the classical
and quantum equations of motion derived from this Hamiltonian.

3.1 Matter as classical trajectory and light as classical trajectory
The dynamics of the degrees of freedom of light and matter in a classical scenario can be just computed from Hamilton’s
equations for the Hamiltonian in Eq. (28) in canonical variables 𝑥𝑐𝑙, 𝑝𝑐𝑙, 𝑞𝑐𝑙 and 𝑠̃𝑐𝑙 and we get:

𝑑𝑥𝑐𝑙
𝑑𝑡

= 𝜕𝐻
𝜕𝑝𝑐𝑙

=
𝑝𝑐𝑙
𝑚𝑒

and 𝑑𝑝𝑐𝑙
𝑑𝑡

= − 𝜕𝐻
𝜕𝑥𝑐𝑙

= −
𝜕𝑉 (𝑥𝑐𝑙)
𝜕𝑥𝑐𝑙

− 𝛼
√

ℏ
𝑞𝑐𝑙

where the subscript 𝑐𝑙 indicates that we are dealing with a classical variable. Identically, Hamilton’s equations for the variables
𝑞𝑐𝑙 and 𝑠̃𝑐𝑙 are:

𝑑𝑞𝑐𝑙
𝑑𝑡

= 𝜕𝐻
𝜕𝑠̃𝑐𝑙

= 𝜔𝑠̃𝑐𝑙 and 𝑑𝑠̃𝑐𝑙
𝑑𝑡

= − 𝜕𝐻
𝜕𝑞𝑐𝑙

= −𝜔𝑞𝑐𝑙 −
𝛼
√

ℏ
𝑥𝑐𝑙 (31)

We can recover the original variables, in Eq. (30) using Eq. (29), getting:
𝑑𝑥𝑐𝑙
𝑑𝑡

=
𝑝𝑐𝑙
𝑚𝑒

and 𝑑𝑝𝑐𝑙
𝑑𝑡

= −
𝜕𝑉 (𝑥𝑐𝑙)
𝜕𝑥𝑐𝑙

− 𝛼𝑞𝑐𝑙 (32)

Identically,
𝑑𝑞𝑐𝑙
𝑑𝑡

= 𝜔𝑠𝑐𝑙 and 𝑑𝑠𝑐𝑙
𝑑𝑡

= −𝜔𝑞𝑐𝑙 −
𝛼
ℏ
𝑥𝑐𝑙 (33)

The trajectories of the light 𝑞𝑐𝑙(𝑡) or 𝑞𝑐𝑙(𝑡) have to be understood as the time-dependent parameter that determines the amplitude
of the electric field as described Eq. (27). The word “trajectory” for the light does not mean different locations in the physical
space, but only how is the evolution of the variable 𝑞 in different times in the 𝑞 − 𝑡 space [3].

Exercise 3.1.1 — Electron and light in the case of no-interaction, i.e., 𝛼 = 0

In the case of 𝛼 = 0, show that the electron follows a Newton equation:

𝑚𝑒
𝑑2𝑥𝑐𝑙
𝑑𝑡2

= −
𝜕𝑉 (𝑥𝑐𝑙)
𝜕𝑥𝑐𝑙

(34)

and the electromagnetic field is just a sinusoidal signal.
𝑞𝑐𝑙(𝑡) = 𝐴𝑞 sin

(

𝜔𝑡 + 𝜃𝑞
) (35)

See the detailed solution of this exercise in 5.7 at page 46

Exercise 3.1.2 — Conservation of the total energy

Show that the system’s total energy is conserved,
𝑑𝐻
𝑑𝑡

=
𝑝𝑐𝑙
𝑚𝑒

𝑑𝑝𝑐𝑙
𝑑𝑡

+
𝜕𝑉 (𝑥𝑐𝑙)
𝜕𝑥𝑐𝑙

𝑑𝑥𝑐𝑙
𝑑𝑡

+ ℏ𝜔𝑠𝑐𝑙
𝑑𝑠𝑐𝑙
𝑑𝑡

+ ℏ𝜔𝑞𝑐𝑙
𝑑𝑞𝑐𝑙
𝑑𝑡

+ 𝛼
𝑑𝑥𝑐𝑙
𝑑𝑡

𝑞𝑐𝑙 + 𝛼𝑥𝑐𝑙
𝑑𝑞𝑐𝑙
𝑑𝑡

= 0, (36)

See the detailed solution of this exercise in 5.22 at page 55

3.2 Matter as quantum wave and light as classical trajectory
If we want to consider the quantum nature of the electrons, the so-called canonical quantization is the typical procedure to
convert a classical Hamiltonian into a quantum one [1–4]. It involves promoting classical variables to quantum operators and
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imposing commutation relations among these operators that reflect the underlying classical Poisson brackets. In our case, the
variables 𝑥 and 𝑝 in the Hamiltonian Eq. (30) are already canonical variables. The following operators:

𝑥̂ → 𝑥 and 𝑝̂→ −𝑖ℏ 𝜕
𝜕𝑥

(37)
satisfy the expected commutator [𝑥̂, 𝑝̂] = 𝑖ℏ𝟙.

Finally, from Eq. (30), using a classical description of the light with 𝑞𝑐𝑙(𝑡) and 𝑠𝑐𝑙(𝑡), we get the following Hamiltonian:
𝐻 = (𝐻𝑀 +𝐻𝐼 ) = − ℏ2

2𝑚𝑒
𝜕2

𝜕𝑥2
+ 𝑉 (𝑥) + 𝛼𝑥𝑞𝑐𝑙(𝑡), (38)

The simplest way to understand Eq. (38) is treating the light as an “external” element that can affect the quantum electron, but
the electron does not affect the light. Then the term ℏ𝜔

2 (𝑠𝑐𝑙(𝑡)2 + 𝑞𝑐𝑙(𝑡)2) in Eq. (30) is just a pure time-dependent term, which
creates an offset of energy that can be neglected [3,4,8]. Such “external” elements (for example an “external” laser acting on
an atom) do not necessarily implies not imply a nonrecognition that the “external” element is a classic one, but only that it is
affected by the system dynamics.

A global description of the quantum system is given by wave function Ψ(𝑥, 𝑡) solution of the following Schrödinger equa-
tion:

𝑖ℏ
𝜕Ψ(𝑥, 𝑡)
𝜕𝑡

= − ℏ2

2𝑚𝑒
𝜕2Ψ(𝑥, 𝑡)
𝜕𝑥2

+ 𝑉 (𝑥)Ψ(𝑥, 𝑡) + 𝛼𝑥𝑞𝑐𝑙(𝑡)Ψ(𝑥, 𝑡), (39)
We emphasize that Ψ(𝑥, 𝑡) is not a description of a single experiment, but a description of the ensemble of all (identical)
experiments. The differences between an ensemble of experiments and a single experiment will be emphasized in several
numerical examples (see, for example, simulation 4.6.1 at page 32).

In our case, 𝑉 (𝑥) is a well with infinite barriers and length 𝐿𝑥. A proper base for describing the system’s dynamics can
be obtained from a Hamiltonian without interaction with the light.

Exercise 3.2.1 — Quantum states in an infinite square well

Compute the energy eigenstates 𝜙𝑛(𝑥) of the electron in an infinite well with borders at 𝑥 = ±𝐿𝑥
2 and show that their

eigenenergies are given by:

𝐸𝑛 =
ℏ2𝜋2(𝑛 + 1)2

2 𝑚 𝐿2
𝑥

(40)

with 𝑛 = 0, 1, 2, 3, .. the index of the (normalized) eigenstate:

𝜙𝑛(𝑥) = ⟨𝑥|𝜙𝑛⟩ =

√

2
𝐿𝑥

cos
(

(𝑛 + 1)𝜋𝑥
𝐿𝑥

)

n=0,2,3,4,...

𝜙𝑛(𝑥) = ⟨𝑥|𝜙𝑛⟩ =

√

2
𝐿𝑥

sin
(

(𝑛 + 1)𝜋𝑥
𝐿𝑥

)

n=1,3,5,7,... (41)

See the detailed solution of this exercise in 5.9 at page 47

Then, we can rewrite the wave function Ψ(𝑥, 𝑡) solution of Eq. (39) as

Ψ(𝑥, 𝑡) =
𝑁
∑

𝑛=0
𝑐𝑛(𝑡)𝜙𝑛(𝑥), (42)

with
𝑐𝑛(𝑡) = ∫ 𝑑𝑥 𝜙∗

𝑛(𝑥)Ψ(𝑥, 𝑡) (43)
where 𝜙𝑛(𝑥) are the states of an infinite quantum well. The evolution of the weave function can be anticipated from the
evolution of 𝑐𝑛(𝑡). The equation of motion of the coefficient 𝑐𝑛(𝑡) is:

𝑖ℏ
𝑁
∑

𝑛=0

𝑑𝑐𝑛(𝑡)
𝑑𝑡

𝜙𝑛(𝑥) = (𝐻𝑀 +𝐻𝐼 )
𝑁
∑

𝑛=0
𝑐𝑛(𝑡)𝜙𝑛(𝑥) =

𝑁
∑

𝑛=0
𝐸𝑛,𝑒𝑐𝑛(𝑡)𝜙𝑛(𝑥) + 𝛼𝑥𝑞𝑐𝑙(𝑡)

𝑁
∑

𝑛=0
𝑐𝑛(𝑡)𝜙𝑛(𝑥) (44)
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Finally, using the orthonormality of 𝜙𝑛(𝑥) we get:

𝑖ℏ
𝑑𝑐𝑛(𝑡)
𝑑𝑡

= 𝐸𝑛,𝑒𝑐𝑛(𝑡) + 𝛼 𝑞𝑐𝑙(𝑡)
𝑁
∑

𝑛′=0
𝑐𝑛′ (𝑡)∫ 𝑑𝑥 𝜙∗

𝑛(𝑥) 𝑥 𝜙𝑛′ (𝑥) (45)

Exercise 3.2.2 — No conservation of the energy of the electron

Show that the energy of the electron is not conserved, i.e.,
𝑑⟨𝐻(𝑡)⟩
𝑑𝑡

= 𝜔𝛼⟨𝑥(𝑡)⟩𝑠(𝑡). (46)

See the detailed solution of this exercise in 5.10 at page 48

3.2.1 Semi-classical Rabi Oscillations with a time-independent interaction

Let’s consider the Eq. (45) up to 𝑁 = 1, (i.e., 𝑛 = 0 and 𝑛 = 1) which means we only take into account the ground and the
first excited state of the electron. In this manner, we can consider our problem as a two-level system with states |0⟩ = |

|

𝜙0(𝑥⟩and |1⟩ = |

|

𝜙1(𝑥)⟩, described as eigenstates of the Hamiltonian 𝐻𝑀 in Eq. (38) with electron eigenvalues 𝐸0 and 𝐸1. Then, a
general state can be written as:

|Ψ(𝑡)⟩ = 𝑐0(𝑡) |0⟩ + 𝑐1(𝑡) |1⟩ , (47)
The interacting field 𝐻𝐼 is represented by an interacting matrix 𝜔𝑎𝑏 =

(

𝜔00 𝜔10
𝜔01 𝜔11

)

in Eq. (45), whose components can be
computed by the frequencies:

𝜔𝑎𝑏 = ⟨𝑎| 𝐻̂𝐼 |𝑏⟩ =
𝛼𝑞𝑐𝑙(𝑡)

⟨

𝜙∗
𝑎
|

|

𝑥 |
|

𝜙𝑏⟩
ℏ

, 𝑎, 𝑏 = 0, 1 (48)
We use the fact that ⟨1| 𝑥̂ |1⟩ = ∫ 𝑑𝑥𝜙∗

1(𝑥)𝑥𝜙1(𝑥) = ∫ 𝑑𝑥𝜙∗
0(𝑥)𝑥𝜙0(𝑥) = ⟨0| 𝑥̂ |0⟩ = 0 in Eq. (48), so that 𝜔00 = 𝜔11 = 0,

letting only the off-diagonal components of 𝑤𝑎𝑏 be different from 0. In addition, ⟨1| 𝑥̂ |0⟩ = ⟨0| 𝑥̂ |1⟩ = ∫ 𝑑𝑥 𝜙∗
0(𝑥) 𝑥 𝜙1(𝑥)because we use the real eigenstates in Eq. (41).Thus, we can define the semiclassical interacting frequency 𝜔𝐼 = 𝜔01 = 𝜔10as:

𝜔𝐼 ≡
𝛼𝐴𝑐𝑙

⟨

𝜙∗
1
|

|

|

𝑥 |
|

𝜙0⟩

ℏ
. (49)

To simplify the discussion, in this subsection, we also assume that 𝑞𝑐𝑙(𝑡) = 𝐴𝑐𝑙 so that the interacting term is time-independent.
Later, we will consider time-dependent (sinusoidal) interaction. With these approximations, the coupled system of equations
in Eq. (45) can be rewritten:

⎧

⎪

⎨

⎪

⎩

𝑖ℏ
𝑑𝑐0(𝑡)
𝑑𝑡

= 𝑐0(𝑡)𝐸0 + 𝑐1(𝑡)ℏ𝜔𝐼

𝑖ℏ
𝑑𝑐1(𝑡)
𝑑𝑡

= 𝑐1(𝑡)𝐸1 + 𝑐0(𝑡)ℏ𝜔𝐼
⟹ 𝑖ℏ 𝑑

𝑑𝑡

(

𝑐0(𝑡)
𝑐1(𝑡)

)

=
(

𝐸0 ℏ𝜔𝐼
ℏ𝜔𝐼 𝐸1

)(

𝑐0(𝑡)
𝑐1(𝑡)

)

(50)

In this scenario, the Hamiltonian in Eq. (50) defined as 𝐻̂ = 𝐻̂𝑀 + 𝐻̂𝐼 can be written in the bra-ket notation as:
𝐻̂𝑀 = 𝐸0|0⟩⟨0| + 𝐸1|1⟩⟨1|
𝐻̂𝐼 = ℏ𝜔𝐼 |0⟩⟨1| + ℏ𝜔𝐼 |1⟩⟨0|, (51)

Exercise 3.2.3 — Rabi oscillations for a degenerate system

Show that a solution of the system of equations in Eq. (50) can be obtained in the degenerate case, when 𝐸0 = 𝐸1,
assuming the initial conditions 𝑐0(0) = 1, 𝑐1(0) = 0, as:

|𝜓(𝑡)⟩ = 𝑒−𝑖
𝐸0
ℏ 𝑡 cos

(

𝜔𝐼 𝑡
)

|0⟩ + 𝑒−𝑖
𝐸1
ℏ 𝑡 sin

(

𝜔𝐼 𝑡
)

|1⟩ (52)
giving the result:

| ⟨1|𝜓(𝑡)⟩ |2 = |𝑐1(𝑡)|2 = sin2(𝜔𝐼 𝑡) (53)
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See the detailed solution of this exercise in 5.11 at page 48

Next, we follow a general strategy to find the evolution of the system in Eq. (50). This general strategy requires computing
the eigenstates of the interacting Hamiltonian in Eq. (50). In next, exercise we diagonalize a general two-states matrix.

Exercise 3.2.4 — Eigenstates of a two-states interacting quantum system

Let us consider a general matrix 𝐻̂ defined as
(

𝐻11 𝐻12
𝐻21 𝐻22

)

(54)
where 𝐻11 and 𝐻22 as real elements and 𝐻12 and 𝐻21 as complex elements satisfying 𝐻12 = 𝐻∗

21 so that the matrix
is Hermitian. Show that the eigenvalues of such matrix are:

𝐸± =
𝐻11 +𝐻22

2
± 1

2

√

4|𝐻21|
2 + (𝐻22 −𝐻11)2 (55)

and the eigenstates:
{

|

|

𝜙+
⟩

= cos(𝜃)𝑒−𝑖𝛾∕2 |0⟩ + sin(𝜃)𝑒𝑖𝛾∕2 |1⟩
|

|

𝜙−⟩ = − sin(𝜃)𝑒−𝑖𝛾∕2 |0⟩ + cos(𝜃)𝑒𝑖𝛾∕2 |1⟩
(56)

with
tan(2𝜃) =

2|𝐻21|

𝐻22 −𝐻11
(57)

See the detailed solution of this exercise in 5.12 at page 49

We have defined two additional frequencies. The sum frequency 𝜔𝑠 as:

𝜔𝑠 ≡
𝜔1 + 𝜔0

2
(58)

with 𝐸1 = ℏ𝜔1 and 𝐸0 = ℏ𝜔0. The rest frequency 𝜔𝑟 is defined as:

𝜔𝑟 ≡
𝜔1 − 𝜔0

2
(59)

with such definitions, comparing Eq. (54) and the matrix in Eq. (50), we get ℏ𝜔𝑠 = 𝐻11+𝐻22
2 = 𝐸0+𝐸1

2 , ℏ𝜔𝑟 = 𝐻22−𝐻11
2 =

𝐸1−𝐸0
2 , 𝛾 = 0 and 𝐻12 = 𝐻21 = ℏ𝜔𝐼 . Then, the mixing angle 𝜃 in Eq. (57) being:

tan 2𝜃 =
2ℏ𝜔𝐼
𝐸0 − 𝐸1

=
𝜔𝐼
𝜔𝑟

(60)

and their corresponding eigen-energies in Eq. (55) are:

𝐸± = 1
2
(𝐸0 + 𝐸1) ±

1
2

√

(𝐸0 − 𝐸1)2 + 4(ℏ𝜔𝐼 )2 = ℏ
(

𝜔𝑠 ±
√

𝜔𝑟 + 𝜔𝐼
)

(61)

Now, using Eq. (56) the general state describing the system in Eq. (47) can also be rewritten as:
|Ψ(𝑡)⟩ = 𝑐+(𝑡) ⋅ 𝑒−𝑖𝐸+∕ℏ𝑡 |

|

𝜙+
⟩

+ 𝑐−(𝑡) ⋅ 𝑒−𝑖𝐸−∕ℏ𝑡 |
|

𝜙−⟩ (62)
where 𝑐+(𝑡) and 𝑐−(𝑡) are determined by the initial conditions of the problem. For arbitrary electron energies, 𝐸1 and 𝐸0, the
Rabi formula defining the probability probability | ⟨1|𝜓(𝑡)⟩ |2 can be computed as indicated in the exercise below.
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Exercise 3.2.5 — Rabi formula for time independent interaction

For the initial conditions, |Ψ(𝑡 = 0)⟩ = |0⟩, show that probability | ⟨1|𝜓(𝑡)⟩ |2 is given by:

| ⟨1|𝜓(𝑡)⟩ |2 = |𝑐1(𝑡)|2 =
4(ℏ𝜔𝐼 )2

(𝐸0 − 𝐸1)2 + 4(ℏ𝜔𝐼 )2
sin2

(

1
2ℏ

√

(𝐸0 − 𝐸1)2 + 4(ℏ𝜔𝐼 )2𝑡
)

=
𝜔2
𝐼

𝜔2
𝑟 + 𝜔

2
𝐼

sin2
(

√

𝜔2
𝑟 + 𝜔

2
𝐼 𝑡
)

(63)

See the detailed solution of this exercise in 5.13 at page 50

The final result Eq. (63) can also be found in Ref. [3]. The figure 1 shows the results from Eq. (63) for different values of
Δ𝐸 = 2ℏ𝜔𝑟. Notice that Eq. (53) can be obtained from Eq. (63) by just demanding degenerate states (i.e. 𝐸0 = 𝐸1 giving
𝜔𝑟 = 0).

Figure 1: Rabi oscillations in the resonant case (blue line) and in off-resonant cases (red and green) for a system with 𝜔𝐼 = 98 rad/ps (notice that 𝑠𝑖𝑛2(𝑥)
oscillates at double the frequency of 𝑠𝑖𝑛(𝑥)). As the system moves further from resonance, the oscillation amplitude decreases while the oscillation frequency
increases. Notice that Δ𝐸 = 0.1𝑒𝑉 corresponds to 𝜔𝑟 = 75 rad/ps and Δ𝐸 = 0.2𝑒𝑉 corresponds to 𝜔𝑟 = 150 rad/ps.

3.2.2 Semi-classical Rabi Oscillations with a time-dependent (sinusoidal) interaction

In the previous section, to simplify the mathematical developments, we assumed that the interaction𝑊 did not depend on time.
However, we have seen in Exercise 3.1.1 that a typical description of a classical electromagnetic field is 𝑞𝑐𝑙(𝑡) = 𝐴𝑐𝑙 sin(𝜔𝑡)where we have defined the frequency of the oscillating electromagnetic field as 𝜔 (without subscripts). The value of 𝜔 is fixed
by the optical cavity length as seen in Eq. (26)

Our Hamiltonian in Eq. (45) can be written as:
⎧

⎪

⎨

⎪

⎩

𝑖ℏ
𝑑𝑐0(𝑡)
𝑑𝑡

= 𝑐0(𝑡)ℏ𝑤0 + 𝑐1(𝑡)ℏ𝜔𝐼 sin(𝜔𝑡)
𝑖ℏ
𝑑𝑐1(𝑡)
𝑑𝑡

= 𝑐1(𝑡)ℏ𝑤1 + 𝑐0(𝑡)ℏ𝜔𝐼 sin(𝜔𝑡)
⟹ 𝑖ℏ 𝑑

𝑑𝑡

(

𝑐0(𝑡)
𝑐1(𝑡)

)

=
(

ℏ𝜔0 ℏ𝜔𝐼 sin(𝜔𝑡)
ℏ𝜔𝐼 sin(𝜔𝑡) ℏ𝜔1

)(

𝑐0(𝑡)
𝑐1(𝑡)

)

(64)

with 𝜔𝐼 defined in Eq. (49). The whole Hamiltonian in Eq. (38), in the bra-ket notation, can be written now as 𝐻̂ = 𝐻̂𝑀 +𝐻̂𝐼
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with:
𝐻̂𝑀 = ℏ𝜔0|0⟩⟨0| + ℏ𝜔1|1⟩⟨1|,
𝐻̂𝐼 = ℏ𝜔𝐼 sin(𝜔𝑡)|0⟩⟨1| + ℏ𝜔𝐼 sin(𝜔𝑡)|1⟩⟨0|), (65)

where 𝐸0 = ℏ𝜔0 and 𝐸1 = ℏ𝜔1. Compare the above time-dependent Hamiltonian in Eq. (65) with the time-independent one
in Eq. (51). The general solution to this equation is:

|Ψ(𝑡)⟩ = 𝑐0(𝑡)𝑒−𝑖𝜔0𝑡
|0⟩ + 𝑐1(𝑡)𝑒−𝑖𝜔1𝑡

|1⟩. (66)
Rewriting Eq. (64) by using the change 𝑐𝑛(𝑡) = 𝑐𝑛(𝑡)𝑒−𝑤𝑛𝑡, we end up with the following system:

⎧

⎪

⎨

⎪

⎩

𝑖
𝑑𝑐0(𝑡)
𝑑𝑡

=
𝑐1(𝑡)
2𝑖

𝜔𝐼
(

𝑒𝑖(𝜔−2𝜔𝑟)𝑡 − 𝑒−𝑖(𝜔+2𝜔𝑟)𝑡
)

𝑖
𝑑𝑐1(𝑡)
𝑑𝑡

= −
𝑐0(𝑡)
2𝑖

𝜔𝐼
(

𝑒−𝑖(𝜔−2𝜔𝑟)𝑡 − 𝑒𝑖(𝜔+2𝜔𝑟)𝑡
)

(67)

where𝜔𝑟 and𝜔𝐼 defined in Eq. (59) and Eq. (49), and sin(𝜔𝑡) = 𝑒𝑖𝜔𝑡−𝑒−𝑖𝜔𝑡
2𝑖 . Here it is natural to define the detuning parameter

Δ as:
Δ ≡ 2𝜔𝑟 − 𝜔 (68)

and the anti-detuning parameter 𝛿 as:
𝛿 ≡ 2𝜔𝑟 + 𝜔 (69)

Note then that four terms in Eq. (67) behave like 𝑒±𝑖Δ𝑡 and 𝑒±𝑖𝛿𝑡. Since the latter oscillate much faster than the former, on
average they yield a negligible contribution if one is not far from resonance. Neglecting the term 𝑒±𝑖𝛿𝑡 is the so called rotating
wave approximation (RWA). Under this simplification, we end up with the following system:

⎧

⎪

⎨

⎪

⎩

𝑖
𝑑𝑐0(𝑡)
𝑑𝑡

= 1
2𝑖
𝑐1(𝑡)𝜔𝐼𝑒−𝑖Δ𝑡 =

1
2
𝑐1(𝑡)𝑒𝑖3𝜋∕2𝜔𝐼𝑒−𝑖Δ𝑡

𝑖
𝑑𝑐1(𝑡)
𝑑𝑡

= − 1
2𝑖
𝑐0(𝑡)𝜔𝐼𝑒𝑖Δ𝑡 =

1
2
𝑐0(𝑡)𝑒−𝑖3𝜋∕2𝜔𝐼𝑒𝑖Δ𝑡

(70)

At this point, the excercise below shows the final Rabi oscillations for a time dependent (sinusoidal) signal.
Exercise 3.2.6 — Rabi formula with time-dependent interaction

Show that, starting from the excited state |1⟩, we can evalute the transition probability to the state |0⟩ at time 𝑡 from
Eq. (70) as:

| ⟨0|Ψ(𝑡)⟩ |2 = |𝑐0(𝑡)|2 =
𝜔2
𝐼

Δ2 + 𝜔2
𝐼

sin2
(Ω
2
𝑡
)

(71)

where Ω defined in Eq. (72).
See the detailed solution of this exercise in 5.14 at page 50

The Ω is defined as the semiclassical Rabi angular frequency:

Ω =
√

Δ2 + 𝜔2
𝐼 (72)

The result in Eq. (71) has the same form as Eq. (63). Recovering the detuning parameter definition Δ = 2𝜔𝑟−𝜔 = 𝜔1−𝜔0−𝜔,
we can see that even when the states are not degenerated (𝜔1 ≠ 𝜔0), we can still obtain a full oscillation among both states by
tuning correctly the electromagnetic field frequency 𝜔 = 𝜔1 − 𝜔0 giving Δ = 0 and 𝜔2

𝐼
Δ2+𝜔2

𝐼
= 1 (See Fig. 2). Moreover, we

see that the full width at half maximum is 2𝜔𝐼 . Notice that Eq. (71) can also be found in Ref. [8]
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Figure 2: Comparison between the maximum transition probability from state |0⟩ to state |1⟩ for a time-independent (dotted blue) interaction and a time-
dependent interaction (solid orange). We can see that the electromagnetic frequency 𝜔 can be used to tune the resonance, shifting the curve and centring it
around 𝜔.

Exercise 3.2.7 — Computation of the Rabi angular frequency 𝜔𝐼

For a system with one electron with an effective 0.042 times the free electron mass and oscillating between the ground
and excited state of a quantum well with a length 𝐿𝑥 = 16 nm, and light described by a sinusoidal signal with an
amplitude 𝐴𝑐𝑙 = 1 inside ann optical cavity with length 𝐿𝑐 = 5930 nm , and with an interacting parameter between
light and matter given by 𝛼 = 0.01 eV/nm, show that the semiclassical Rabi angular frequency in Eq. (72) gives the
following value:

Ω =
√

Δ2 + 𝜔2
𝐼 = 𝜔𝐼 ≡

𝛼𝐴𝑐𝑙 ⟨0| 𝑥̂ |1⟩
ℏ

= 43 rad/ps. (73)
The angular frequency can be translated into a linear frequency, giving ≈ 7 THz. This computation of this frequency
is used in simulation 4.5.1 at page 31.
See the detailed solution of this exercise in 5.15 at page 51

3.2.3 Perturbative Theory

In the previous section, we obtained the transition probability for going from state |0⟩ to state |1⟩ for a time-dependent (si-
nusoidal) interaction using the Rotating Wave Approximation. This approximation is valid when the system is not far from
resonance and captures correctly the overall behaviour of the system. However, since it is neglecting the fast oscillating terms,
it cannot be an exact solution. In this section, we will compute the transition probability using a perturbative approximation.
We will arrive at a much more precise expression, but at the cost that it will be valid only for early times.

The perturbative approximation requires parametrizing the strength of the interaction in terms of the parameter 𝛽 so that
Eq. (45) now, becomes:

⎧

⎪

⎨

⎪

⎩

𝑖ℏ
𝑑𝑐0(𝑡)
𝑑𝑡

= 𝑐0(𝑡)ℏ𝑤0 + 𝛽𝑐1(𝑡)ℏ𝜔𝐼 sin(𝜔𝑡)
𝑖ℏ
𝑑𝑐1(𝑡)
𝑑𝑡

= 𝑐1(𝑡)ℏ𝑤1 + 𝛽𝑐0(𝑡)ℏ𝜔𝐼 sin(𝜔𝑡)
(74)

We use now the change of variabes 𝑐𝑛(𝑡) = 𝑐𝑛(𝑡)𝑒−𝑖𝜔𝑛𝑡 so that Eq. (74) can be rewritten as:
⎧

⎪

⎨

⎪

⎩

𝑖ℏ
𝑑𝑐0(𝑡)
𝑑𝑡

= 𝛽𝑐1(𝑡)ℏ𝜔𝐼 sin(𝜔𝑡)𝑒−𝑖2𝜔𝑟𝑡

𝑖ℏ
𝑑𝑐1(𝑡)
𝑑𝑡

= 𝛽𝑐0(𝑡)ℏ𝜔𝐼 sin(𝜔𝑡)𝑒𝑖2𝜔𝑟𝑡
(75)

with 𝜔𝑟 is defined in Eq. (59). Then, Eq. (75) is a linear system of coupled equations. At this point, we expand the coefficients
𝑐𝑛(𝑡) in a power expansion of 𝛽:

𝑐𝑛(𝑡) = 𝛽0𝑐0𝑛 + 𝛽
1𝑐1𝑛 (𝑡) + 𝛽

2𝑐2𝑛 (𝑡) + ... (76)
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Then, putting Eq. (76) into Eq. (75), and setting equal order on 𝛽 in both sides of the equation, we end up with several equations
for different orders. For the zero order we have:

𝛽0𝑖ℏ
𝑑𝑐00 (𝑡)
𝑑𝑡

= 0 𝛽0𝑖ℏ
𝑑𝑐01 (𝑡)
𝑑𝑡

= 0 (77)
and for the first order:

𝛽𝑖ℏ
𝑑𝑐10 (𝑡)
𝑑𝑡

= 𝛽𝑐01 (𝑡)ℏ𝜔𝐼 sin(𝜔𝑡)𝑒−𝑖2𝜔𝑟𝑡 𝛽𝑖ℏ
𝑑𝑐11 (𝑡)
𝑑𝑡

= 𝛽𝑐00 (𝑡)ℏ𝜔𝐼 sin(𝜔𝑡)𝑒𝑖2𝜔𝑟𝑡 (78)
So we can see that by determining the zeroth order coefficient in the first place, higher order coefficients can be computed with
the recurrent relation.

Exercise 3.2.8 — Perturbative evaluation of 𝑐0(𝑡) and 𝑐1(𝑡)

If we set the initial conditions to be 𝑐0 = 1, 𝑐1 = 0, we get:

| ⟨1|𝜓(𝑡)⟩ |2 = |𝑐1(𝑡)|2 =
𝜔2
𝐼
4

|

|

|

|

1 − 𝑒𝑖(𝜔+2𝜔𝑟)𝑡
𝜔 + 2𝜔𝑟

− 1 − 𝑒−𝑖(𝜔−2𝜔𝑟)𝑡
2𝜔𝑟 − 𝜔

|

|

|

|

2
(79)

On the other hand, starting from the excited state 𝑐0 = 0, 𝑐1 = 1, the transition probability to the ground state is:

| ⟨0|𝜓(𝑡)⟩ |2 = |𝑐0(𝑡)|2 =
𝜔2
𝐼
4

|

|

|

|

1 − 𝑒𝑖(𝜔+2𝜔𝑟)𝑡
𝜔 + 2𝜔𝑟

+ 1 − 𝑒−𝑖(𝜔−2𝜔𝑟)𝑡
2𝜔𝑟 − 𝜔

|

|

|

|

2
(80)

See the detailed solution of this exercise in 5.16 at page 52

The final result Eq. (79) includes both the rapid and the slow oscillating terms, without the rotating wave approximation,
thus being much more precise than Eq. (71), but only as long the initial non-zero state 𝑐𝑛(𝑡) remains similar to 𝑐𝑛(0) = 1. This
means that 𝑡 << ℏ∕𝐸0 for 𝑐0(𝑡) → 𝑐1(𝑡) and 𝑡 << ℏ∕𝐸1 for 𝑐1(𝑡) → 𝑐0(𝑡). To extend the solution to larger times, higher-order
solutions should be computed. The final result Eq. (79) and Eq. (80) can also be found in [9]. This perturbative approximation
are discussed in simulation 4.4.1 at page 30.

3.3 Matter as quantum trajectory and light as classical trajectory
In classical mechanics, typically, the electron is represented by a trajectory 𝑥(𝑡) as seen in Section 3.1. An ensemble of
𝑗 = 1, 2, ..., 𝑁 (identical) experiments, each one described by its trajectory 𝑥𝑗(𝑡), can be used to define a classical probability
density 𝜌𝑐𝑙(𝑥, 𝑡) as:

𝜌𝑐𝑙(𝑥, 𝑡) = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝛿(𝑥 − 𝑥𝑗(𝑡)) (81)

If required, a similar distribution can be defined for a classical current probability distribution:

𝐽𝑥,𝑐𝑙(𝑥, 𝑡) = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝛿(𝑥 − 𝑥𝑗(𝑡))

𝑑𝑥𝑗(𝑡)
𝑑𝑡

. (82)

According to the Hamilton-Jacobi theorem, such probability densities can be translated into a classical wave function solution
of a classical wave equation [5]. Thus, the concept of wave function is also applicable to classical systems. See the simulation
4.1.2 at page 24.

In quantum mechanics typically, the electron is represented by a wave function Ψ(𝑥, 𝑡) as seen in Section 3.2, whose density
probability |Ψ(𝑥, 𝑡)|2 can be understood as the probability distribution when many (identical) experiments are considered.
According to Hydrodynamic (or Bohmian) formulation of quantum mechanics, a description of quantum phenomena in terms
of quantum trajectories is also possible [5–7]. In particular, the time-evolution of 𝜌(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2 can be defined from a
set of quantum trajectories, {𝑥𝑗(𝑡)}, satisfying at all times:

𝜌(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2 = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝛿(𝑥 − 𝑥𝑗(𝑡)) (83)
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Next, we show how to define such set of trajectories that satisfy Eq. (83).
Exercise 3.3.1 — Continuity equation in quantum mechanics

Show that there is a local continuity equation associated with the Hamiltonian in Eq. (38) given by:
𝜕𝜌(𝑥, 𝑡)
𝜕𝑡

+ 𝜕
𝜕𝑥
𝐽𝑥(𝑥, 𝑡) = 0 (84)

with
𝐽𝑥(𝑥, 𝑡) = 𝑖 ℏ

2𝑚𝑒

(

𝜓(𝑥, 𝑡)
𝜕𝜓∗(𝑥, 𝑡)
𝜕𝑥

− 𝜓∗(𝑥, 𝑡)
𝜕𝜓(𝑥, 𝑡)
𝜕𝑥

)

= ℏ
𝑚𝑒
𝐼𝑚

(

Ψ(𝑥, 𝑡)
𝑑𝑥

Ψ∗(𝑥, 𝑡)
)

(85)

See the detailed solution of this exercise in 5.17 at page 52

If we define the velocity of such trajectories from Eq. (85) as:

𝑣(𝑥, 𝑡) =
𝐽𝑥(𝑥, 𝑡)
|𝜓(𝑥, 𝑡)|2

= ℏ
𝑚𝑒
𝐼𝑚

⎛

⎜

⎜

⎝

Ψ(𝑥,𝑡)
𝑑𝑥

Ψ(𝑥, 𝑡)

⎞

⎟

⎟

⎠

(86)

them the trajectory can be defined as:
𝑥𝑗(𝑡) = 𝑥𝑗(𝑡0) + ∫

𝑡

𝑡0
𝑣(𝑥𝑗(𝑡′), 𝑡′)𝑑𝑡′ (87)

where 𝑥𝑗(𝑡0) is the initial position. Two trajectories representing the same experiment (“guided” by the same wave function)
are different if they have different initial conditions, and they are labeled by a different subscript 𝑗. Then, the continuity
equation in Eq. (84) can be rewritten as:

𝜕𝜌(𝑥, 𝑡)
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡)) = 0 (88)
Finally, we realize that if a set of (infinite) Bohmian trajectories {𝑥𝑗(𝑡0)} satisfies the distribution |𝜓(𝑥, 𝑡0)|2 at the initial
time 𝑡0, then, these trajectories exactly reproduce the quantum probability at any time as described by Eq. (83) because of the
continuity equation in Eq. (88). See Ref. [5–7]. Notice that Eq. (86) can be written also as 𝐽𝑥(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2𝑣(𝑥, 𝑡), then,
using Eq. (83) we get:

𝐽𝑥(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2𝑣(𝑥, 𝑡) = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝛿(𝑥 − 𝑥𝑗(𝑡))𝑣(𝑥𝑗(𝑡), 𝑡). (89)

which has the same structure as Eq. (82), but the classical and quantum velocities (and so the trajectories) are different giving
different classical and quantum distributions. 5

3.4 Matter as classical trajectory and light as quantum wave
Similarly to what we have done in Section 3.2 for a quantum electron interacting with a classical light, we consider here a
classical electron interacting with a classical light. We use again the canonical quantization. We promote the classical variables
𝑞 and 𝑠 used to describe the light in Eq. (30) to quantum operators and impose commutation relations among them:

𝑞 → 𝑞 and 𝑠̂→ −𝑖 𝜕
𝜕𝑞

(90)

that satisfy the commutation relations [𝑠̂, 𝑞] = 𝑖𝟙. From Eq. (30), we get 𝑝 = 𝑝(𝑡) and 𝑥 = 𝑥(𝑡) so that:

𝐻 = (𝐻𝑅 +𝐻𝐼 ) =
ℏ𝜔
2

(

− 𝜕2

𝜕𝑞2
+ 𝑞2

)

+ 𝛼𝑥(𝑡)𝑞 (91)
5The quantum uncertainty is satisfied by these trajectories because of Eq. (83). Despite each experiment is described by a trajectory, we cannot know

which trajectory is associated to each experiment because there are many possible initial positions 𝑥𝑗 (𝑡0) associated with the same wave function probability
|𝜓(𝑥, 𝑡0)|2. The only experiment were it would be possible to anticipate the initial position with certainty is an experiment where the initial wave function
probability is described by |𝜓(𝑥, 𝑡0)|2 = 𝛿(𝑥− 𝑥0). Then, all initial positions in all experiments will be 𝑥𝑗 (𝑡0) = 𝑥0, but this is not a typical initial conditions
in quantum experiments, and the delta function 𝛿(𝑥 − 𝑥0) is just a mathematical limit that cannot be achieved in the laboratory.
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where 𝑝(𝑡)2
2𝑚 + 𝑉 (𝑥(𝑡)) is just a pure time-dependent term related with an offset of energy. The Hamiltonian Eq. (91) contains

the energy of the radiation, plus a time dependent interaction Hamiltonian reflecting that the effect of the matter on the light
is treated as an external potential. The matter affects the light, but the light does not affect the matter.

Exercise 3.4.1 — Radiation energy in terms of creation and annihilation operators

Show that the part of the Hamiltonian in Eq. (91) related to the electromagnetic energy can be written as:
ℏ𝜔
2

(

− 𝜕2

𝜕𝑞2
+ 𝑞2

)

→ 𝐻̂𝑅 = ℏ𝜔
(1
2
+ 𝑎̂†𝑎̂

)

(92)

in terms of the so-called creation 𝑎̂† and the annihilation operators 𝑎̂.
See the detailed solution of this exercise in 5.18 at page 53

A description of an ensemble of experiments is encapsulated from the wave function , which is a solution of the following
Schrodinger equation:

𝑖ℏ
𝜕Ψ(𝑞, 𝑡)
𝜕𝑡

= −ℏ𝜔
2
𝜕2Ψ(𝑞, 𝑡)
𝜕𝑞2

+ ℏ𝜔
2
𝑞2Ψ(𝑞, 𝑡) + 𝛼𝑥(𝑡)𝑞Ψ(𝑞, 𝑡), (93)

The term |Ψ(𝑞, 𝑡)|2 is a probability distribution of 𝑞 (proportional to the amplitude of the electric field). It will be very
enlightening to discuss Ψ(𝑞, 𝑡) when we neglect the interaction with the matter. Then, we deal with a the well-known quantum
harmonic oscillator.

Exercise 3.4.2 — Quantum states in a parabolic well

Compute the energy eigenstates 𝜓𝑚(𝑞) of the light in a parabolic well and show that their eigenenergies are given by:

𝐸𝑚 = ℏ𝜔
(

𝑚 + 1
2

)

(94)

with 𝑚 = 0, 1, 2, 3, .. the index of the (normalized) eigenstate:

𝜓𝑚(𝑞) =
( 1
𝜋

)1∕4 𝐻𝑚(𝑞)
√

2𝑚𝑚!
𝑒−𝑞

2∕2 (95)

See the detailed solution of this exercise in 5.19 at page 53

Then, we can rewrite the wave function Ψ(𝑞, 𝑡) solution of Eq. (39) as

Ψ(𝑞, 𝑡) =
𝑀
∑

𝑚=0
𝑐𝑚(𝑡)𝜓𝑚(𝑞), (96)

with
𝑐𝑚(𝑡) = ∫ 𝑑𝑥 𝜓∗

𝑚(𝑞)Ψ(𝑞, 𝑡) (97)

where 𝜙𝑚(𝑞) are the states of an infinite quantum well studied before. The equation of motion of the coefficient 𝑐𝑚(𝑡) is:

𝑖ℏ
𝑀
∑

𝑚=0

𝑑𝑐𝑚(𝑡)
𝑑𝑡

𝜓𝑚(𝑞) = (𝐻𝑅 +𝐻𝐼 )
𝑀
∑

𝑚=0
𝑐𝑚(𝑡)𝜓𝑚(𝑞) =

𝑀
∑

𝑚=0
𝐸𝑚,𝑝𝑐𝑚(𝑡)𝜓𝑚(𝑞) + 𝛼𝑥(𝑡)𝑞

𝑀
∑

𝑚=0
𝑐𝑚(𝑡)𝜓𝑚(𝑞) (98)

Finally, we get:

𝑖ℏ
𝑑𝑐𝑚(𝑡)
𝑑𝑡

= 𝐸𝑚,𝑝𝑐𝑚(𝑡) + 𝛼𝑥(𝑡)
𝑀
∑

𝑚′=0
𝑐𝑚′ (𝑡)∫ 𝑑𝑞𝜓∗

𝑚(𝑞)𝑞𝜓𝑚′ (𝑞) (99)
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Exercise 3.4.3 — No conservation of the energy of the electron

Show that the energy of the light interacting is not conserved, i.e., 𝑑⟨𝐻(𝑡)⟩
𝑑𝑡 = 𝛼

𝑚𝑒
⟨𝑞(𝑡)⟩𝑝(𝑡).

See the detailed solution of this exercise in 5.20 at page 54

3.5 Matter as classical trajectory and light as quantum trajectory
Identically to what we have done in section 3.3, for the classical light, an ensemble of (identical) experiments, each one
described by the same optical cavity but different initial conditions for 𝑞𝑐𝑙(𝑡), can be used to define a classical probability
density 𝜌𝑐𝑙(𝑞𝑐𝑙, 𝑡) as:

𝜌𝑐𝑙(𝑞, 𝑡) = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝛿(𝑞 − 𝑞𝑗,𝑐𝑙(𝑡)) (100)

If required, a similar distribution can be defined for a classical current probability distribution related to 𝑞(𝑡) as:

𝐽𝑞,𝑐𝑙(𝑞, 𝑡) = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝛿(𝑞 − 𝑞𝑗,𝑐𝑙(𝑡))

𝑑𝑞𝑗,𝑐𝑙(𝑡)
𝑑𝑡

. (101)

According to the Hamilton-Jacobi theorem, such probability densities can be translated into a classical wave function solution
of a classical wave equation. Thus, the concept of wave function is also applicable to classical systems. See the simulation
4.1.2 at page 24.

Identically to what we have done in section 3.3, according to the hydrodynamic (or Bohmian) formulation of quantum
mechanics, the time evolution of |Ψ(𝑞, 𝑡)|2 mentioned in section 3.4 can be described in terms of quantum trajectories [8]. The
description of the time-evolution of 𝜌(𝑞, 𝑡) = |Ψ(𝑞, 𝑡)|2 is given as a sum of quantum trajectories by:

𝜌(𝑞, 𝑡) = |Ψ(𝑞, 𝑡)|2 = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝛿(𝑞 − 𝑞𝑗(𝑡)) (102)

Next, we show how to define such set of trajectories that satisfy Eq. (102).
Exercise 3.5.1 — Continuity equation in quantum mechanics

Show that there is a local continuity equation associated with Eq. (93) given by:
𝜕𝜌(𝑞, 𝑡)
𝜕𝑡

+ 𝜕
𝜕𝑞
𝐽𝑞(𝑞, 𝑡) = 0 (103)

with
𝐽𝑞(𝑞, 𝑡) = 𝑖𝜔

2

(

𝜓(𝑞, 𝑡)
𝜕𝜓∗(𝑞, 𝑡)
𝜕𝑞

− 𝜓∗(𝑞, 𝑡)
𝜕𝜓(𝑞, 𝑡)
𝜕𝑞

)

= 𝜔𝐼𝑚
(

Ψ(𝑞, 𝑡)
𝑑𝑞

Ψ∗(𝑞, 𝑡)
)

(104)

See the detailed solution of this exercise in 5.21 at page 55

If we define the velocity of such trajectories from Eq. (104) as:

𝑣𝑞(𝑞, 𝑡) =
𝐽𝑞(𝑞, 𝑡)

|𝜓(𝑞, 𝑡)|2
= 𝜔𝐼𝑚

⎛

⎜

⎜

⎝

Ψ(𝑞,𝑡)
𝑑𝑞

Ψ(𝑞, 𝑡)

⎞

⎟

⎟

⎠

(105)

them the trajectory can be defined as:
𝑞𝑗(𝑡) = 𝑞𝑗(𝑡0) + ∫

𝑡

𝑡0
𝑣𝑞(𝑞𝑗(𝑡′), 𝑡′)𝑑𝑡′ (106)

where 𝑞𝑗(𝑡0) is the initial position. Two trajectories representing the same experiment (“guided” by the same wave function) are
different if they have different initial conditions, and they are labeled by a different subscript 𝑗. Then, the continuity equation
in Eq. (103) can be rewritten as:

𝜕𝜌(𝑞, 𝑡)
𝜕𝑡

+ 𝜕
𝜕𝑞

(𝜌(𝑞, 𝑡)𝑣𝑞(𝑞, 𝑡)) = 0 (107)
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Finally, we realize that if a set of (infinite) Bohmian trajectories {𝑞𝑗(𝑡0)} satisfies the distribution |𝜓(𝑞, 𝑡0)|2 at the initial time
𝑡0, then, these trajectories exactly reproduce the quantum probability at any time as described by Eq. (103) because of the
continuity equation in Eq. (107). Notice that the current density can be written from Eq. (105) cas 𝐽𝑞(𝑥, 𝑡) = |𝜓(𝑞, 𝑡)|2𝑣𝑞(𝑞, 𝑡),then, using Eq. (102) we get:

𝐽𝑞(𝑞, 𝑡) = |𝜓(𝑞, 𝑡)|2𝑣𝑞(𝑞, 𝑡) = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝛿(𝑞 − 𝑞𝑗(𝑡))𝑣𝑞(𝑞𝑗(𝑡), 𝑡). (108)

which has the same structure as Eq. (101), but the classical and quantum velocities (and so the trajectories) are different giving
different classical and quantum distributions.6

3.6 Matter as quantum wave and light as quantum wave
Finally, by using the canonical quantization in Eq. (37) and Eq. (90) to describe the quantum nature of electrons and electro-
magnetic field simultaneously, the following Hamiltonian is found:

𝐻 = (𝐻𝑀 +𝐻𝑅 +𝐻𝐼 ) = − ℏ2

2𝑚𝑒
𝜕2

𝜕𝑥2
+ 𝑉 (𝑥) + ℏ𝜔

2

(

− 𝜕2

𝜕𝑞2
+ 𝑞2

)

+ 𝛼𝑥𝑞 (109)

which involves the two-dimensional Schrödinger equation,

𝑖ℏ
𝜕Ψ(𝑥, 𝑞, 𝑡)

𝜕𝑡
= − ℏ2

2𝑚𝑒
𝜕2Ψ(𝑥, 𝑞, 𝑡)

𝜕𝑥2
+ 𝑉 (𝑥)Ψ(𝑥, 𝑞, 𝑡)−ℏ𝜔

2
𝜕2Ψ(𝑥, 𝑞, 𝑡)

𝜕𝑞2
+ ℏ𝜔

2
𝑞2Ψ(𝑥, 𝑞, 𝑡)+𝛼𝑥𝑞Ψ(𝑥, 𝑞, 𝑡), (110)

The wave functionΨ(𝑥, 𝑞, 𝑡) is defined in the x-q configuration space. Then, by using the eigenenergies Eq. (40) and eigenstates
Eq. (41) as a base of the the degree of freedom of the electron, and the eigenenergies Eq. (94) and eigenstates Eq. (95) as a
base of the degree of freedom of the light, we can rewrite the wave function Ψ(𝑥, 𝑞, 𝑡) solution of Eq. (110) as

Ψ(𝑥, 𝑞, 𝑡) =
𝑁
∑

𝑛=0

𝑀
∑

𝑚=0
𝑐𝑛,𝑚(𝑡)𝜙𝑛(𝑥)𝜓𝑚(𝑞), (111)

with
𝑐𝑛,𝑚(𝑡) = ∫ 𝑑𝑞 ∫ 𝑑𝑥 𝜙∗

𝑛(𝑥)𝜓
∗
𝑚(𝑞)Ψ(𝑥, 𝑞, 𝑡) (112)

The equation of motion of the coefficient 𝑐𝑛,𝑚(𝑡) is:

𝑖 ℏ
𝑁
∑

𝑛=0

𝑀
∑

𝑚=0

𝑑𝑐𝑛,𝑚(𝑡)
𝑑𝑡

𝜙𝑛(𝑥)𝜓𝑚(𝑞) = (𝐻𝑀 +𝐻𝑅 +𝐻𝐼 )
𝑁
∑

𝑛=0

𝑀
∑

𝑚=0
𝑐𝑛,𝑚(𝑡)𝜙𝑛(𝑥)𝜓𝑚(𝑞)

=
𝑁
∑

𝑛=0

𝑀
∑

𝑚=0
𝐸𝑛,𝑒𝑐𝑛,𝑚(𝑡)𝜙𝑛(𝑥)𝜓𝑚(𝑞) +

𝑁
∑

𝑛=0

𝑀
∑

𝑚=0
𝐸𝑚,𝑝𝑐𝑛,𝑚(𝑡)𝜙𝑛(𝑥)𝜓𝑚(𝑞) + 𝛼𝑥𝑞

𝑁
∑

𝑛=0

𝑀
∑

𝑚=0
𝑐𝑛,𝑚(𝑡)𝜙𝑛(𝑥)𝜓𝑚(𝑞) (113)

Finally, we get:

𝑖ℏ
𝑑𝑐𝑛,𝑚(𝑡)
𝑑𝑡

= (𝐸𝑛,𝑒 + 𝐸𝑚,𝑝)𝑐𝑛,𝑚(𝑡) + 𝛼
𝑁
∑

𝑛′=0

𝑀
∑

𝑚′=0
𝑐𝑛′,𝑚′ (𝑡)∫ 𝑑𝑥𝜙∗

𝑛(𝑥)𝑥𝜙𝑛′ (𝑥)∫ 𝑑𝑞𝜓∗
𝑚(𝑞)𝑞𝜓𝑚′ (𝑞) (114)

Exercise 3.6.1 — Conservation of the energy of the electron and photon

Show that the energy of the electron plus light is conserved,
𝑑⟨𝐻(𝑡)⟩
𝑑𝑡

= 0. (115)

6The quantum trajectory 𝑞𝑗 (𝑡) is not a trajectory in physical space, but just a description of the evolution of the parameter 𝑞, related to the amplitude of
the electromagnetic field, as a function of time in the 𝑞 space.
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See the detailed solution of this exercise in 5.22 at page 55

3.6.1 Quantum Rabi Oscillations

In Sec. 3.2 we have already studied the Rabi oscillations from a semi-classical viewpoint. The same phenomena of the Rabi
oscillations are revisited with a full quantum treatment. For example, if we consider Eq. (114) up to 𝑁 = 1 and 𝑀 = 1,
which means we only take into account the ground and the first excited state of the electron and the light. We can describe
this problem with the following four eigenstates of the Hamiltonian 𝐻𝑀 +𝐻𝑅 of Eq. (109):

⟨𝑥, 𝑞|0, 0⟩ = 𝜙∗
0(𝑥)𝜓

∗
0 (𝑞),

⟨𝑥, 𝑞|0, 1⟩ = 𝜙∗
0(𝑥)𝜓

∗
1 (𝑞),

⟨𝑥, 𝑞|1, 0⟩ = 𝜙∗
1(𝑥)𝜓

∗
0 (𝑞),

⟨𝑥, 𝑞|1, 1⟩ = 𝜙∗
1(𝑥)𝜓

∗
1 (𝑞) (116)

with energy eigenvalues:
𝐻̂𝑀 + 𝐻̂𝑅 |𝑛, 𝑚⟩ = (𝐸𝑛,𝑒 + 𝐸𝑚,𝑝) |𝑛, 𝑚⟩ (117)

where 𝐸𝑛,𝑒 is the eigenenergy of the electron and 𝐸𝑚,𝑝 of the light. Now we introduce the interaction term 𝐻𝐼 between the
electron and the photon as an additional term to the full Hamiltonian 𝐻 = 𝐻𝑀 +𝐻𝑅 +𝐻𝐼 of Eq. (109) so that we define the
matrix component components 𝐻𝑖,𝑛,𝑚 can be computed by:

𝐻𝑖,𝑛,𝑚 = 𝛼
1
∑

𝑛′=0

1
∑

𝑚′=0
∫ 𝑑𝑥𝜙∗

𝑛(𝑥)𝑥𝜙𝑛′ (𝑥)∫ 𝑑𝑞𝜓∗
𝑚(𝑞)𝑞𝜓𝑚′ (𝑞) (118)

This problem, with no approximations, is solved numerically in the simulation 4.8.1 at page 37. Under some approximation,
an analytical model for the Rabi oscillations can be found through the so-called Jaynes-Cummings model as discussed in next
section.

3.6.2 Jaynes-Cummings model

The so-called Jaynes-Cummings model describes a two-level atom with a ground state |0⟩ and an excited state |1⟩, interacting
with an electromagnetic field inside an optical cavity. In this simplified case, we consider the complete system using the
four possible states |0, 𝑚⟩ , |0, 𝑚 + 1⟩ , |1, 𝑚⟩ , |1, 𝑚 + 1⟩ as an orthonormal basis of our Hilbert space, where 𝑚 represents the
number of photons in the system. For convenience, we can rewrite the the full Hamiltonian𝐻 = 𝐻𝑀 +𝐻𝑅+𝐻𝐼 of Eq. (109)
in terms of the photon creation, 𝑎̂† and annihilation, 𝑎̂, operators:

𝐻̂𝑀 = ℏ𝜔0|0⟩⟨0| + ℏ𝜔1|1⟩⟨1|,

𝐻𝑅 = ℏ𝜔(𝑎†𝑎 + 1
2
),

𝐻𝐼 = ℏ𝜔𝐼,𝑚(|0⟩⟨1| + |1⟩⟨0|)(𝑎 + 𝑎†). (119)
where 𝐸0,𝑒 = ℏ𝜔0 and 𝐸1,𝑒 = ℏ𝜔1 of Eq. (119) are the electron energy of the ground and excited states, respectively. Looking
at Eq. (118), we defined now a new interacting frequency for the quantum case defined as quantum interacting frequency
𝜔𝐼,𝑚 as

𝜔𝐼,𝑚 ≡
𝛼
⟨

𝜙∗
1
|

|

|

𝑥 |
|

𝜙0⟩
⟨

𝜓∗
𝑚
|

|

𝑞 |
|

𝜓𝑚+1
⟩

ℏ
. (120)

In the definition of 𝜔𝐼,𝑚 we have assume that the electron can have states |0⟩ and |1⟩, while the light can be described by |𝑚⟩
and |𝑚 + 1⟩. The operator 𝑎̂†𝑎̂ |𝑚⟩ = 𝑚 |𝑚⟩ gives the number of photons as discussed in Exercise 3.4.1 at page 18. The 𝐻𝐼term is able to induce transitions among the electron+photon states Out of its four terms, |0⟩⟨1|𝑎̂† stands for a transition from
|1, 𝑚⟩ to |0, 𝑚 + 1⟩ through the absorption of a photon, while |1⟩⟨0|𝑎̂ stands for the opposite process, both conserving the total
electron-photon energy:

|0⟩⟨1|𝑎̂† |1, 𝑚⟩ =
√

𝑚 + 1 |0, 𝑚 + 1⟩

|1⟩⟨0|𝑎̂ |0, 𝑚 + 1⟩ =
√

𝑚 + 1 |1, 𝑚⟩ (121)
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If one is not far from resonance, in the rotating wave approximation spirit, the the terms |0⟩⟨1|𝑎̂ and |1⟩⟨0|𝑎̂† can be neglected,
so that Eq. (119) becomes:

𝐻𝐼 = ℏ𝜔𝐼,𝑚(|0⟩⟨1|𝑎† + |1⟩⟨0|𝑎). (122)
with 𝜔𝐼 defined in Eq. (49) (using 𝐴𝑐𝑙 = 1). Then, the general solution becomes (again) a two-level system:

|Ψ(𝑡)⟩ = 𝑐0,𝑚+1(𝑡)|0, 𝑚 + 1⟩ + 𝑐1,𝑚(𝑡)|1, 𝑚⟩ (123)
whose Schödinger equation in the matrix representation:
⎧

⎪

⎨

⎪

⎩

𝑖ℏ
𝑑𝑐0,𝑚+1(𝑡)

𝑑𝑡
= 𝑐0,𝑚+1(𝑡)(𝐸0,𝑒 + 𝐸1,𝑝) + 𝑐1,𝑚(𝑡)𝜔𝑅,𝑚

𝑖ℏ
𝑑𝑐1,𝑚(𝑡)
𝑑𝑡

= 𝑐1,𝑚(𝑡)(𝐸1,𝑒 + 𝐸0,𝑝) + 𝑐0,𝑚+1(𝑡)𝜔𝑅,𝑚
⟹ 𝑖ℏ

( 𝑑𝑐0,𝑚+1(𝑡)
𝑑𝑡

𝑐1,𝑚(𝑡)
𝑑𝑡

)

=
(

𝐸0,𝑒 + 𝐸𝑚+1,𝑝 ℏ𝜔𝑅,𝑚
ℏ𝜔𝑅,𝑚 𝐸1,𝑒 + 𝐸𝑚,𝑝

)(

𝑐0,𝑚+1(𝑡)
𝑐1,𝑚(𝑡)

)

(124)

We have defined the new frequency 𝜔𝑅,𝑚 as:
𝜔𝑅,𝑚 = 𝜔𝐼,𝑚

√

𝑚 + 1 (125)
Using the change 𝑐𝑛,𝑚(𝑡) = 𝑐𝑛,𝑚(𝑡)𝑒

−(𝐸𝑛,𝑒+𝐸𝑚,𝑝)𝑡∕ℏ we get:
⎧

⎪

⎨

⎪

⎩

𝑖
𝑑𝑐0,𝑚+1(𝑡)

𝑑𝑡
= 𝑐1,𝑚(𝑡)𝜔𝑅,𝑚𝑒−𝑖2Δ𝑚𝑡

𝑖
𝑑𝑐1,𝑚(𝑡)
𝑑𝑡

= 𝑐0,𝑚+1(𝑡)𝜔𝑅,𝑚𝑒+𝑖2Δ𝑚𝑡
(126)

where Δ𝑚 is defined as the quantum detuning parameter:

Δ𝑚 =
𝐸0,𝑒 − 𝐸1,𝑒 − (𝐸𝑚+1,𝑝 − 𝐸𝑚,𝑝)

2ℏ
(127)

The solution of the system is done in the exercise below:
Exercise 3.6.2 — Evaluation of 𝑐0,𝑚+1(𝑡) and 𝑐1,𝑚(𝑡)

If we set the initial conditions to be 𝑐0 = 1, 𝑐1 = 0, we get:

| ⟨0|Ψ(𝑡)⟩ |2 = |𝑐0(𝑡)|2 =
𝜔2
𝑅,𝑚

𝜔2
𝑅,𝑚 + Δ2

𝑚
sin2(Ω𝑅,𝑚𝑡) (128)

See the detailed solution of this exercise in 5.23 at page 56

where 𝜔𝑅,𝑚 is defiend in Eq. (125) and Ω𝑅,𝑚 is the quantum Rabi angular frequency defined as:

Ω𝑅,𝑚 =
√

𝜔2
𝑅,𝑚 + Δ2

𝑚 (129)
In the semi-classical case, when the electromagnetic field is absent (zero photons) and the system starts in the electron’s excited
state |1⟩, there is no evolution because it is an eigenstate of the Hamiltonian. Consequently, the system remains in this state
indefinitely. However, in the quantum case, if we remove the radiation field—i.e., there are no photons (𝑚 = 0)—the solution
becomes [8]. So we see that in the quantum case, even without an electromagnetic field, the system has transitions from the
ground to the excited states due to spontaneous photon emission.

Exercise 3.6.3 — Computation of quantum Rabi angular frequency Ω𝑅,0

For a system with one electron with a mass of 0.042 times the free electron mass, oscillating between the ground and
excited state of a quantum well with a length𝐿𝑥 = 16 nm, and light oscillating between ground and excited state of the
harmonic oscillator inside an optical cavity of length 𝐿𝑐 = 5930 nm, with an interaction parameter given by 𝛼 = 0.01
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eV/nm, show that quantum Rabi angular frequency in Eq. (129) gives:

Ω𝑅,0 =
√

𝜔2
𝑅,0 + Δ2

𝑚 = 𝜔𝑅,𝑚 =
𝛼 ⟨0| 𝑥̂ |1⟩ ⟨0| 𝑞 |1⟩

ℏ
= 30 rad/ps. (130)

The angular frequency can be translated into a linear frequency, giving ≈ 4.7 THz. This computation of the frequency
is used in simulation 4.8.1 at page 37.
See the detailed solution of this exercise in 5.15 at page 51

3.7 Matter as quantum trajectory and light as quantum trajectory
Identically to what we have done in sections 3.3 and 3.5, according to the hydrodynamic (or Bohmian) formulation of quantum
mechanics, the time evolution of |Ψ(𝑥, 𝑞, 𝑡)|2 mentioned in section 3.6 can be described in terms of quantum trajectories [8].
The description of the time-evolution of 𝜌(𝑥, 𝑞, 𝑡) = |Ψ(𝑥, 𝑞, 𝑡)|2 is given as a sum of quantum trajectories by:

𝜌(𝑥, 𝑞, 𝑡) = |Ψ(𝑥, 𝑞, 𝑡)|2 = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝛿(𝑥 − 𝑥𝑗(𝑡))𝛿(𝑞 − 𝑞𝑗(𝑡)) (131)

Exercise 3.7.1 — Continuity equation in quantum mechanics

Show that there is a local continuity equation associated with the Hamiltonian Eq. (109) given by:
𝜕𝜌(𝑥, 𝑞, 𝑡)

𝜕𝑡
+ 𝜕
𝜕𝑥
𝐽𝑥(𝑥, 𝑞, 𝑡) +

𝜕
𝜕𝑞
𝐽𝑞(𝑥, 𝑞, 𝑡) = 0 (132)

with

𝐽𝑥(𝑥, 𝑞, 𝑡) = 𝑖 ℏ
2𝑚𝑒

(

𝜓(𝑥, 𝑞, 𝑡)
𝜕𝜓∗(𝑥, 𝑞, 𝑡)

𝜕𝑥
− 𝜓∗(𝑥, 𝑡)

𝜕𝜓(𝑥, 𝑞, 𝑡)
𝜕𝑥

)

= ℏ
𝑚𝑒
𝐼𝑚

(

Ψ(𝑥, 𝑞, 𝑡)
𝑑𝑥

Ψ∗(𝑥, 𝑞, 𝑡)
)

(133)

and

𝐽𝑞(𝑥, 𝑞, 𝑡) = 𝑖𝜔
2

(

Ψ(𝑥, 𝑞, 𝑡)
𝜕Ψ∗(𝑥, 𝑞, 𝑡)

𝜕𝑞
− Ψ∗(𝑥, 𝑞, 𝑡)

𝜕Ψ(𝑥, 𝑞, 𝑡)
𝜕𝑞

)

= 𝜔𝐼𝑚
(

Ψ(𝑥, 𝑞, 𝑡)
𝑑𝑞

Ψ∗(𝑥, 𝑞, 𝑡)
)

(134)

See the detailed solution of this exercise in 5.25 at page 56

From these results, Eq. (132), Eq. (133) and Eq. (134), we can compute the velocity of the quantum trajectories as

𝑣𝑥(𝑥, 𝑞, 𝑡) =
𝐽𝑥(𝑥, 𝑞, 𝑡)
|Ψ(𝑥, 𝑞, 𝑡)|2

= ℏ
𝑚𝑒
𝐼𝑚

⎛

⎜

⎜

⎝

Ψ(𝑥,𝑞,𝑡)
𝑑𝑥

Ψ(𝑥, 𝑞, 𝑡)

⎞

⎟

⎟

⎠

(135)

and

𝑣𝑞(𝑥, 𝑞, 𝑡) =
𝐽𝑞(𝑥, 𝑞, 𝑡)

|Ψ(𝑥, 𝑞, 𝑡)|2
= 𝜔𝐼𝑚

⎛

⎜

⎜

⎝

Ψ(𝑥,𝑞,𝑡)
𝑑𝑞

Ψ(𝑥, 𝑞, 𝑡)

⎞

⎟

⎟

⎠

(136)

Such velocities, when time-integrated, leads to the 𝑥-trajectory:

𝑥𝑗(𝑡) = 𝑥𝑗(𝑡0) + ∫

𝑡

𝑡0
𝑣𝑥(𝑥𝑗(𝑡′), 𝑞𝑗(𝑡′), 𝑡′)𝑑𝑡′ (137)

and 𝑞-trajectory
𝑞𝑗(𝑡) = 𝑞𝑗(𝑡0) + ∫

𝑡

𝑡0
𝑣𝑞(𝑥𝑗(𝑡′), 𝑞𝑗(𝑡′), 𝑡′)𝑑𝑡′ (138)

Notice that the two trajectories are coupled because the computation of 𝑥𝑗(𝑡) needs 𝑣𝑥(𝑥𝑗(𝑡′), 𝑞𝑗(𝑡′), 𝑡′) which depends on 𝑞𝑗(𝑡′),and the computation of 𝑞𝑗(𝑡) needs 𝑣𝑞(𝑥𝑗(𝑡′), 𝑞𝑗(𝑡′), 𝑡′) which depends on 𝑥𝑗(𝑡′). See Ref. [8].
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4 Simulated experiments
Hereafter, there is a list of examples where you can visualize through animations the theoretical concepts mentioned in the
previous section. To run the examples, you need to install the QCslim.exe on your computer.

4.1 Classical simulation
In the following simulated experiments, the light is modeled by a classical trajectory 𝑞𝑐𝑙(𝑡) (plotted in the right top plot in the
QCslim) and the electron by a classical trajectory 𝑥𝑐𝑙(𝑡) (plotted in the left bottom plot in the QCslim) as explained in section
3.1.

Simulation 4.1.1 — Classical electron and classical light with no light-matter interaction

Simulate a classical electron and a classical light with no light-matter interaction (𝛼 = 0) in a single experiment

Goals and description of the simulation 4.1.1 at page 24

Goals of the simulation:

• Check that an electron, without interaction, follows a Newton law with a velocity fixed by the initial data of the
simulation and the electromagnetic field is just a sinusoidal signal with a frequency computed in the initial data,
as indicated in Exercise 3.1.1 at page 9

• Check that the 𝑞(𝑡) is proportional to the time-dependence of the amplitude of the electromagnetic field as seen
in Eq. (26). The parameter q(t) has no units as discussed in the note of section 2.4.

Description of the simulation:

• Open the file example1.json in the QCslim and check the parameters (in particular, 𝛼 = 0).
• Run the simulation and check the graphical results. The final plot in the QCslim for this particular animation

is seen in Figure 3. The trajectory of the electron 𝑥𝑐𝑙(𝑡) follows a free flight inside the quantum well until it
suffers a specular reflection when reaching the barriers of the quantum well. The velocity of the electron can
be evaluated as 𝑣𝑥0 = 5𝐿𝑥

90fs−10fs = 1 nm/fs with the length of the well 𝐿𝑥 = 16 nm. The amplitude of the light
𝑞𝑐𝑙(𝑡) is sinusoidal as determined by Eq. (35). From the cavity length 𝐿𝑐 = 5930 nm, , using Eq. (26), we get
𝜔 = 158 Trad/s or 25.30 THz.

Simulation 4.1.2 — Classical electron and classical light with light-matter interaction

Simulate the interaction (𝛼 ≠ 0) of a classical electron and a classical light.

Goals and description of the simulation 4.1.2 at page 24

Goals of the simulation:

• Analyze how the classical electron and classical light interact in the system described in section 3.1.
• Check that the larger the values of 𝑞𝑐𝑙(𝑡) and 𝑥𝑐𝑙(𝑡), the larger the interaction. Check that a small 𝛼 provides

almost no distortion on the trajectories. Such trajectories become comparable to the non-interacting trajectories
described in simulation 4.1.1 at page 24.

Description of the simulation:

• Open the file example2.json in the QCslim and check the parameters. The final plot in the QCslim for this
particular animation is seen in Figure 4.

• Run a simulation with ten times smaller interaction, i.e., 𝛼 = 0.001 eV/nm.
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Figure 3: This is the result of the simulation of the file example1.json for the simulation 4.1.1 at page 24.
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• Run a simulation with the initial 𝛼 = 0.01 eV/nm and fix 𝑥0 = 0 nm and 𝑣0 = 0 nm/fs, for the electron, and
𝑞0 = 0 and 𝑠0 = 0, for the light, in the “particle positions” box. The amplitude of the light is zero and the
oscillation of the electron is also zero. However, if we allow an electron to move (put 𝑣0 = 0.1 nm/fs) then the
oscillations of the light 𝑠𝑐𝑙(𝑡) and 𝑞𝑐𝑙(𝑡) are generated by variations of 𝑥𝑐𝑙(𝑡), as seen in 𝑑𝑠𝑐𝑙

𝑑𝑡 = −𝜔𝑞𝑐𝑙 −
𝛼
ℏ𝑥𝑐𝑙 and

𝑑𝑞𝑐𝑙
𝑑𝑡 = 𝜔𝑠𝑐𝑙 in Eq. (33).

Figure 4: This is the result of the simulation of the file example2.json for the simulation 4.1.2 at page 24.

4.2 Classical probability distributions
In the following simulated experiments, the light is modeled by a classical trajectory 𝑞𝑐𝑙(𝑡) (plotted in the right top plot in the
QCslim) and the electron by a classical trajectory 𝑥𝑐𝑙(𝑡) (plotted in the left bottom plot in the QCslim) as explained in section
3.1.

Simulation 4.2.1 — A classical probability distribution from an ensemble of experiments

Simulate the probability distribution of a classical electron and a classical light for an ensemble of𝑁 = 10 “identical”
experiments, with and without light-matter interaction.
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Goals and description of the simulation 4.2.1 at page 26

Goals of the simulation:

• Check how to construct a classical probability distribution 𝜌𝑐𝑙(𝑥, 𝑡) on the position 𝑥 of the electron for a (large)
ensemble of “identical” experiments as discussed in section 3.3.

• Identically, check how to construct a classical probability distribution 𝜌𝑐𝑙(𝑞, 𝑡) for the amplitude (without units)
𝑞 of the light for an ensemble of “identical” experiments as discussed in section 3.5. Here “identical” means,
the same quantum well and optical cavity, but different initial conditions for the electrons and the light. All
experiments involve only one electron and only one mode of the electromagnetic field. In each experiment, the
initial conditions of the electron are different (all experiments are plotted together in the same to represent
an ensemble of experiments, but this plot do not have to be confused with a N-body system).

Description of the simulation:

• Open the file example3.json in the QCslim and check the parameters. There is no interaction (𝛼 = 0 eV/nm)
and the selected distribution of the initial positions 𝑥𝑗,𝑐𝑙(0) and 𝑝𝑗,𝑐𝑙(0), and 𝑞𝑗,𝑐𝑙(0) and 𝑠𝑗,𝑐𝑙(0), is Gaussian for
light and matter.

• Run the simulation and check the graphical results. The final plot in the QCslim for this particular animation is
seen in Figure 5. Repeat the simulation several times. The results will change in each simulation because, each
time, the initial values are selected randomly from the Gaussian distribution. If needed, the initial values can be
fixed by hand in the “particle position” box of the QCslim. The probability distributions 𝜌𝑐𝑙(𝑥, 𝑡) and 𝜌𝑐𝑙(𝑞, 𝑡)can be constructed by counting trajectories (see Eq. (81) and Eq. (100)).

• Repeat the simulation with light matter interaction activated (𝛼 = 0.01 eV/nm) to visualize how the probability
distributions 𝜌𝑐𝑙(𝑥, 𝑡) and 𝜌𝑐𝑙(𝑞, 𝑡) change because of the interaction. The construction of the exact probabil-
ity distribution will require a large number of “identical” experiments (𝑁 → ∞). If required, a probability
distribution 𝜌(𝑥, 𝑞, 𝑡) can also be constructed by properly combining 𝜌𝑐𝑙(𝑥, 𝑡) and 𝜌𝑐𝑙(𝑞, 𝑡).

Figure 5: This is the result of the simulation of the file example3.json for the simulation 4.2.1 at page 26. The results will change in each simulation because
the initial values are selected randomly from the Gaussian distribution. If needed, the initial values can be fixed by hand in the QCslim.
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4.3 Electrons in an infinite well interacting with a classical light: A semiclassical simulation
In the following simulated experiment, the light is considered as a classical field described by 𝑞𝑐𝑙(𝑡), and the electron as a
quantum wave function as explained in section 3.2. Here, the eigenstates and the wave function of the electron will be plotted
in the left bottom plot. A plot in the bottom left will indicate the evolution of the different eigenstates that define the electron
wave function.

Simulation 4.3.1 — Electrons in an infinite well interacting with a classical light: A semiclassical simulation

Simulate a quantum electron and a classical light in a single experiment. In this particular type of simulation explained
in 3.2, the electron is described by the wave function Ψ(𝑥, 𝑡) as a superposition of the energy eigenstates 𝜙𝑛(𝑥) of an
infinite quantum well as described in Eq. (42)). The light is modeled, as an external parameter, by the classical
trajectory 𝑞𝑐𝑙(𝑡) defined as a sinusoidal signal solution of Eq. (35).

Goals and description of the simulation 4.3.1 at page 28

Goals of the simulation:

• The energy eigenstates 𝜙𝑛(𝑥) of an electron in an infinite quantum well are the energy eigenstates of the electron
Hamiltonian (see Exercise 3.2.1 at page 10). Thus, check that an initial electron at one eigenstate of the quantum
well Ψ(𝑥, 0) = 𝜙𝑛(𝑥), does not remain in such eigenstate as time goes by.

• Check that the energy is not conserved. The energy of the electron can change although the energy of the
(external) light does not change.

Description of the simulation:

• Open the file example4.json in the QCslim and check the parameters. In this particular example, the wave
function of the electron Ψ(𝑥, 𝑡) in Eq. (42) is a superposition of two eigenstates 𝜙0(𝑥) and 𝜙1(𝑥) of an electron
in the quantum well. Initially, the electron is at Ψ(𝑥, 0) = 𝜙1(𝑥) (with 𝑐0(0) = 0 and 𝑐1(0) = 0). For the length
of the well, 𝐿𝑥 = 16 nm, we get the energies𝐸0 = 0.035 eV and𝐸1 = 0.1401 eV for the electron from Eq. (40),
giving 𝜔 = 𝐸1−𝐸0

ℏ = 159𝑇 𝑟𝑎𝑑∕𝑠 or 25 THz. See Exercise 3.2.7 at page 15.
• Run the simulation and check the graphical results. The final plot in the QCslim for this particular animation

is seen in Figure 6. The probability of each eigenstate |𝑐𝑛(𝑡)|2 defined in Eq. (43) is plotted in the bottom right
subplot. See the change form a state defined by the eigenstate with energy 𝐸1 = 0.1401 eV to another with
energy given by 𝐸0 = 0.0350 eV, as indicated by Eq. (40).

• Change the parameters 𝛼 = 0 to check that the electron remains in its initial eigenstate all the time.
• For the initial parameter 𝛼 = 0.01 check that the electron remains in its initial eigenstate all the time when there

is no light (or the light has zero amplitude by fixing 𝑞0 = 0 and 𝑠0 = 0 in the “particle positions” box of the
QCslim).

• For the initial parameter 𝛼 = 0.01 check that the perturbation on the electron’s wave function is proportional to
how large the is 𝑞(𝑡). Use 𝑠0 = 5 and 𝑠0 = 0.1. Now, there is no restriction on the conservation of the electron
energy as seen in Eq. (46). The energy of the electron can change despite the energy of the (external) light does
not change.

4.4 Absorption and stimulated emission: exact, perturbative and rotating wave approximation
In the following simulated experiment, the light is considered as a classical field described by 𝑞𝑐𝑙(𝑡), and the electron as a
quantum wave function as explained in section 3.2. Here, the eigenstates and the wave function of the electron will be plotted
in the left bottom plot. A plot in the bottom left will indicate the evolution of the different eigenstates that define the electron
wave function. In the top left panel, we will plot the exact solution of the QC-SLIM, the perturbative approximation (see Sec.
3.2.3), and the approximation obtained with the rotating wave approximation (see Sec. 3.2.2).
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Figure 6: This is the result of the simulation of the file example4.json for the simulation 4.3.1 at page 28.

29

https://europe.uab.es/qcslim/examples.html


Within the semiclassical simulation described in simulation 4.3.1 at page 28, it is possible to get a first understanding of
the process of absorption and stimulated emission. However, as we will see here, it is not possible to simulate the spontaneous
emission when we consider 𝑞𝑐𝑙(𝑡) = 0 for all times.

Simulation 4.4.1 — Absorption and stimulated emission: exact, perturbative and rotating wave approximation

Simulate the transition of an electron in a quantum well from 𝜙1(𝑥) to 𝜙0(𝑥), and vice versa, when the light is under-
stood as an external (classical) time-dependent parameter. Check the exact solution of the QC-SLIM, the perturbative
approximation (see Sec. 3.2.3), and the approximation obtained with the rotating wave approximation (see Sec. 3.2.2).

Goals and description of the simulation 4.4.1 at page 30

Goals of the simulation:

• Check the simulation of stimulated emission and absorption with classical light. Check the exact solution of the
QC-SLIM, the perturbative approximation (see Sec. 3.2.3), and the approximation obtained with the rotating
wave approximation (see Sec. 3.2.2).

Description of the simulation:

• Open the file example5.json in the QCslim and check the parameters. Run the simulation and check the graphical
results. The final plot in the QCslim for this particular animation is seen in Figure 7. See how the electron
starting at the eigenstate 𝜙1(𝑥) of an electron in the quantum well with |𝑐1(𝑡)|2 = 1 becomes, after some time,
an eigenstate 𝜙0(𝑥) of an electron in the quantum well with |𝑐0(𝑡)|2 = 1. This process can be understood as
stimulated emission. Stimulated emission is a key concept in the operation of lasers. It occurs when an incoming
photon interacts with an excited atom or molecule, causing it to drop to a lower energy state and emit light. Here,
we do not see an increment of the energy of the light because in this semi classical simulation, the light is an
external parameter. See simulation 4.9.1 at page 41.

• In the top left panel, we will plot the exact solution of the QC-SLIM in black, the perturbative approximation
in blue (see Sec. 3.2.3), and the approximation obtained with the rotating wave approximation in red (see Sec.
3.2.2). In blue 𝑐0(𝑡) is plotted according to the final result Eq. (80) includes both the rapid and the slow oscillating
terms, without the rotating wave approximation, thus being much more precise than Eq. (71), but only as long as
but only as long the initial non-zero state 𝑐𝑛(𝑡) remains similar to 𝑐𝑛(0) = 1 (for larger time this approximation
gives unphysical probabilities greater than 1). In particular, for the conditions simulated here, with 𝑐1(0) = 1,
we get 𝑡 ≪ ℏ∕𝐸1 = 5 fs with 𝐸1 = 0.14 eV.

• Consider new a scenario involving also 𝜙0(𝑥), 𝜙1(𝑥) but changing the initial conditions. Fix the “Electron
coefs.” to 1 and 0 (instead of its initial values 0 and 1) in the “Semiclassical parameters box” of the QCslim
(as indicated in the file example5b.json). Now the electron initially at 𝜙0(𝑥) changes to 𝜙1(𝑥) because of the
light interaction. This process can be understood as the absorption of light. An electron increases its energy
by absorbing light and transitions to a higher energy state. This phenomenon is key to understanding various
physical processes and technologies, such as lasers, LEDs, and certain types of spectroscopy. Again, we do
not see an decrement of the energy of the light because in this semi classical simulation because the light is an
external parameter that is not explicitly simulated. See simulation 4.9.1 at page 41.

• In the top left panel, we will plot the exact solution of the QC-SLIM in black, the perturbative approximation
in blue (see Sec. 3.2.3), and the approximation obtained with the rotating wave approximation in red (see Sec.
3.2.2). In blue 𝑐1(𝑡) is plotted according to the final result Eq. (79) includes both the rapid and the slow oscillating
terms, without the rotating wave approximation, thus being much more precise than Eq. (71), but only as long as
but only as long the initial non-zero state 𝑐𝑛(𝑡) remains similar to 𝑐𝑛(0) = 1 (for larger time this approximation
gives unphysical probabilities greater than 1). In particular, for the conditions simulated here, with 𝑐0(0) = 1,
we get 𝑡 ≪ ℏ∕𝐸0 ≈ 20 fs with 𝐸0 = 0.035 eV.

• Check that the electron remains in its initial eigenstate all the time when 𝛼 ≠ 0 and there is no light (or
the light has zero amplitude by fixing 𝑞0 = 0 and 𝑠0 = 0 in the simulation). This result is compatible
with expressions Eq. (45) where we see that the “effective” interaction is the product of 𝛼 and 𝑞𝑐𝑙(𝑡) , i.e.,
𝛼 𝑞𝑐𝑙(𝑡)

∑𝑁
𝑛′=0 𝑐𝑛′ (𝑡) ∫ 𝑑𝑥 𝜙

∗
𝑛(𝑥) 𝑥 𝜙𝑛′ (𝑥). Thus, assuming 𝑞𝑐𝑙(𝑡) = 0 (and 𝛼 ≠ 0) is mathematically equivalent
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to assume 𝛼 = 0 (𝑞𝑐𝑙(𝑡) ≠ 0). This result has been used in the literature to argue that spontaneous emission
cannot be simulated with a classical (or semi-classical) picture of the light because the minimum value of the
light energy is zero. However, we have seen in simulation 4.1.2 at page 24 that spontaneous emission is possi-
ble with classical system when we only impose 𝑞𝑐𝑙(0) = 0 at the initial time (not at all times) and allow for the
electron to generate the light. A full quantum treatment of the spontaneous emission will be done in simulation
4.9.1 at page 41.

Figure 7: This is the result of the simulation of the file example5.json for the simulation 4.4.1 at page 30.

4.5 Semiclassical Rabi oscillations
In the semiclassical simulation, we have seen in the previous section that an electron in the ground state “jumps” to an electron
in the excited state because of its interaction with the light. Thus, it si possible to observe a continuous oscillation from
the ground to the excited state, and to the ground state again. This oscillation is known as semiclassical Rabi oscillation as
explained in Sec. 3.2.2.

Simulation 4.5.1 — Semiclassical Rabi oscillations

Simulate the semiclassical Rabi oscillations and check the results presented in Sec. 3.2.2.
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Goals and description of the simulation 4.5.1 at page 31

Goals of the simulation:

• Check the semiclassical Rabi frequency presented in Eq. (26).
• Check the Rabi frequency with and without energy resonance.

Description of the simulation:

• Open the file example5c.json in the QCslim and check the parameters. In particular, notice that 𝑐0(𝑡) = 0,
𝑐1(0) = 1, 𝑞0 = 0 and 𝑠0 = 1. Run the simulation and check the graphical results. The final plot in the QCslim
for this particular animation is seen in Figure 8. See the top left figure to compute the oscillations of |𝑐0(𝑡)|2. It
takes 𝑇 = 0.15 ps for one period. Notice that the electron frequency 𝑓𝑒 = 25 THz is equal to light frequency
𝑓 = 25 THz so that, under this resonance conditions, we can use the results of Exercise 3.2.6 at page 14 to
compute the Rabi frequency in Eq. (26). he results of Ω∕(2𝜋) = 7 THz is roughly equal to the 1∕𝑇 = 6.7 THz.
In the comparison between simulated and analytical results, notice that sin2(Ω∕2𝑡) = 0.5(1 − cos(Ω𝑡)) meaning
that sin2(Ω∕2𝑡) oscillates at the double of Ω, i.e., 2Ω∕2 = Ω.

• Open the file example5d.json. Now, we consider a system outside of resonance. Change the lenght of the cavity
to 𝐿𝑐 = 8000 nm. Now, the frequency of the light is 𝑓 = 18.74 THz according to Eq. (26). Now, the detuning
paramter in Eq. (68) becomes Δ = 2𝜔𝑟 − 𝜔 = (𝐸1 − 𝐸0)∕ℏ − 2𝜋𝑓 = 41 rad/ps. Then, the amplitude of the
oscillation, following Eq. (63) and using the results 𝜔𝐼 = 43 rad/ps from 14, the amplitude of the oscillation
becomes 432∕(432 + 412) ≈ 0.5 and the new oscillation frequency is √Δ + 𝜔𝐼 =

√

412 + 432 = 60 rad/ps or
9.5 THz which coincide with the new simulated results (perdiod of 𝑇 = 01. ps). These results are in agreement
with Figure1.

4.6 A quantum probability distribution
In the following simulated experiment, the light is considered a classical field, and the electron as a quantum electron, involv-
ing a wave function and a trajectory, as explained in section 3.3. Using quantum trajectories will allow us to easily connect
the classical and quantum results through the concept of probability distributions.

Simulation 4.6.1 — A quantum probability distribution for the electron

Building a quantum probability distribution for the electron from an ensemble of 𝑁 = 10 quantum trajectories.

Goals and description of the simulation 4.6.1 at page 32

Goals of the simulation:

• Check that all the results in simulation 4.3.1 at page 28 and simulation 4.4.1 at page 30 can be understood from
an ensemble of quantum trajectories.

• Check the similarities and differences between an ensemble of classical trajectories in simulation 4.1.2 at page
24 and an ensemble of quantum trajectories.

Description of the simulation:

• Open the file example6.json in the QCSslim and check the parameters. Now, we consider 𝑛 = 10 experiments.
Each experiment is described by a wave function and by a quantum trajectory for the electron. All quantum
trajectories are affected by the same parameters of the (external) light. Still, they are different because they are
defined from different initial positions 𝑥𝑗(𝑡0 = 0) as described by Eq. (86) and Eq. (87).

• Run the simulation and check the graphical results. The final plot in the QCslim for this particular animation
is seen in Figure 9. See how the quantum trajectories oscillate to reproduce the oscillations of the modulus of
the wave function |Ψ(𝑥, 𝑡)|2 to satisfy Eq. (83). Compare these results with the simulation 4.1.2 at page 24 for
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Figure 8: This is the result of the simulation of the file example5c.json for the simulation 4.5.1 at page 31.
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building 𝜌𝑐𝑙(𝑥, 𝑡) with a classical ensemble of trajectories. We recover the meaning of 𝜌(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2 as the
probability distribution of finding the electron at different positions at different experiments.

• Fix the number of particles to𝑁 = 1 (press “Set”). The quantum trajectories oscillate as the classical trajectories
of the simulation 4.1.2 at page 24 and simulation 4.2.1 at page 26 but, contrary to what happens in the classical
systems, these quantum trajectories never reach the limits of the quantum well because the wave function is
zero at such positions, Ψ(𝑥 = ±𝐿𝑥∕2, 𝑡) = 0 to satisfy Eq. (83). Repeat the simulation by changing the initial
conditions 𝑥0 of the electrons in the “Particle positions” box. It is evident now that 𝜌(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2 is
a description of an ensemble of experiments. The ensemble results like ⟨𝑥⟩ can be computed directly from
𝜌(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2, but the fluctuations (quantum uncertainty) in different experiments are clearly appreciated
by the use of these quantum trajectories.

Figure 9: This is the result of the simulation of the file example6.json for the simulation 4.6.1 at page 32. The results will change in each run of the simulation
because, each time, the initial values are selected randomly according to the probability distribution given by the initial wave function modulus.

4.7 The photon as a quantized amount of light energy
In the following simulated experiment, the light is described by a quantum wave function and the electron by a classical trajec-
tory. This particular type of simulation is explained in 3.4. These simulations will help to understand the meaning of photon
and its description Ψ(𝑞, 𝑡).
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Simulation 4.7.1 — Description of quantum light from eigenstates of a parabolic well

The light is described by the wave function Ψ(𝑞, 𝑡) as a superposition of the energy eigenstates 𝜓𝑛(𝑥) of the light in a
harmonic oscillator (see Exercise 3.4.2 at page 18 and in Eq. (96) ). The electron, modeled as an external parameter,
is defined by 𝑥𝑐𝑙(𝑡) as a sinusoidal trajectory.

Goals and description of the simulation 4.7.1 at page 35

Goals of the simulation:

• Understand the quantum description of light by Ψ(𝑞, 𝑡) and the concept of photon as a way of describing the
quantization of the energy of the light.

• Check that the description of the light by the wave function Ψ(𝑞, 𝑡) provides a probability distribution 𝜌(𝑞, 𝑡) =
|Ψ(𝑞, 𝑡)|2 that can be understood as the quantum version of the classical distribution 𝜌𝑐𝑙(𝑞, 𝑡) discussed in
Eq. (100).

• Check that the energy eigenstates 𝜓𝑛(𝑞) of the light in a parabolic well are not energy eigenstates of the Hamil-
tonian Eq. (38). Thus, the light described by an initial eigenstate of the harmonic oscillator Ψ(𝑞, 0) = 𝜓𝑛(𝑞),does not remain in such eigenstate as time goes by due to the interaction with the matter.

• Check the minimum energy of the light. From the simulation 4.3.1 at page 28, check analogy between the
labeling:

light matter
𝜓0(𝑞) → zero photons 𝜙0(𝑥) → ground state
𝜓1(𝑞) → one photons 𝜙1(𝑥) → first excited state
𝜓2(𝑞) → two photons 𝜙2(𝑥) → second excited state

In particular, the minimum energy of the light corresponds to 𝜓0(𝑞) (zero photons) as the minimum
energy of the electron corresponds to 𝜙0(𝑥) (ground state).

Description of the simulation:

• Open the file example7.json in the QCslim and check the parameters. In this particular example, the wave
function of the light Ψ0(𝑞, 𝑡) in Eq. (96) is a superposition of two eigenstates 𝜓0(𝑞) and 𝜓1(𝑞) of the light in the
harmonic oscillator. Initially, the light is described by Ψ(𝑞, 0) = 𝜓1(𝑞).

• Run the simulation and check the graphical results. The final plot in the QCslim for this particular animation is
seen in Figure 10. The time evolution of the probability of each eigenstate |𝑐𝑛(𝑡)|2 defined in Eq. (97) is plotted
in the bottom right subplot.

• Change the parameters 𝛼 = 0 to check that the light remains in its initial eigenstate all the time. Describe the
initial light byΨ(𝑞, 0) = 𝜓0(𝑞) by changing “photon coefs.” from the initial values 0 1 to 1 0 in the “semiclassical
parameters” box (as indicated in the file example7b.json). Now, the light remains all the time in its lowest value
of energy equal to 𝐸0 = 0.0517 eV as described by Eq. (94). We have 𝜔 = 159𝑇 𝑟𝑎𝑑∕𝑠 or 25 THz. Thus,
𝐸0 = ℏ𝜔∕2 = 0.0517 eV and 𝐸1 = 3ℏ𝜔∕2 = 0.1552 eV.

• For the initial parameter 𝛼 = 0.01 check that the light remains in its initial eigenstate all the time when classical
electron does not oscillate (fix 𝑥0 = 0 and 𝑝0 = 0 in the simulation). This result is analog to the results obtained
in simulation 4.4.1 at page 30 when the classical light had zero energy.

Simulation 4.7.2 — A quantum probability distribution for the light

In the following simulated experiment, the light is considered as a quantum object, involving a wave function and a
trajectory, and the electron as a classical trajectory as explained in section 3.5.
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Figure 10: This is the result of the simulation of the file example7.json for the simulation 4.7.1 at page 35.
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Goals and description of the simulation 4.7.2 at page 35

Goals of the simulation:

• To better understand the meaning of Ψ(𝑞, 𝑡) we construct the quantum probability distribution for the light from
an ensemble of 𝑁 = 10 identical experiments and compare the results with the classical distribution of 𝑞 build
by an ensemble of classical trajectories for the light in simulation 4.1.2 at page 24. Check the differences
between the ensemble of classical trajectories for the light in simulation 4.1.2 at page 24 and an ensemble of
quantum trajectories for the light.

• Check that all the results in simulation 4.7.1 at page 35 can be understood from an ensemble of quantum
trajectories.

Description of the simulation:

• Open the file example8.json in the QCslim and check the parameters. In addition to the wave functions for the
light, in the top right plot, an ensemble of 𝑀 = 10 quantum trajectories for the light 𝑞𝑗(𝑡) are plotted. They
are affected by the same parameters of the (external) electron trajectory 𝑥𝑐𝑙(𝑡) seen in the bottom left plot. Still,
quantum trajectories of the light are different because they are defined from different initial positions 𝑞𝑗(𝑡0 = 0)
as described by Eq. (105) and Eq. (106). We use the name “trajectories” for 𝑞𝑗(𝑡) by analogy with 𝑥𝑗(𝑡), but
here the name can be misunderstood. The parameter 𝑞𝑗(𝑡) does not describe how the light moves in physical
space, but only how the amplitude of the electric filed changes with time in the 𝑞-space (such 𝑞 space is much
more arbitrary than the physical space and we have adopted here a 𝑞 space without units as described at the end
of section 2.4). Thus, the wave function Ψ(𝑞, 𝑡) describes the different values of 𝑞 available at each time in an
ensemble of experiments.

• Run the simulation and check the graphical results. The final plot in the QCslim for this particular animation
is seen in Figure 11. See how the quantum trajectories of the light oscillate to reproduce the oscillations of the
modulus of the wave function |Ψ(𝑞, 𝑡)|2 to satisfy Eq. (102). Compare these results with the simulation 4.1.2 at
page 24 for a classical ensemble of quantum trajectories. We recover the meaning of |Ψ(𝑞, 𝑡)|2 as the probability
distribution of finding different amplitudes 𝑞(𝑡) at different experiments.

• Fix the number of particles to 𝑁 = 1 (press “Set”). At first sight, the quantum trajectory oscillates as the
classical trajectory of the light in the simulation 4.1.2 at page 24 and simulation 4.2.1 at page 26 but their
behavior is different as their equations of motion are different (the classical 𝑞𝑐𝑙(𝑡) is determined by Eq. (33),
while the quantum 𝑞(𝑡) is determined by Eq. (105)).

4.8 Quantum Rabi oscillations
Rabi oscillations describe the periodic oscillation of a quantum system between two energy states due to the coupling between
light and matter. This phenomenon is named after the physicist Isidor Isaac Rabi, who first described it in the context of nuclear
magnetic resonance. In the following simulated experiment, the light and the matter are described by a common Hamiltonian
in Eq. (109) ensuring global conservation of energy. There is a unique wave function Ψ(𝑥, 𝑞, 𝑡) to described simultaneously
their quantum nature.

This particular type of simulation is explained in section 3.6. In the top right plot of the QCslim the time-evolution of the
probability distribution |Ψ(𝑥, 𝑞, 𝑡)|2 is depicted in the configuration space (𝑞-𝑥 space).

Simulation 4.8.1 — Rabi oscillations

Rabi oscillation for an electron in an infinite quantum well interacting with light in an optical cavity.

Goals and description of the simulation 4.8.1 at page 37

Goals of the simulation:

• Show the quantum Rabi oscillation are because two different quantum states with are not eiegnstates of the
whole system (of the light-matter system) have similar/identical energies.
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Figure 11: This is the result of the simulation of the file example8.json for the simulation 4.7.2 at page 35.
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• Check how the quantum Rabi frequency depends on the parameter 𝛼 and others in Eq. (129).
• Check that the quantum Rabi oscillation is maximum at resonance and check its dependence with the number

of photons indicated by the index of the phtoon 𝑚 .
Description of the simulation:

• Open the file example9.json in the QCslim and check the parameters. Run the simulation and check the graphical
results. The final plot in the QCslim for this particular animation is seen in Figure 12. See how the electron
changes from 𝜙1(𝑥) (eigenenergy 𝐸1,𝑒 = 0.14 eV) to 𝜙0(𝑞) (eigenenergy 𝐸0,𝑒 = 0.035 eV), while the light
changes from 𝜙0(𝑞) (eigenenergy 𝐸1,𝑝 = 0.052 eV) to 𝜙1(𝑞) (eigenenergy 𝐸1,𝑝 = 0.157 eV). The energy of the
light-matter eigenstate 𝜙1(𝑥)𝜙0(𝑞) is roughly 𝐸1,𝑒 + 𝐸0,𝑝 = 0.14 + 0.052 = 0.192 eV). Identically, the energy
of the light-matter eigenstate 𝜙0(𝑥)𝜙1(𝑞) is roughly 𝐸0,𝑒 +𝐸1,𝑝 = 0.035 + 0.157 = 0.192 eV). See the energies
of these two eigenstates in the bottom right plot. The Rabi oscillation is a periodic transition between these two
light-matter eigenstates that keeps the total energy constant (i.e. an oscillation between an electron in the excited
state and zero photon, and an electron in the ground state and one photon).

• The number of oscillations is 2 in a perdiod of 𝑇 = 200 fs. Thus, the Rabi oscillation frequency of the simulation
is 10 THz. Notice that in these particular conditions, we are in resonance, so thatΔ𝑚 = 𝐸0,𝑒−𝐸1,𝑒−(𝐸𝑚+1,𝑝−𝐸𝑚,𝑝)

2ℏ = 0
in Eq. (127). Then, the quantum Rabi frequency can be computed as from from Exercise 3.2.7 at page 15 where
Ω𝑅,0 = 30𝑟𝑎𝑑∕𝑝𝑠 or 4.7 THz are obtained. Notice that sin2(Ω𝑅,0𝑡) = 0.5(1 − cos

(

2Ω𝑅,0𝑡
)

) in Eq. (128) so that
the theorethical oscillation of the square of the sinus happens at 2(4.7) = 9.4 THz which coincides with value
obtained in the simulation.

• Consider the case with 3 photons by introducing the number of photons levels as 3 in the box “Quantum pa-
rameters”. Now, assume that the system starts in the state 𝜙0(𝑥) for the electron and 𝜙1(𝑞) for the light, so that
the index 𝑚 that specifies 𝜔𝑅,𝑚 in Eq. (125) is 𝑚 = 1 with √

1 + 1 = 1.41. See the file example9b.json. Check
that, under these new conditions, (0 0 0

0 1 0), we get a Rabi frequency 1.41 times larger than before, now ≈ 14

THz, under the same resonant conditions as before. Change the parameter 𝛼 = 0.02 eV/nm and compare to the
results with 𝛼 = 0 eV/nm to check how the frequency of the Rabi oscillation depends on 𝛼.

• Modify the length of the optical cavity to 𝐿𝑐 = 2000 nm so that electron and light are no longer in resonance.
See how the light and matter evolve independent because conservation of energy forbids the transition. Now, the
states |𝑐1,0(𝑡)|2 = 1 (electron in the excited state and zero photon) and |𝑐0,1(𝑡)|2 = 1 (electron in the ground state
and one photon) have quite different energies. The transition from one state to the other is forbidden because it
would violate the conservation of the energy imposed by Eq. (115).

4.9 A full quantum treatment of absorption, spontaneous and stimulated emissions
In the simulation 4.4.1 at page 30 we have studied absorption and stimulated emission from a semi-classical view where the
electron is considered as a quantum wave, while the light is treated as an (external) classical parameter. Such type of semi
classical simulation had some important drawbacks: There was no rule for the conservation of the total light-matter energy
and the minimum energy of the light was assumed as zero. Because of this last semi classical assumption, the matter has no
spontaneous emission was not predicted because there was no light-matter interaction when the energy of the light was zero.

In this full quantum scenario studied here, the light and the matter are described by a common Hamiltonian in Eq. (109)
ensuring global conservation of energy. In particular, the light is treated as a wave and its minimum energy is no longer
zero (see Eq. (94)). Then, the spontaneous emission can be predicted. Such spontaneous emission is a fundamental process in
quantum optics where an excited atom, molecule, or nucleus loses energy by emitting a photon and transitions to a lower energy
state without external provocation. This phenomenon is key to understanding various physical processes and technologies,
such as lasers, LEDs, and certain types of spectroscopy.

This particular type of simulation is explained in section 3.6. In the top right plot of the QCslim, the time-evolution of the
probability distribution |Ψ(𝑥, 𝑞, 𝑡)|2 is depicted in the configuration space (𝑞-𝑥 space).
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Figure 12: This is the result of the simulation of the file example9.json for the simulation 4.8.1 at page 37.
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Simulation 4.9.1 — A full quantum simulation of absorption, spontaneous and stimulated emissions

Simulate the absorption, spontaneous and stimulated emission for a full quantum treatment of light and matter, with
emphasis on the requirement of conservation of the total energy.

Goals and description of the simulation 4.9.1 at page 41

Goals of the simulation:

• Check how spontaneous emission can be produced with zero photons.
• Check how absorption, spontaneous and stimulated emission satisfy energy conservation discussed in Eq. (115).

Description of the simulation:

• Open the file example10.json in the QCslim and check the parameters.
• Run the simulation and check the graphical results. The final plot in the QCslim for this particular animation

is seen in Figure 13. See how the common wave function of the electron and light described initially by the
eigenstate𝜙1(𝑥)𝜓0(𝑞) (electron in the excited state and zero photons) with |𝑐1,0(𝑡)|2 = 1, transits to the eigenstate
𝜙0(𝑥)𝜙1(𝑞) (electron in the ground state and one photon) with |𝑐0,1(𝑡)|2 = 1. As shown in the bottom right plot,
the energy of both states is the same because the difference of the energy levels of the electrons 𝐸1,𝑒 − 𝐸0,𝑒 =
0.105 eV defined in Eq. (40) is identical to the difference of the energy levels of the light 𝐸1,𝑝 − 𝐸0,𝑝 = 0.105
eV defined in Eq. (94). This process corresponds to a spontaneous emission of a photon.
Notice that the initial energy of the light was the minimum energy that an harmonic oscillator can has 𝐸0,𝑝 =
1
2ℏ𝜔 = 0.0523 eV. This spontaneous emission is not possible to be simulated with classical light as discussed
in simulation 4.4.1 at page 30.

• Notice that the frequency 𝜔 is related to the optical cavity length through Eq. (26). Modify the length of the
optical cavity to 𝐿𝑐 = 2000 nm so that the electron and the light are no longer in resonance. See how the light
and matter evolve independently (no interaction). Now, the states |𝑐1,0(𝑡)|2 = 1 (electron in the excited state
and zero photon) and |𝑐0,1(𝑡)|2 = 1 (electron in the ground state and one photon) have quite different energies.
𝐸1,𝑒 − 𝐸0,𝑒 = 0.31 eV defined in Eq. (40) is very different from the difference of the energy levels of the light
𝐸1,𝑝 −𝐸0,𝑝 = 0.105 eV defined in Eq. (94). The transition from one state to the other is now forbidden because
it would imply no conservation of the total energy.

• Put again the initial value of the optical cavity to 𝐿𝑐 = 5930 nm to ensure that the electron and light are again
in resonance. In the “quantum parameters” box, modify the initial matrix (0 0

1 0) to (0 1
0 0). Now, the initial

state is 𝜙0(𝑥)𝜙1(𝑞) (electron in the ground state and one photon) with |𝑐0,1(𝑡)|2 = 1 and the final state will be
𝜙1(𝑥)𝜓0(𝑞) (electron in the excited state and zero photons) with |𝑐1,0(𝑡)|2 = 1. This modifications are present in
the simulation file example10b.json. This process corresponds to absorption.

• In the “quantum parameters” box, set the “number of photon levels” to 3 and modify the initial matrix (0 0 0
1 0 0)

to (0 0 0
0 1 0). Now, the initial state is 𝜙1(𝑥)𝜙1(𝑞) (electron excited state and light in the one photon state) and

the final state will be 𝜙0(𝑥)𝜓2(𝑞) (electron in the ground state and the light in the two-photon state). These
modifications are present in the simulation file example10c.json. This corresponds to the stimulated emission
where one photon interacting with the electron creates an additional identical photon, at the price of reducing
the energy of the electron. This modifications are present in the simulation file example10b.json

4.10 Weak values
Weak values arise in the context of weak measurements, which are a type of quantum measurement that minimally disturbs the
system being measured [10,11]. This allows certain properties of a quantum system to be probed in a way that avoids the strong
perturbations associated with conventional (or "strong") measurements. In particular, it is possible to measure simultaneously
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Figure 13: This is the result of the simulation of the file example10.json for the simulation 4.9.1 at page 41.
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the position and the momentum of a particle.
In particular, we describe here a weak value of the momentum post-selected in position. It involves two consecutive

measurements:
• a weak measurement of the momentum of the quantum system (with a small perturbation on it) giving 𝑝𝑤.
• a strong measurement of the position of the quantum system giving 𝑥𝑠.

When such two consecutive measurements are repeated many times in an ensemble of identically prepared quantum systems,
we can build the probability 𝑃 (𝑝𝑤, 𝑥𝑠) by just counting the number of times that the couple {𝑝𝑤, 𝑥𝑠} occurs in the experiments.
The weak value can be constructed in the laboratory as the mean value of the momentum 𝑝𝑤 conditioned to the fact the second
measurement of the position gives the value 𝑥𝑠 = 𝑥. For an electron described by the wave function Ψ(𝑥, 𝑡), such conditional
probability can be shown to be given by the Bohmian velocity described in Eq. (86):

∫ 𝑑𝑝𝑤 𝑝𝑤 𝑃 (𝑝𝑤, 𝑥𝑠 = 𝑥)
∫ 𝑑𝑝𝑤𝑃 (𝑝𝑤, 𝑥𝑠 = 𝑥)

=
𝐽𝑥(𝑥, 𝑡)
|Ψ(𝑥, 𝑡)|2

= 𝑣𝑥(𝑥, 𝑡) (139)

Thus, the velocity (and the quantum trajectories) in Eq. (86) can be measured in the laboratory for an ensemble of identical ex-
periments (not from a single experiment!) through Eq. (139)showing the ability of the quantum trajectory 𝑥(𝑡) as an additional
way of characterizing quantum systems [10, 11].

In the following simulated experiment, the light and the electron are described by quantum object, including a wave func-
tion and a trajectory for both, as explained in section 3.7. The type of simulation in explained in section 3.3 will also be used.

Simulation 4.10.1 — Weak values

Building a quantum probability distribution for the electron and from the light from an ensemble of 𝑁 = 5 quantum
trajectories.

Goals and description of the simulation 4.10.1 at page 43

Goals of the simulation:

• Check that all the results in simulation 4.8.1 at page 37 and simulation 4.9.1 at page 41 can be understood from
an ensemble of quantum trajectories.

• Check the utility of weak values showing how the velocity (or other predictions of quantum trajectories) can be
measured in the laboratory.

• Check the similitudes and differences between an ensemble of classical trajectories in simulation 4.1.2 at page
24 and an ensemble of quantum trajectories.

Description of the simulation:

• Open the file example11.json in the QCslim and check the parameters. Quantum trajectories are defined from
different initial positions 𝑥𝑗(𝑡0 = 0) and 𝑞𝑗(𝑡0 = 0) as described by Eq. (135), Eq. (137), Eq. (136) and Eq. (138).

• Run the simulation and check the graphical results. The final plot in the QCslim for this particular animation
is seen in Figure 14. See how the quantum trajectories oscillate to reproduce the oscillations of the modulus
square of the wave function |Ψ(𝑥, 𝑞, 𝑡)|2 to satisfy Eq. (131). Notice the representation of the trajectories in three
different plot. The trajectories 𝑥(𝑡) anmd 𝑞(𝑡) tend to concentrate in regions with a large modulus square of the
wave function |Ψ(𝑥, 𝑞, 𝑡)|2 and avoid such regions where it is negligible.

• Put 𝛼 = 0 and in the “quantum parameters” box, and see how the quantum trajectories reproduce the no time-
evolution modulus evolution of the wave function through a velocity zero. modify the initial matrix 0 0

1 0 to
1 0
1 0. Now, the light and the matter evolve independently and the electron’s wave function is described by a

superposition of 𝜙0(𝑥) and 𝜙1(𝑥) so that the Bohmian trajectories will oscillate to reproduce the oscillation of
the modulus of the wave function. The velocity of such quantum trajectories at each position 𝑥 and time 𝑡 can
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be measured in the laboratory following the protocol mentioned in Eq. (139). These measurement can be used,
for example, to discuss the presence or not of superposition of states.

• Fix the number of particles to 𝑁 = 1 (press “Set”) and put 𝛼 = 0.01 eV. Repeat the simulation several times.
Each time the wave function evolution |Ψ(𝑥, 𝑞, 𝑡)|2 depicted in the top left plot will be the same, but the quantum
trajectories are different because in each run of the simulation the initial values of the trajectories are selected
randomly according to the probability distribution given by the initial wave function modulus square. From
these results, we see that will the ensemble results over and ensemble of experiments can be computed from
|Ψ(𝑥, 𝑞, 𝑡)|2 (or from an ensemble of trajectories), each run of the trajectory shows that each experiment is
different (because of the quantum uncertainty). Check the similarities and differences between an ensemble of
classical trajectories in simulation 4.1.2 at page 24 and an ensemble of quantum trajectories.

Figure 14: This is the result of the simulation of the file example11.json for the simulation 4.10.1 at page 43. The results will change in each run of the
simulation because, each time, the initial values are selected randomly according to the probability distribution given by the initial wave function modulus
square.
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5 Solutions to the proposed exercises
5.1 — Solution of Exercise 2.1.1 at page 5

Using Eq. (3), the the electric field in Eq. (1) is defined in the new gauge as:

E𝑔 = −∇𝐴𝑔0 −
𝜕A𝑔

𝜕𝑡
= −∇𝐴0

���
��+

𝜕∇𝑔(r, 𝑡)
𝜕𝑡

− 𝜕A
𝜕𝑡���

��−
𝜕∇𝑔(r, 𝑡)

𝜕𝑡
= −∇𝐴0 −

𝜕A
𝜕𝑡

= E

and the magnetic field in Eq. (2) :
B𝑔 = ∇ × Ag𝑔 = ∇ × A +((((((∇ × ∇𝑔(r, 𝑡) = ∇ × A = B

where ∇ × ∇𝑔(r, 𝑡) = 0, by construction.

5.2 — Solution of Exercise 2.2.1 at page 6

The Helmholtz decomposition allows to express any vector as a sum of a transversal component (zero divergence) and
a longitudinal component (zero rotational). A longitudinal electric field is defined by ∇ × E𝐿 = 0. From Eq. (1),
knowing that the rotational of the gradient is zero, we see that E𝐿 = −∇𝐴0 satisfies ∇ × E𝐿 = 0. Identically, by
knowing that transversal electromagnetic field has divergence equal to zero, we see that E𝑇 = − 𝜕A

𝜕𝑡 because ∇ ⋅A = 0
in the Coulomb gauge. The electromagnetic vector potential is a transversal vector in the Coulomb gauge.
Notice that Gauss law can now be written as ∇ ⋅ E𝐿 = 𝜌

𝜖0
and ∇ ⋅ E𝑇 = 0 with 𝜌 the instantaneous charge. Finally, we

reach the Laplace kaw ∇2𝐴0 = − 𝜌
𝜖0

that justifies why the radiation energy depends solely on E𝑇 , while E𝐿 takes into
account the Coulomb energy among electrons.

5.3 — Solution of Exercise 2.2.2 at page 6

The Maxwell’s equation ∇×E𝑇 (r, 𝑡) = − 𝜕B(r,𝑡)
𝜕𝑡 , using Eq. (6) and Eq. (7), means 𝜕𝐵̃𝛾 (𝑡)

𝜕𝑡 = −𝑖|k𝛾 |𝐸̃𝛾 (𝑡). We have used
∇ × e𝛾𝑒𝑖k𝛾r = 𝑖k𝛾 × e𝛾𝑒𝑖k𝛾r = 𝑖|k𝛾 |e’𝛾𝑒𝑖k𝛾r where the definition e’𝛾 =

k𝛾
|k𝛾 |

× e𝛾 is used.
The Maxwell’s equation ∇ × B(r, 𝑡) = 𝜇0

(

J + 𝜖 𝜕E𝑇 (r,𝑡)
𝜕𝑡

)

, using Eq. (6) and Eq. (7), means 𝜕𝐸̃𝛾 (𝑡)
𝜕𝑡 = −𝑖𝑐𝜔𝛾 𝐵̃𝛾 (𝑡) −

1
𝜖0
𝐽𝑇 ,𝛾 . We have used ∇ × e’𝛾𝑒𝑖k𝛾r = 𝑖k𝛾 × e’𝛾𝑒𝑖k𝛾r = 𝑖k𝛾 ×

(

k𝛾
|k𝛾 |

× e𝛾
)

𝑒𝑖k𝛾r = −𝑖|k𝛾 |e𝛾𝑒𝑖k𝛾r, where we have used
v1 × (v2 × v3) = v2(v1v3) − v3(v1v2). The (transversal) component of the current density J𝑇 (r, 𝑡) is decomposed into:

J𝑇 (r, 𝑡) =
∑

𝛾
e𝛾𝐽𝛾 (𝑡)𝑒𝑖k𝛾r

5.4 — Solution of Exercise 2.2.3 at page 6

By multiplying Eq. (8) by−𝑖𝑐 and Eq. (9) by 𝑖, we get 𝜕−𝑖𝑐𝐵̃𝛾 (𝑡)𝜕𝑡 = −𝑖𝜔𝛾 (−𝑖𝐸̃𝛾 (𝑡)) plus 𝑖 𝜕𝐸̃𝛾 (𝑡)𝜕𝑡 = 𝑖𝜔𝛾 (−𝑖𝑐𝐵̃𝛾 (𝑡))−𝑖
1
𝜖0
𝐽𝑝,𝑇 .

When added, using 𝛼 in Eq. (11), we get:
𝜕𝛼𝛾 (𝑡)
𝜕𝑡

= 𝑖𝜔𝛾 (𝛼𝛾 (𝑡)) − 𝑖
1

2𝑍𝛾𝜖0
𝐽𝑝,𝑇

By multiplying Eq. (8) by −𝑖𝑐 and Eq. (9) by −𝑖, we get 𝜕−𝑖𝑐𝐵̃𝛾 (𝑡)
𝜕𝑡 = 𝑖𝜔𝛾 (𝑖𝐸̃𝛾 (𝑡)) plus −𝑖 𝜕𝐸̃𝛾 (𝑡)𝜕𝑡 = −𝑖𝜔𝛾 (−𝑖𝑐𝐵̃𝛾 (𝑡)) +

𝑖 1𝜖0
𝐽𝑝,𝑇 . When added, using 𝛽 in Eq. (11), we get:

𝜕𝛽𝛾 (𝑡)
𝜕𝑡

= −𝑖𝜔𝛾 (𝛽𝛾 (𝑡)) + 𝑖
1

2𝑍𝛾𝜖0
𝐽𝑝,𝑇
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5.5 — Solution of Exercise 2.2.4 at page 7

By inverting Eq. (11) we get: 𝐸̃𝛾 (𝑡) = 𝑍𝛾 (−𝑖𝛼𝛾 + 𝑖𝛽𝛾 ) and 𝐵̃𝛾 (𝑡) = 𝑍𝛾
𝑐 (𝑖𝛼𝛾 + 𝑖𝛽𝛾 ). Then:

E𝑇 (r, 𝑡) = 𝑖
∑

𝛾>0
e𝛾𝑍𝛾 [(−𝑖𝛼𝛾 + 𝑖𝛽𝛾 )𝑒𝑖k𝛾r + (−𝑖𝛼−𝛾 + 𝑖𝛽−𝛾 )𝑒

−𝑖k𝛾r]

where we have used that e𝛾 = e−𝛾 . Identically, using e’𝛾 = −e’−𝛾 we get

B(r, 𝑡) = 𝑖
∑

𝛾>0
e’𝛾
𝑍𝛾
𝑐
[(𝑖𝛼𝛾 + 𝑖𝛽𝛾 )𝑒

𝑖k𝛾r + (−𝑖𝛼−𝛾 − 𝑖𝛽−𝛾 )𝑒
−𝑖k−𝛾r]

Knowing that 𝐸̃𝛾 (𝑡) = 𝐸̃∗
−𝛾 (𝑡) and 𝐵̃𝛾 (𝑡) = 𝐵̃∗

−𝛾 (𝑡) because the electric field E𝑇 (r, 𝑡) and magentic field B(r, 𝑡) must be
real, we get:

𝛼−𝛾 (𝑡) = 𝛽∗𝛾

so that 𝐸̃𝛾 (𝑡) = 𝑖𝑍𝛾 [−𝛼𝛾 (𝑡) + 𝛼∗−𝛾 (𝑡)] and 𝐵̃𝛾 (𝑡) = 𝑖𝑍𝛾𝑐 [𝛼𝛾 (𝑡) + 𝛼∗−𝛾 (𝑡)]. Finally, we can rewrite:

E𝑇 (r, 𝑡) = 𝑖
∑

𝛾
e𝛾𝑍𝛾 [−𝛼𝛾 (𝑡)𝑒𝑖k𝛾r + 𝛼∗−𝛾 (𝑡)𝑒

𝑖k𝛾r] = 𝑖
∑

𝛾
e𝛾𝑍𝛾 [−𝛼𝛾 (𝑡)𝑒𝑖k𝛾r + 𝛼∗𝛾 (𝑡)𝑒

−𝑖k𝛾r]

In the summation of 𝛼∗−𝛾 (𝑡), the variable 𝛾 is a dummy index that can be substituted by −𝛾 to reach the final expression.
Identically, for the magnetic field, we get:

B(r, 𝑡) = 𝑖
∑

𝛾
e’𝛾
𝑍𝛾
𝑐
[𝛼𝛾 (𝑡)𝑒

𝑖k𝛾r + 𝛼∗−𝛾 (𝑡)𝑒
𝑖k𝛾 ] = 𝑖

∑

𝛾
e’𝛾
𝑍𝛾
𝑐
[𝛼𝛾 (𝑡)𝑒

𝑖k𝛾r + 𝛼∗𝛾 (𝑡)𝑒
−𝑖k𝛾r]

5.6 — Solution of Exercise 2.4.1 at page 8

We use Eq. (13) for a single mode, neglecting the spatial dependence (because of the long wavelength approximation),
as:

E𝑇 (r, 𝑡) = 𝑖e𝑍[−𝛼(𝑡)𝑒𝑖kr + 𝛼∗(𝑡)𝑒−𝑖kr] ≈ 𝑖e𝑍[−𝛼(𝑡) + 𝛼∗(𝑡)]

For a single mode, we avoid the subscript 𝛾 . We rewrite Eq. (16) as

𝑞(𝑡) = −2𝑍
√

𝜖0𝑉
𝜔
𝐼𝑚(𝛼(𝑡)) = 𝑍

√

𝜖0𝑉
𝜔

(−𝛼(𝑡) + 𝛼∗(𝑡))
𝑖

Combining both expressions, we get:
E𝑇 (r, 𝑡) = e

√

𝜔
𝜖0𝑉

𝑞(𝑡)

5.7 — Solution of Exercise 3.1.1 at page 9

For 𝛼 = 0, there is no difference in the equations of motion for {𝑞𝑐𝑙, 𝑠̃𝑐𝑙} and {𝑞𝑐𝑙, 𝑠𝑐𝑙}. By evaluating 𝑑
𝑑𝑡
𝑑𝑥𝑐𝑙
𝑑𝑡 in

Eq. (32), with 𝛼 = 0, we get:
𝑚𝑒
𝑑2𝑥𝑐𝑙
𝑑𝑡2

= −
𝜕𝑉 (𝑥𝑐𝑙)
𝜕𝑥𝑐𝑙

By evaluating 𝑑
𝑑𝑡
𝑑𝑞
𝑑𝑡 in Eq. (33), with 𝛼 = 0, we get:

𝑑2𝑞𝑐𝑙
𝑑𝑡2

= −𝜔2𝑞𝑐𝑙

Then,
𝑞𝑐𝑙(𝑡) = 𝐴𝑞 sin

(

𝜔𝑡 + 𝜃𝑞
)
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is a solution where 𝐴𝑞 and 𝜃𝑞 have to be defined from the initial conditions. We can evaluate 𝑠𝑐𝑙 from Eq. (33) getting:

𝑠𝑐𝑙(𝑡) =
1
𝜔
𝑑𝑞𝑐𝑙
𝑑𝑡

= 𝐴𝑞 cos
(

𝜔𝑡 + 𝜃𝑞
)

Notice that Eq. (33) is compatible with Eq. (12) when 𝐽𝛾 = 0. Then, we can write:
𝜕𝛼𝛾
𝜕𝑡

= 𝑖𝜔𝛾𝛼𝛾

giving
𝜕𝑅𝑒(𝛼𝛾 )
𝜕𝑡

+ 𝑖
𝜕𝐼𝑚(𝛼𝛾 )
𝜕𝑡

= 𝑖𝜔𝛾
(

𝑅𝑒(𝛼𝛾 ) + 𝑖 𝐼𝑚(𝛼𝛾 )
)

= 𝜔𝛾 𝑖𝑅𝑒(𝛼𝛾 ) − 𝜔𝛾𝐼𝑚(𝛼𝛾 )

From Eq. (16) and Eq. (17) for a single-mode, we recover Eq. (31) as follows:
𝜕𝑠̃𝑐𝑙
𝜕𝑡

= −𝜔𝛾𝑞𝑐𝑙 and 𝜕𝑞𝑐𝑙
𝜕𝑡

= 𝜔𝛾 𝑠̃𝑐𝑙

5.8 — Solution of Exercise 3.1.2 at page 9

From the Hamiltonian in Eq. (30), we compute:
𝑑𝐻
𝑑𝑡

=
𝑝𝑐𝑙
𝑚𝑒

𝑑𝑝𝑐𝑙
𝑑𝑡

+
𝜕𝑉 (𝑥𝑐𝑙)
𝜕𝑥𝑐𝑙

𝑑𝑥𝑐𝑙
𝑑𝑡

+ ℏ𝜔𝑠𝑐𝑙
𝑑𝑠𝑐𝑙
𝑑𝑡

+ ℏ𝜔𝑞𝑐𝑙
𝑑𝑞𝑐𝑙
𝑑𝑡

+ 𝛼
𝑑𝑥𝑐𝑙
𝑑𝑡

𝑞𝑐𝑙 + 𝛼𝑥𝑐𝑙
𝑑𝑞𝑐𝑙
𝑑𝑡

,

By using Eq. (32) and Eq. (33), we get:
𝑑𝐻
𝑑𝑡

=
𝑝𝑐𝑙
𝑚𝑒

(

−
𝜕𝑉 (𝑥𝑐𝑙)
𝜕𝑥𝑐𝑙

− 𝛼𝑞𝑐𝑙

)

+
𝜕𝑉 (𝑥𝑐𝑙)
𝜕𝑥𝑐𝑙

𝑝𝑐𝑙
𝑚𝑒

+ ℏ𝜔𝑠𝑐𝑙
(

−𝜔𝑞𝑐𝑙 −
𝛼
ℏ
𝑥𝑐𝑙

)

+ ℏ𝜔𝑞𝑐𝑙𝜔𝑠𝑐𝑙 + 𝛼
𝑝𝑐𝑙
𝑚𝑒
𝑞𝑐𝑙 + 𝛼𝑥𝑐𝑙𝜔𝑠𝑐𝑙 = 0,

Notice that the variation of energy of the matter system that depends on fields −𝛼 𝑝𝑐𝑙𝑚𝑒 𝑞𝑐𝑙 is compensated by part of the
energy of the interaction 𝛼 𝑝𝑐𝑙𝑚𝑒 𝑞. Identically, the variation of energy of the light that depends on matter −𝛼𝑥𝜔𝑠𝑐𝑙 is
compensated by part of the energy of the interaction 𝛼𝑥𝑐𝑙𝜔𝑠𝑐𝑙.Notice that a positive (negative) product 𝑝𝑐𝑙𝑞𝑐𝑙 means decrement (increment) of the energy of the electron, while a
positive (negative) product 𝑥𝑐𝑙𝑠𝑐𝑙 means decrement (increment) of the energy of the field.

5.9 — Solution of Exercise 3.2.1 at page 10

If we eliminate the dependence on the light in the Hamiltonian Eq. (91), we reach a typical Hamiltonian of an electron
alone in an infinite well, whose associated Schrödinger equation, inside the well (𝑉 (𝑥) = 0), is:

𝑖ℏ
𝜕Ψ(𝑥, 𝑡)
𝜕𝑡

= − ℏ2

2𝑚𝑒
𝜕2Ψ(𝑥, 𝑡)
𝜕𝑥2

,

If we assume that the state Ψ(𝑥, 𝑡) is an energy eigenstate of the infinite well, we get Ψ(𝑥, 𝑡) = 𝑒−𝑖𝐸𝑛𝑡∕ℏ𝜙𝑛(𝑥) so that
the state 𝜙𝑛(𝑥) has to satisfy the equation:

𝐸𝑛𝜙𝑛(𝑥) = − ℏ2

2𝑚𝑒

𝜕2𝜙𝑛(𝑥)
𝜕𝑥2

, (140)

By imposing the additional information that 𝜙𝑛
(

𝑥 = ±𝐿𝑥
2

)

= 0, it can be straightforwardly checked that the following
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wave functions (normalized to unity):

𝜙𝑛(𝑥) = ⟨𝑥|𝜙𝑛⟩ =

√

2
𝐿𝑥

cos
(

(𝑛 + 1)𝜋𝑥
𝐿𝑥

)

n=0,2,4,...

𝜙𝑛(𝑥) = ⟨𝑥|𝜙𝑛⟩ =

√

2
𝐿𝑥

sin
(

(𝑛 + 1)𝜋𝑥
𝐿𝑥

)

n=1,3,5,,...

satisfy Eq. (140) when the energy of each eigenstate is given by:

𝐸𝑛 =
ℏ2𝜋2(𝑛 + 1)2

2 𝑚𝑒 𝐿2
𝑥

Notice that such states are not eigenstates of the Eq. (38) because of the additional term 𝛼𝑥𝑞(𝑡). In any case, the
eigenstates 𝜙𝑛(𝑥) can be considered a complete and orthonormal base of the system.

5.10 — Solution of Exercise 3.2.2 at page 11

From the Hamiltonian in Eq. (38),written as 𝑖ℏ 𝑑|Ψ⟩𝑑𝑡 = 𝐻̂|Ψ⟩ we compute the time derivative of the expectation value
⟨Ψ|𝐻̂|Ψ⟩ as

𝑑⟨Ψ|𝐻̂|Ψ⟩
𝑑𝑡

=
𝑑⟨Ψ|
𝑑𝑡

𝐻̂|Ψ⟩ + ⟨Ψ|𝑑𝐻̂
𝑑𝑡

|Ψ⟩ + ⟨Ψ|𝐻̂
𝑑|Ψ⟩
𝑑𝑡

By using 𝑑|Ψ⟩
𝑑𝑡 = −𝑖

ℏ 𝐻̂|Ψ⟩ and 𝑑⟨Ψ|
𝑑𝑡 = 𝑖

ℏ𝐻̂⟨Ψ|, we get:

𝑑⟨Ψ|𝐻̂|Ψ⟩
𝑑𝑡

= ⟨Ψ|𝑑𝐻̂
𝑑𝑡

|Ψ⟩ = 𝛼
𝑑𝑞𝑐𝑙(𝑡)
𝑑𝑡 ∫ 𝑑𝑥Ψ∗(𝑥, 𝑡)𝑥Ψ(𝑥, 𝑡) = 𝜔𝛼⟨𝑥(𝑡)⟩𝑠(𝑡)

Notice we have used Eq. (33) and defined the time-dependent ensemble value ∫ 𝑑𝑥Ψ∗(𝑥, 𝑡)𝑥Ψ(𝑥, 𝑡) = ⟨𝑥(𝑡)⟩. A posi-
tive (negative) product ⟨𝑥(𝑡)⟩𝑠(𝑡) means increment (decrement) of the energy of the electron, which can be understood
as decrement (increment) of the energy of the field as discussed in Exercise 3.2.2 at page 11.

5.11 — Solution of Exercise 3.2.3 at page 11

If we assume 𝐸1 = 𝐸0 = 𝐸, the system in Eq. (50) can be solved with the change of variables 𝑐𝑎(𝑡) = 𝑒−𝑖𝐸∕ℏ𝑡𝑐𝑎(𝑡), for
𝑎 = 0, 1, as:

⎧

⎪

⎨

⎪

⎩

𝑖ℏ
𝑑𝑐0(𝑡)
𝑑𝑡

= 𝑐1(𝑡)ℏ𝜔𝐼

𝑖ℏ
𝑑𝑐1(𝑡)
𝑑𝑡

= 𝑐0(𝑡)ℏ𝜔𝐼
(141)

Now, we can make the time derivative on the first equation and substitute the second one on the frist one to obtain:

−ℏ2
𝑑2𝑐0(𝑡)
𝑑𝑡2

= (ℏ𝜔𝐼 )2𝑐0(𝑡) (142)
A similar equation can be found for 𝑐1(𝑡). The general solution to this equation is a combination of a cosine and
a sine 𝑐0(𝑡) = 𝐴 cos

(

𝜔𝐼 𝑡
)

+ 𝐵 sin
(

𝜔𝐼 𝑡
). The same solution can be found for 𝑐1(𝑡). Using the initial conditions

𝑐0(0) = 1, 𝑐1(0) = 0, we set 𝐴 = 1, 𝐵 = 0 for 𝑐0 and 𝐴 = 0, 𝐵 = 1 for 𝑐1. Finally, we can write the final solution to
the problem as:

|𝜓(𝑡)⟩ = 𝑒−𝑖
𝐸0
ℏ 𝑡 cos

(

𝜔𝐼 𝑡
)

|0⟩ + 𝑒−𝑖
𝐸1
ℏ 𝑡 sin

(

𝜔𝐼 𝑡
)

|1⟩ (143)
which is Eq. (52) leading to the semi-classical Rabi oscillations. Note that if we now set the interaction to zero ℏ𝜔𝐼 = 0,
we recover that the original states |0⟩, |1⟩ are eigenstates of the system. The result shows a periodic oscillation between
the |0⟩ state and the |1⟩ state, with frequency 𝜔𝐼 in Eq. (49). See Fig. 1 for the case Δ𝐸 = 𝐸1 − 𝐸0 = 0.
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5.12 — Solution of Exercise 3.2.4 at page 12

Let us consider a general matrix 𝐻̂ defined as
(

𝐻11 𝐻12
𝐻21 𝐻22

)

that will be useful in further computations. In particular,
we consider𝐻11 and𝐻22 as real elements. We aslo consider𝐻12 and𝐻21 as complex elements satisfying𝐻12 = 𝐻∗

21.
The matrix 𝐻 can be rewritten as:

(

𝐻11 𝐻12
𝐻21 𝐻22

)

=

(𝐻11+𝐻22
2 0
0 𝐻11+𝐻22

2

)

+

(𝐻22−𝐻11
2 𝐻12

𝐻21
𝐻22−𝐻11

2

)

=
𝐻11 +𝐻22

2

(

1 0
0 1

)

+
𝐻22 −𝐻11

2

⎛

⎜

⎜

⎝

1 2𝐻12
𝐻22−𝐻11

2𝐻21
𝐻22−𝐻11

−1

⎞

⎟

⎟

⎠

(144)

We rewrite the second matrix as:

𝐾̂ =
⎛

⎜

⎜

⎝

1 2𝐻12
𝐻22−𝐻11

2𝐻21
𝐻22−𝐻11

−1

⎞

⎟

⎟

⎠

=
(

1 tan
(

𝜃′
)

𝑒−𝑖𝛾
tan

(

𝜃′
)

𝑒𝑖𝛾 −1

)

(145)

with tan
(

𝜃′
)

= 2|𝐻21|

𝐻22−𝐻11
, with 0 ≤ 𝜃′ ≤ 𝜋, and 𝐻21 = |𝐻21|𝑒𝑖𝛾 , with 0 ≤ 𝛾 ≤ 2𝜋. Then, the eigenvalues 𝑘± of such

matrix 𝐾̂ are:
𝑑𝑒𝑡(𝐾̂ − 𝑘±𝐼) = 0 (146)

The equation to solve is (𝑘±)2 = 1+tan2(𝜃′) = cos2(𝜃′)+sin2(𝜃′)
cos2(𝜃′) = 1

cos2(𝜃′) . Thus, the eigenvalues of 𝐾̂ are 𝑘± = ± 1
cos(𝜃′) .

Notice that tan2(𝜃′) = 4|𝐻21|
2

(𝐻22−𝐻11)2
implies that:

𝑘± = ± 1
cos(𝜃′)

= ±
√

1 + tan2(𝜃′) = ±

√

4|𝐻21|
2 + (𝐻22 −𝐻11)2

𝐻22 −𝐻11
. (147)

It is clear from Eq. (144) that 𝐻̂ and 𝐾̂ has the same eiegn vectors that we define as |

|

𝜙+
⟩ and |

|

𝜙−⟩. Then, the
eiegnvalues 𝐸± of the operator 𝐻̂ and the eiegnvalues 𝑘± of the oeprator 𝐾̂ satisfy 𝐸± = 𝐻11+𝐻22

2 + 𝐻22−𝐻11
2 𝑘±. So

finally, we get:
𝐸± =

𝐻11 +𝐻22
2

± 1
2

√

4|𝐻21|
2 + (𝐻22 −𝐻11)2 (148)

Since the eigenstates of 𝐻̂ have to be eigenstates 𝐾̂ , the eigenstate of 𝐾̂ satisfy:
(

1 tan
(

𝜃′
)

𝑒−𝑖𝛾
tan

(

𝜃′
)

𝑒𝑖𝛾 −1

)(

𝑎±
𝑏±

)

= ± 1
cos(𝜃′)

(

𝑎±
𝑏±

)

(149)

Then, we get: 𝑎± + tan
(

𝜃′
)

𝑏±𝑒−𝑖𝛾 = ± 1
cos(𝜃′)𝑎±, which can be rewritten as: 𝑎±

(

cos
(

𝜃′
)

∓ 1
)

= − sin
(

𝜃′
)

𝑒−𝑖𝛾𝑏±.
Now, we use the following trigonometric relation relating 𝜃′ and 𝜃′∕2, as sin

(

𝜃′
)

= 2 sin
(

𝜃′∕2
)

cos
(

𝜃′∕2
) and

2 sin2(𝜃′∕2) = 1 − cos
(

𝜃′
) and 2 cos2(𝜃′∕2) = 1 + cos

(

𝜃′
), we get:

𝑎+
(

cos
(

𝜃′
)

− 1
)

= sin
(

𝜃′
)

𝑒−𝑖𝛾𝑏+ ⟹ 𝑎+ sin
(

𝜃′∕2
)

𝑒𝑖𝛾∕2 = cos
(

𝜃′∕2
)

𝑏+𝑒
−𝑖𝛾∕2

𝑎−
(

cos
(

𝜃′
)

+ 1
)

= − sin
(

𝜃′
)

𝑒−𝑖𝛾𝑏− ⟹ 𝑎− cos
(

𝜃′∕2
)

𝑒𝑖𝛾∕2 = − sin
(

𝜃′∕2
)

𝑏−𝑒
−𝑖𝛾∕2 (150)

Finally, we get:
{

|

|

𝜙+
⟩

= cos
(

𝜃′∕2
)

𝑒−𝑖𝛾∕2 |0⟩ + sin
(

𝜃′∕2
)

𝑒𝑖𝛾∕2 |1⟩
|

|

𝜙−⟩ = − sin
(

𝜃′∕2
)

𝑒−𝑖𝛾∕2 |0⟩ + cos
(

𝜃′∕2
)

𝑒𝑖𝛾∕2 |1⟩
(151)

The final results are obtained by re-defining 𝜃′ = 2𝜃.
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5.13 — Solution of Exercise 3.2.5 at page 13

From the initial conditions and Eq. (56), we get:
|Ψ(0)⟩ = |0⟩ = cos 𝜃 |

|

𝜙+
⟩

− sin 𝜃 |
|

𝜙−⟩ (152)
comparing Eq. (62) with Eq. (152), we see that 𝑐+ = cos 𝜃 and 𝑐− = − sin 𝜃, giving:

|Ψ(𝑡)⟩ = cos 𝜃𝑒−𝑖𝐸+∕ℏ𝑡 |
|

𝜙+
⟩

− sin 𝜃𝑒−𝑖𝐸−∕ℏ𝑡 |
|

𝜙−⟩ (153)
so we can now compute the probaiblity transition to |1⟩ at time 𝑡:

⟨1|Ψ(𝑡)⟩ = cos(𝜃)𝑒−𝑖𝐸+∕ℏ𝑡

sin(𝜃)
⏞⏞⏞
⟨

1|
|

𝜙+
⟩

− sin 𝜃𝑒−𝑖𝐸−∕ℏ𝑡

cos 𝜃
⏞⏞⏞
⟨1|
|

𝜙−⟩ = (154)
= 1

2
sin(2𝜃)

(

𝑒−𝑖𝐸+∕ℏ𝑡 − 𝑒−𝑖𝐸−∕ℏ𝑡
)

= (155)

= 𝑖 sin(2𝜃)𝑒−𝑖
(𝐸++𝐸−)

2ℏ 𝑡 sin
(

𝐸+ − 𝐸−
2ℏ

𝑡
)

(156)

Finally,

| ⟨1|Ψ(𝑡)⟩ |2 = sin2(2𝜃) sin2
(

𝐸+ − 𝐸−
2ℏ

𝑡
)

(157)

Notice that tan2(2𝜃) =
𝜔2
𝐼
𝜔2
𝑟

in the definition Eq. (60) implies that sin(2𝜃) = 𝜔𝐼
√

𝜔2
𝑟+𝜔

2
𝐼

. So, using the eigen-
energies expressions Eq. (55) with ℏ𝜔𝑟 = 𝐻22−𝐻11

2 = 𝐸1−𝐸0
2 and 𝐻12 = 𝐻21 = ℏ𝜔𝐼 , we get 𝐸+ − 𝐸− =

√

4|𝐻21|
2 + (𝐻22 −𝐻11)2 = 2ℏ

√

𝜔2
𝐼 + 𝜔

2
𝑟 . Finally:

| ⟨1|Ψ(𝑡)⟩ |2 =
(ℏ𝜔𝐼 )2

(𝐸0 − 𝐸1)2 + (ℏ𝜔𝐼 )2
sin2

(

1
2ℏ

√

(𝐸0 − 𝐸1)2 + 4(ℏ𝜔𝐼 )2𝑡
)

=
𝜔2
𝐼

𝜔2
𝑟 + 𝜔

2
𝐼

sin2
(

√

𝜔2
𝑟 + 𝜔

2
𝐼 𝑡
)

(158)

5.14 — Solution of Exercise 3.2.6 at page 14

From Eq. (70), we make the follwing change of variables 𝑐0 = ̃̃𝑐0𝑒
−𝑖Δ2 𝑡 and 𝑐1 = ̃̃𝑐1𝑒

𝑖Δ2 𝑡:
⎧

⎪

⎨

⎪

⎩

𝑖ℏ
𝑑 ̃̃𝑐0
𝑑𝑡

= ℏΔ
2
̃̃𝑐0 + ℏ

𝜔𝐼
2
̃̃𝑐1𝑒

𝑖 3𝜋2

𝑖ℏ
𝑑 ̃̃𝑐1
𝑑𝑡

= ℏΔ
2
̃̃𝑐1 + ℏ

𝜔𝐼
2
̃̃𝑐0𝑒

−𝑖 3𝜋2
⟹ 𝑖ℏ 𝑑

𝑑𝑡

( ̃̃𝑐0(𝑡)
̃̃𝑐1(𝑡)

)

=
⎛

⎜

⎜

⎝

−ℏΔ
2 ℏ𝜔𝐼2 𝑒

𝑖 3𝜋2

ℏ𝜔𝐼2 𝑒
−𝑖 3𝜋2 ℏΔ

2

⎞

⎟

⎟

⎠

( ̃̃𝑐0(𝑡)
̃̃𝑐1(𝑡)

)

(159)

This Hamiltonian in Eq. (159) becomes time independent and it correspons to Eq. (145): where
⎛

⎜

⎜

⎝

−ℏΔ
2 ℏ𝜔𝐼2 𝑒

𝑖 3𝜋2

ℏ𝜔𝐼2 𝑒
−𝑖 3𝜋2 ℏΔ

2

⎞

⎟

⎟

⎠

= −ℏΔ
2

⎛

⎜

⎜

⎝

1 𝜔𝐼
Δ 𝑒

𝑖 3𝜋2

𝜔𝐼
Δ 𝑒

−𝑖 3𝜋2 −1

⎞

⎟

⎟

⎠

= −ℏΔ
2

(

1 tan
(

𝜃′
)

𝑒−𝑖𝛾
tan

(

𝜃′
)

𝑒𝑖𝛾 −1

)

= −ℏΔ
2
𝐾̂ (160)

with 𝛾 = − 3𝜋
2 and tan

(

𝜃′
)

= tan(2𝜃) = 𝜔𝐼
Δ . If we consider now that our inital state is |Ψ(0)⟩ = |0⟩, inverting the

relations 56, we can rewrite:
|Ψ(0)⟩ = |0⟩ = cos(𝜃)𝑒𝑖𝛾∕2 |

|

𝜙+
⟩

− sin(𝜃)𝑒𝑖𝛾∕2 |
|

𝜙−⟩ (161)
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comparing Eq. (62) with Eq. (152), we see that 𝑐+ = cos(𝜃)𝑒𝑖𝛾∕2 and 𝑐+ = − sin(𝜃)𝑒𝑖𝛾∕2, giving:
|Ψ(𝑡)⟩ = cos(𝜃)𝑒𝑖𝛾∕2𝑒−𝑖𝐸+∕ℏ𝑡 |

|

𝜙+
⟩

− sin(𝜃)𝑒𝑖𝛾∕2𝑒−𝑖𝐸−∕ℏ𝑡 |
|

𝜙−⟩ (162)
so we can now compute the probability transition to |1⟩ at time 𝑡:

⟨1|Ψ(𝑡)⟩ = cos(𝜃)𝑒𝑖𝛾∕2𝑒−𝑖𝐸+∕ℏ𝑡

sin(𝜃)𝑒𝑖𝛾∕2
⏞⏞⏞
⟨

1|
|

𝜙+
⟩

− sin(𝜃)𝑒𝑖𝛾∕2𝑒−𝑖𝐸−∕ℏ𝑡

cos(𝜃)𝑒𝑖𝛾∕2
⏞⏞⏞
⟨1|
|

𝜙−⟩ = (163)
= 1

2
sin(2𝜃)𝑒𝑖𝛾

(

𝑒−𝑖𝐸+∕ℏ𝑡 − 𝑒−𝑖𝐸−∕ℏ𝑡
)

= (164)

= 𝑖 sin(2𝜃)𝑒𝑖𝛾𝑒−𝑖
(𝐸++𝐸−)

2ℏ 𝑡 sin
(

𝐸+ − 𝐸−
2ℏ

𝑡
)

(165)

Finally, noticing that tan2(2𝜃) = 𝜔2
𝐼

Δ2 in the definition Eq. (160), we get sin2(2𝜃) = 𝜔2
𝐼

Δ2+𝜔2
𝐼

. Using the eigen-energies
expressions Eq. (55) withℏΔ = 𝐻22−𝐻11 and |𝐻12| = |𝐻21| = ℏ𝜔𝐼2 , we get𝐸+−𝐸− =

√

4|𝐻21|
2 + (𝐻22 −𝐻11)2 =

ℏ
√

𝜔2
𝐼 + Δ2. Finally:

| ⟨1|Ψ(𝑡)⟩ |2 = sin2(2𝜃) sin2
(

𝐸+ − 𝐸−
2ℏ

𝑡
)

=
𝜔2
𝐼

Δ2 + 𝜔2
𝐼

sin2
⎛

⎜

⎜

⎜

⎝

√

Δ2 + 𝜔2
𝐼

2
𝑡

⎞

⎟

⎟

⎟

⎠

(166)

Alternatively, if we are considering now that the inital state is |Ψ(0)⟩ = |1⟩, inverting the relations 56, we can rewrite:
|Ψ(0)⟩ = |1⟩ = cos(𝜃)𝑒−𝑖𝛾∕2 |

|

𝜙−⟩ + sin(𝜃)𝑒−𝑖𝛾∕2 |
|

𝜙+
⟩ (167)

comparing Eq. (62) with Eq. (167), we see that 𝑐+ = sin(𝜃)𝑒−𝑖𝛾∕2 and 𝑐− = cos(𝜃)𝑒−𝑖𝛾∕2, giving:
|Ψ(𝑡)⟩ = sin(𝜃)𝑒−𝑖𝛾∕2𝑒−𝑖𝐸+∕ℏ𝑡 |

|

𝜙+
⟩

+ cos(𝜃)𝑒−𝑖𝛾∕2𝑒−𝑖𝐸−∕ℏ𝑡 |
|

𝜙−⟩ (168)
so we can now compute the probability transition to |0⟩ at time 𝑡:

⟨0|Ψ(𝑡)⟩ = sin(𝜃)𝑒−𝑖𝛾∕2𝑒−𝑖𝐸+∕ℏ𝑡

cos(𝜃)𝑒𝑖𝛾∕2
⏞⏞⏞
⟨

0|
|

𝜙+
⟩

+cos(𝜃)𝑒−𝑖𝛾∕2𝑒−𝑖𝐸−∕ℏ𝑡

− sin(𝜃)𝑒−𝑖𝛾∕2
⏞⏞⏞
⟨0|
|

𝜙−⟩ = (169)
= 1

2
sin(2𝜃)𝑒−𝑖𝛾

(

𝑒−𝑖𝐸+∕ℏ𝑡 − 𝑒−𝑖𝐸−∕ℏ𝑡
)

= (170)

= 𝑖 sin(2𝜃)𝑒−𝑖𝛾𝑒−𝑖
(𝐸++𝐸−)

2ℏ 𝑡 sin
(

𝐸+ − 𝐸−
2ℏ

𝑡
)

(171)

Finally, using again sin2(2𝜃) =
𝜔2
𝐼

Δ2+𝜔2
𝐼

, we get:

| ⟨0|Ψ(𝑡)⟩ |2 = sin2(2𝜃) sin2
(

𝐸+ − 𝐸−
2ℏ

𝑡
)

=
𝜔2
𝐼

Δ2 + 𝜔2
𝐼

sin2
⎛

⎜

⎜

⎜

⎝

√

Δ2 + 𝜔2
𝐼

2
𝑡

⎞

⎟

⎟

⎟

⎠

(172)

5.15 — Solution of Exercise 3.2.7 at page 15

We have to compute Ω =
√

Δ2 + 𝜔2
𝐼 from Eq. (72). From the cavity length, 𝐿𝑐 = 5930 nm, we get 𝜔 = 158 Trad/s

or 25.30 THz for the light from Eq. (26). For the length of the well, 𝐿𝑥 = 16 nm, we get the energies 𝐸1 = 0.035 eV
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and 𝐸2 = 0.1401 eV from Eq. (40), giving 𝜔 = 𝐸1−𝐸0
ℏ = 159𝑇 𝑟𝑎𝑑∕𝑠 of 25 THz. Thus, the system is in resonance. In

the case of resonance, we get Ω = 𝜔𝐼 . From Eq. (41), we can compute:

⟨0| 𝑥 |1⟩ = ∫

𝐿𝑥∕2

−𝐿𝑥∕2
𝑑𝑥 𝜙∗

0(𝑥) 𝑥 𝜙1(𝑥) = ∫

𝐿𝑥∕2

−𝐿𝑥∕2
𝑑𝑥

√

2
𝐿𝑥

cos
(

𝜋𝑥
𝐿𝑥

)

𝑥

√

2
𝐿𝑥

sin
(

2𝜋𝑥
𝐿𝑥

)

= 2𝐿𝑥 ∫

0.5

−0.5
𝑑𝑥′ cos

(

𝜋𝑥′
)

𝑥′ sin
(

2𝜋𝑥′
)

= 2𝐿𝑥

[

9 sin
(

𝜋𝑥′
)

+ sin
(

3𝜋𝑥′
)

− 9𝜋𝑥′ cos
(

𝜋𝑥′
)

− 3𝜋𝑥′ cos
(

3𝜋𝑥′
)

18𝜋2

]𝑥′=0.5

𝑥′=−0.5
= 2(0.0901)𝐿𝑥 (173)

where we have done the change of variable 𝑥′ = 𝑥
𝐿𝑥

. Finally, using the values mentioned in the problem (and noticing
that 𝛼 is expressed in eV/nm), we get:

Ω =
√

Δ2 + 𝜔2
𝐼 = 𝜔𝐼 ≡

𝛼𝐴𝑐𝑙 ⟨0| 𝑥̂ |1⟩
ℏ

= 43 rad/ps. (174)

The angular frequency can be translated into a linear frequency giving ≈ 7 THz.

5.16 — Solution of Exercise 3.2.8 at page 16

So, if we set the initial conditions to be as usual 𝑐0 = 1, 𝑐1 = 0, which implies 𝑐00 (𝑡) = 1 because we have seen in
Eq. (77) to be constant, then, the solution for 𝑐11 (𝑡) from Eq. (78) is simply:

𝑎11(𝑡) =
1
𝑖ℏ
ℏ𝜔𝐼 ∫

𝑡

0
sin(𝜔𝑡′)𝑒𝑖2𝜔𝑟𝑡′𝑑𝑡′ (175)

Using sin(𝜔𝑡) = 𝑒𝑖𝜔𝑡−𝑒−𝑖𝜔𝑡
2𝑖 , and looking for the modulus square, the transition probability from state |0⟩ to state |1⟩ at

time 𝑡 is:
| ⟨1|𝜓(𝑡)⟩ |2 = 𝜔2

𝐼

|

|

|

|

|

∫

𝑡

0
𝑒𝑖2𝜔𝑟𝑡

′
sin

(

𝜔𝑡′
)

𝑑𝑡′
|

|

|

|

|

2

=
𝜔2
𝐼
4

|

|

|

|

|

∫

𝑡

0

(

𝑒𝑖(𝜔+2𝜔𝑟)𝑡
′
− 𝑒−𝑖(𝜔−2𝜔𝑟)𝑡

′
)

𝑑𝑡′
|

|

|

|

|

2

(176)

This last integral can be easily computed, finally giving:

| ⟨1|𝜓(𝑡)⟩ |2 = |𝑐1(𝑡)|2 =
𝜔2
𝐼
4

|

|

|

|

1 − 𝑒𝑖(𝜔+2𝜔𝑟)𝑡
𝜔 + 2𝜔𝑟

− 1 − 𝑒−𝑖(𝜔−2𝜔𝑟)𝑡
2𝜔𝑟 − 𝜔

|

|

|

|

2
(177)

On the other hand, starting from the excited state, the transition probability to the ground state is:

| ⟨0|𝜓(𝑡)⟩ |2 = |𝑐0(𝑡)|2 =
𝜔2
𝐼
4

|

|

|

|

1 − 𝑒𝑖(𝜔+2𝜔𝑟)𝑡
𝜔 + 2𝜔𝑟

+ 1 − 𝑒−𝑖(𝜔−2𝜔𝑟)𝑡
2𝜔𝑟 − 𝜔

|

|

|

|

2
(178)

5.17 — Solution of Exercise 3.3.1 at page 17

In order to find a local continuity equation, let us work with 𝜓(𝑥, 𝑡) and its complex conjugate 𝜓∗(𝑥, 𝑡). In particular,
we can rewrite Eq. (38) as:

𝜓∗(𝑥, 𝑡)𝑖ℏ
𝜕𝜓(𝑥, 𝑡)
𝜕𝑡

= −𝜓∗(𝑥, 𝑡) ℏ
2

2𝑚𝑒
𝜕2𝜓(𝑥, 𝑡)
𝜕𝑥2

+ 𝜓∗(𝑥, 𝑡)(𝑉 (𝑥, 𝑡) + 𝛼 𝑞𝑐𝑙(𝑡)𝑥)𝜓(𝑥, 𝑡) (179)
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and the complex conjugate of Eq. (38) as:

−𝜓(𝑥, 𝑡)𝑖ℏ
𝜕𝜓∗(𝑥, 𝑡)

𝜕𝑡
= −𝜓(𝑥, 𝑡) ℏ

2

2𝑚𝑒
𝜕2𝜓∗(𝑥, 𝑡)
𝜕𝑥2

+ 𝜓(𝑥, 𝑡)(𝑉 (𝑥, 𝑡) + 𝛼 𝑞𝑐𝑙(𝑡)𝑥)𝜓∗(𝑥, 𝑡) (180)

From Eq. (179) and Eq. (180), we obtain:
𝜕|𝜓(𝑥, 𝑡)|2

𝜕𝑡
= 𝑖 ℏ

2𝑚𝑒
𝜕
𝜕𝑥

(

𝜓∗(𝑥, 𝑡)
𝜕𝜓(𝑥, 𝑡)
𝜕𝑥

− 𝜓(𝑥, 𝑡)
𝜕𝜓∗(𝑥, 𝑡)
𝜕𝑥

)

which can easily be identified with a local conservation of particles discussed where 𝜌(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2 and the current
density, 𝐽 (𝑥, 𝑡), is defined as:

𝐽𝑥(𝑥, 𝑡) = 𝑖 ℏ
2𝑚𝑒

(

𝜓(𝑥, 𝑡)
𝜕𝜓∗(𝑥, 𝑡)
𝜕𝑥

− 𝜓∗(𝑥, 𝑡)
𝜕𝜓(𝑥, 𝑡)
𝜕𝑥

)

= ℏ
𝑚𝑒
𝐼𝑚

(

Ψ(𝑥, 𝑡)
𝑑𝑥

Ψ∗(𝑥, 𝑡)
)

5.18 — Solution of Exercise 3.4.1 at page 18

The Hamiltonian of the electromagnetic energy in Eq. (91) involves the operators in Eq. (90). We define the creation
operator 𝑎̂† and the annihilation operators 𝑎̂, whose relationship with the previous operators is given by

𝑎̂ = 1
√

2

(

𝑞 + 𝜕
𝜕𝑞

)

, 𝑎̂† = 1
√

2

(

𝑞 − 𝜕
𝜕𝑞

)

.

Then, the evaluation of 𝑎̂†𝑎̂ gives

𝑎̂†𝑎̂ = 1
2

(

𝑞 − 𝜕
𝜕𝑞

)(

𝑞 + 𝜕
𝜕𝑞

)

= 1
2

(

𝑞2 − 𝜕
𝜕𝑞
𝑞 + 𝑞 𝜕

𝜕𝑞
− 𝜕2

𝜕𝑞2

)

By developing 𝜕
𝜕𝑞 𝑞 = 1+ 𝜕

𝜕𝑞 , we get: 𝑎̂†𝑎̂ = − 1
2
𝜕2

𝜕𝑞2 −
1
2 +

1
2𝑞

2. Thus, we can write ℏ𝜔
2

(

− 𝜕2

𝜕𝑞2 + 𝑞
2
)

= ℏ𝜔(𝑎̂†𝑎̂) + ℏ𝜔
2 .

Somehow, the use of the operators 𝑞 and −𝑖 𝜕𝜕𝑞 , instead of 𝑎̂ and 𝑎̂†, allows us to re-use all the machinery of the
Schrodinger equation used to describe matter (with 𝑥 and −𝑖ℏ 𝜕

𝜕𝑥 ) to describe light too.

5.19 — Solution of Exercise 3.4.2 at page 18

The eigenstates of a parabolic well is straightforwardly elaborated in most textbooks of quantum mechanics. Here we
will just see how the typical solution for a massive particle can be equivalently used to light. The typical Hamiltonian
is:

𝐻(𝑞′) = ℏ2

2𝑚𝑒
𝜕2

𝜕𝑞′2
+ 1

2
𝑚𝑒𝜔

2𝑞′2

with the eigenenergy 𝐸𝑚 = ℏ𝜔
(

𝑚 + 1
2

)

for 𝑚 = 0, 1, 2, 3, , ,. The general 𝑚 eigenstate is given by

𝜓𝑚(𝑞′) =
(𝑚𝑒𝜔
𝜋ℏ

)1∕4 1
2𝑚𝑚!

𝐻𝑚(𝑦)𝑒−𝑦
2∕2

with
𝑦 =

√

𝑚𝑒𝜔
ℏ
𝑞′
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Some useful properties for the Hermite polynomials 𝐻𝑚(𝑦) are:
𝐻0(𝑦) = 1
𝐻1(𝑦) = 2𝑦
𝐻2(𝑦) = 4𝑦2 − 2
𝐻3(𝑦) = 8𝑦3 − 12𝑦
𝐻4(𝑦) = 16𝑦4 − 48𝑦2 + 12
𝐻5(𝑦) = 32𝑦5 − 160𝑦3 + 120𝑦
𝐻6(𝑦) = 64𝑦6 − 480𝑦4 + 720𝑦2 − 120
𝐻7(𝑦) = 128𝑦7 − 1344𝑦5 + 3360𝑦3 − 1680𝑦
𝐻8(𝑦) = 256𝑦8 − 3584𝑦6 + 13440𝑦4 − 13440𝑦2 + 1680
𝐻9(𝑦) = 512𝑦9 − 9216𝑦7 + 48384𝑦5 − 80640𝑦3 + 30240𝑦

with the condition:
𝐻𝑚+1(𝑦) = 2𝑦𝐻𝑚(𝑦) − 2𝑚𝐻𝑚−1(𝑦)

In particular, we have:

𝜓0(𝑞′) =
(𝑚𝑒𝜔
𝜋ℏ

)1∕4
𝑒−

𝑚𝑒𝜔
2ℏ 𝑞′2

and

𝜓1(𝑞′) =
(𝑚𝑒𝜔
𝜋ℏ

)1∕4 1
√

2
2

(

√

𝑚𝑒𝜔
ℏ
𝑞′
)

𝑒−
𝑚𝑒𝜔
2ℏ 𝑞′2

If we consider the change of variables 𝑞′ =
√

ℏ
𝑚𝑒𝜔

𝑞, we reach the Hamiltonian:

𝐻𝑅 = −ℏ𝜔
2

𝜕2

𝜕𝑞2
+ ℏ𝜔

2
𝑞2,

Then, 𝑦 =
√

𝑚𝑒𝜔
ℏ 𝑞′ =

√

𝑚𝑒𝜔
ℏ

√

ℏ
𝑚𝑒𝜔

𝑞 = 𝑞 and

𝜓𝑚(𝑞) =
( 1
𝜋

)1∕4 𝐻𝑚(𝑞)
√

2𝑚𝑚!
𝑒−𝑞

2∕2

5.20 — Solution of Exercise 3.4.3 at page 19

From the Hamiltonian in Eq. (91),written as 𝑖ℏ 𝑑|Ψ⟩𝑑𝑡 = 𝐻̂|Ψ⟩ we compute the time derivative of the expectation value
⟨Ψ|𝐻̂|Ψ⟩ as

𝑑⟨Ψ|𝐻̂|Ψ⟩
𝑑𝑡

=
𝑑⟨Ψ|
𝑑𝑡

𝐻̂|Ψ⟩ + ⟨Ψ|𝑑𝐻̂
𝑑𝑡

|Ψ⟩ + ⟨Ψ|𝐻̂
𝑑|Ψ⟩
𝑑𝑡

By using 𝑑|Ψ⟩
𝑑𝑡 = −𝑖

ℏ 𝐻̂|Ψ⟩ and 𝑑⟨Ψ|
𝑑𝑡 = 𝑖

ℏ𝐻̂⟨Ψ|, we get:

𝑑⟨Ψ|𝐻̂|Ψ⟩
𝑑𝑡

= ⟨Ψ|𝑑𝐻̂
𝑑𝑡

|Ψ⟩ = 𝛼
𝑑𝑥(𝑡)
𝑑𝑡 ∫ 𝑑𝑞Ψ∗(𝑞, 𝑡)𝑞Ψ(𝑞, 𝑡) = 𝛼

𝑚
⟨𝑞(𝑡)⟩𝑝(𝑡)

Notice we have used Eq. (32) and defined the time-dependent ensemble value ∫ 𝑑𝑞Ψ∗(𝑞, 𝑡)𝑞Ψ(𝑞, 𝑡) = ⟨𝑞(𝑡)⟩. A positive
(negative) product ⟨𝑞(𝑡)⟩𝑝(𝑡) means increment (decrement) of the energy of the electron, which can be understood as
a decrement (increment) of the energy of the field as discussed in Exercise 3.2.2 at page 11.
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5.21 — Solution of Exercise 3.5.1 at page 19

In order to find a local continuity equation, let us work with 𝜓(𝑞, 𝑡) and its complex conjugate 𝜓∗(𝑞, 𝑡). In particular,
we can rewrite Eq. (93) as:

𝜓∗(𝑞, 𝑡)𝑖ℏ
𝜕𝜓(𝑞, 𝑡)
𝜕𝑡

= −𝜓∗(𝑞, 𝑡)ℏ𝜔
2
𝜕2𝜓(𝑞, 𝑡)
𝜕𝑞2

+ 𝜓∗(𝑞, 𝑡)
(ℏ𝜔

2
𝑞2 + 𝛼𝑥(𝑡)𝑞

)

𝜓(𝑥, 𝑡) (181)

and the complex conjugate of Eq. (38) as:

−𝜓(𝑞, 𝑡)𝑖ℏ
𝜕𝜓∗(𝑞, 𝑡)

𝜕𝑡
= −𝜓(𝑞, 𝑡)ℏ𝜔

2
𝜕2𝜓∗(𝑞, 𝑡)
𝜕𝑞2

+ 𝜓(𝑞, 𝑡)
(ℏ𝜔

2
𝑞2 + 𝛼𝑥(𝑡)𝑞

)

𝜓∗(𝑞, 𝑡) (182)

From Eq. (181) and Eq. (182), we obtain:
𝜕|𝜓(𝑞, 𝑡)|2

𝜕𝑡
= 𝑖𝜔

2
𝜕
𝜕𝑞

(

𝜓∗(𝑞, 𝑡)
𝜕𝜓(𝑞, 𝑡)
𝜕𝑞

− 𝜓(𝑞, 𝑡)
𝜕𝜓∗(𝑞, 𝑡)
𝜕𝑞

)

which can easily be identified with a local conservation of particles discussed where 𝜌(𝑞, 𝑡) = |𝜓(𝑞, 𝑡)|2 and the current
density, 𝐽 (𝑞, 𝑡), is defined as:

𝐽𝑞(𝑞, 𝑡) = 𝑖𝜔
2

(

𝜓(𝑞, 𝑡)
𝜕𝜓∗(𝑞, 𝑡)
𝜕𝑞

− 𝜓∗(𝑞, 𝑡)
𝜕𝜓(𝑞, 𝑡)
𝜕𝑞

)

= ℏ𝜔𝐼𝑚
(

Ψ(𝑞, 𝑡)
𝑑𝑞

Ψ∗(𝑞, 𝑡)
)

5.22 — Solution of Exercise 3.6.1 at page 20

From the Hamiltonian in Eq. (91),written as 𝑖ℏ 𝑑|Ψ⟩𝑑𝑡 = 𝐻̂|Ψ⟩ we compute the time derivative of the expectation value
⟨Ψ|𝐻̂|Ψ⟩ as

𝑑⟨Ψ|𝐻̂|Ψ⟩
𝑑𝑡

=
𝑑⟨Ψ|
𝑑𝑡

𝐻̂|Ψ⟩ + ⟨Ψ|𝑑𝐻̂
𝑑𝑡

|Ψ⟩ + ⟨Ψ|𝐻̂
𝑑|Ψ⟩
𝑑𝑡

By using 𝑑|Ψ⟩
𝑑𝑡 = −𝑖

ℏ 𝐻̂|Ψ⟩ and 𝑑⟨Ψ|
𝑑𝑡 = 𝑖

ℏ𝐻̂⟨Ψ|, we get 𝑑⟨Ψ|𝐻̂|Ψ⟩
𝑑𝑡 = 0 because Tha Hamiltonian has no (external)

time-dependent potential.
We also want to check that the norm of the state is equal to 1 (as far as it was properly well-normalized at the initial
time): ∫ 𝑑𝑥 ∫ 𝑑𝑞Ψ(𝑥, 𝑞, 𝑡)Ψ∗(𝑥, 𝑞, 𝑡) = 1 so that ∫ 𝑑𝑥 ∫ 𝑑𝑞

(

𝜕Ψ(𝑥,𝑞,𝑡)
𝜕𝑡 Ψ∗(𝑥, 𝑞, 𝑡) + Ψ(𝑥, 𝑞, 𝑡) 𝜕Ψ

∗(𝑥,𝑞,𝑡)
𝜕𝑡

)

= 0. Thus, we
have to find:

∫ 𝑑𝑥∫ 𝑑𝑞
𝜕Ψ(𝑥, 𝑞, 𝑡)

𝜕𝑡
Ψ∗(𝑥, 𝑞, 𝑡) + Ψ(𝑥, 𝑞, 𝑡)

𝜕Ψ∗(𝑥, 𝑞, 𝑡)
𝜕𝑡

=
𝑁
∑

𝑛=0

𝑀
∑

𝑚=0

𝑑𝑐𝑛,𝑚(𝑡)
𝑑𝑡

𝑐∗𝑛,𝑚(𝑡) +
𝑑𝑐∗𝑛,𝑚(𝑡)
𝑑𝑡

𝑐𝑛,𝑚(𝑡)

=
𝑁
∑

𝑛=0

𝑀
∑

𝑚=0

−𝑖
ℏ
(𝐸𝑛,𝑒 + 𝐸𝑚,𝑝)𝑐𝑛,𝑚(𝑡)𝑐∗𝑛,𝑚(𝑡) +

−𝑖𝛼
ℏ

𝑁
∑

𝑛′,𝑛=0

𝑀
∑

𝑚′,𝑚=0
𝑐𝑛′,𝑚′ (𝑡)𝑐∗𝑛,𝑚(𝑡)∫ 𝑑𝑥𝜙∗

𝑛(𝑥)𝑥𝜙𝑛′ (𝑥)∫ 𝑑𝑞𝜓∗
𝑚(𝑞)𝑞𝜓𝑚′ (𝑞)

+
𝑁
∑

𝑛=0

𝑀
∑

𝑚=0

𝑖
ℏ
(𝐸𝑛,𝑒 + 𝐸𝑚,𝑝)𝑐∗𝑛,𝑚(𝑡)𝑐𝑛,𝑚(𝑡) +

𝑖𝛼
ℏ

𝑁
∑

𝑛′,𝑛=0

𝑀
∑

𝑚′,𝑚=0
𝑐∗𝑛′,𝑚′ (𝑡)𝑐𝑛,𝑚(𝑡)∫ 𝑑𝑥𝜙𝑛(𝑥)𝑥𝜙∗

𝑛′ (𝑥)∫ 𝑑𝑞𝜓𝑚(𝑞)𝑞𝜓∗
𝑚′ (𝑞)

which is zero by construction.
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5.23 — Solution of Exercise 3.6.2 at page 22

From Eq. (126), we make the follwing change of variables 𝑐0,𝑚+1 = ̃̃𝑐0,𝑚+1𝑒−𝑖Δ𝑚𝑡 and 𝑐1,𝑚 = ̃̃𝑐1,𝑚𝑒𝑖Δ𝑚𝑡:
⎧

⎪

⎨

⎪

⎩

𝑖
𝑑 ̃̃𝑐0,𝑚+1
𝑑𝑡

= −Δ𝑚 ̃̃𝑐0,𝑚 + 𝜔𝑅,𝑚 ̃̃𝑐1,𝑚

𝑖
𝑑 ̃̃𝑐1,𝑚
𝑑𝑡

= Δ𝑚 ̃̃𝑐1,𝑚 + 𝜔𝑅,𝑚 ̃̃𝑐0,𝑚+1
(183)

This Hamiltonian in Eq. (183) becomes time independent and it correspons to Eq. (145): where
(

−ℏΔ𝑚 ℏ𝜔𝑅,𝑚
ℏ𝜔𝑅,𝑚 ℏΔ𝑚

)

= −ℏΔ𝑚

(

1 𝜔𝑅,𝑚
Δ𝑚𝜔𝑅,𝑚

Δ𝑚
−1

)

= −ℏΔ𝑚

(

1 tan
(

𝜃′
)

𝑒−𝑖𝛾
tan

(

𝜃′
)

𝑒𝑖𝛾 −1

)

= −ℏΔ𝑚𝐾̂ (184)

with 𝛾 = 0 and tan
(

𝜃′
)

= tan(2𝜃) = 𝜔𝑅,𝑚
Δ𝑚

. The solution to this system is the same of Eq. (166). We use now,
sin2(2𝜃) = 𝜔2

𝑚
Δ2
𝑚+𝜔2

𝑚
and the eigen-energies expressions Eq. (55) with ℏ2Δ𝑚 = 𝐻22−𝐻11 and |𝐻12| = |𝐻21| = ℏ𝜔𝑅,𝑚,

we get 𝐸+−𝐸− =
√

4|𝐻21|
2 + (𝐻22 −𝐻11)2 = 2ℏ

√

𝜔2
𝑅,𝑚 + Δ𝑚. If we set the initial conditions to be 𝑐0 = 1, 𝑐1 = 0,

following the same development done in Exercise 3.2.5 at page 13, we get:

| ⟨0|Ψ(𝑡)⟩ |2 = |𝑐0(𝑡)|2 =
𝜔2
𝑅,𝑚

𝜔2
𝑅,𝑚 + Δ2

𝑚
sin2

(

Δ𝑚𝑡
) (185)

with 𝜔𝑅,𝑚 defined in Eq. (125) and Δ𝑚 in Eq. (129).

5.24 — Solution of Exercise 3.6.3 at page 22

From the cavity length, 𝐿𝑐 = 5930 nm, we get 𝜔 = 158 Trad/s or 25.30 THz for the light from Eq. (26). For the
length of the well, 𝐿𝑥 = 16 nm, we get the energies 𝐸1 = 0.035 eV and 𝐸2 = 0.1401 eV from Eq. (40), giving
𝐸1−𝐸0
ℏ ) = 159𝑇 𝑟𝑎𝑑∕𝑠 = 𝜔. Thus, the system is in resonance. We have already computed ⟨0| 𝑥 |1⟩ = 2(0.0901)𝐿𝑥 in

Exercise 3.2.7 at page 15. Now, we compute:

∫

∞

−∞
𝑑𝑞 𝜓∗

0 (𝑞) 𝑞 𝜓1(𝑞) = ∫

∞

−∞
𝑑𝑞 1

√

𝜋
1
√

2
𝑒−𝑞

2∕2𝑞𝑒−𝑞
2∕22𝑞 = 4

√

2𝜋 ∫

∞

0
𝑑𝑞𝑒−𝑞

2
𝑞2 = 1

√

2
(186)

where we have used Exercise 3.4.2 at page 18 and the definite integral ∫ ∞
0 𝑑𝑞𝑒−𝑞2𝑞2 =

√

𝜋∕4. Since we are dealing
with transitions 0 → 1 that means 𝑚→ 𝑚+1, we have 𝑚 = 0 so that, from Eq. (125), we get 𝜔𝑅,0 = 𝜔𝐼,0

√

0 + 1𝜔𝐼,0.
Finally, using the values mentioned in the problem (and noticing that 𝛼 is expressed in eV/nm), we get:

𝜔𝐼,0 ≡
2(0.0901)𝐿𝑥

ℏ
1
√

2
= 43

√

2
= 30 rad/ps. (187)

The angular frequency can be translated into a linear frequency giving ≈ 4.7 THz. Finally, since we have already
demonstrated that the system is in resonance, Δ𝑚 = 0 in Eq. (127) and the final value is: Ω𝑅,0 =

√

𝜔2
𝑅,0 + Δ2

𝑚 =
𝜔𝑅,0 = 𝜔𝐼,0 = 30 rad/ps or ≈ 4.7 THz

5.25 — Solution of Exercise 3.7.1 at page 23

In order to find a local continuity equation, let us work with Ψ(𝑥, 𝑞, 𝑡) and its complex conjugate Ψ∗(𝑥, 𝑞, 𝑡). By
repeating Exercise 3.3.1 and Exercise 3.5.1 in the schrodinger equation Eq. (110), we reach the requested continuity
equation.
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