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I. INTRODUCTION

Although the passage of ions through ion channels1

in the bilipid membranes of biological cells clearly in-
volves thermally-driven Brownian diffusion in an elec-
trostatic field, there remain many unsolved problems of
long standing. The central conundrum is that a channel’s
powerful selectivity – whereby it may allow a particular
ion species to pass while barring others by a factor of up
to 1000:1 – is combined with a speed of passage compara-
ble to the rate of free diffusion, i.e. as though the channel
were just an open hole.

Other unsolved problems include: (i) the role played
by the fixed charge Qf known to exist inside the channel
at its selectivity filter; (ii) why mutations that change
Qf can alter the selectivity (e.g. convert a Na+ to a
Ca2+ channel) or eliminate conduction altogether; (iii)
the anomalous mole fraction effect (AMFE), whereby
Na+ ions can pass easily through a Ca2+ channel in a
pure NaCl electrolyte, but are blocked by tiny traces of
Ca2+ in the bath. Brownian dynamics simulations of
a very simple model of the permeation process reveal2

that the current and selectivity exhibit the unexpected
pattern of conduction bands and stop bands as a function
of Qf shown in Fig. 1(a).

We now propose that the conduction bands and, quite
generally, the permeation and selectivity of biological ion
channels may be governed by ionic Coulomb blockade3,
an electrostatic phenomenon closely analogous to its elec-
tronic counterpart in quantum dots4,5, but with stochas-
tic dynamics rather than quantum tunnelling as the un-
derlying mechanism, and we show that several hitherto
unsolved problems of ion channel conduction can appar-
ently be explained on this basis. We will refer to Ca2+

ion channels, but the underlying ideas can have wider
applicability.

II. MODEL TO BE ANALYSED

We analyse the properties of a self-consistent electro-
static model2 of the selectivity filter of a generic calcium
channel considered as a negatively-charged, axisymmet-
ric, water-filled, cylindrical pore through a protein hub in
the cellular membrane. The pore is taken to be of radius
R = 0.3 nm, length L = 1.6 nm, and the x-axis coincides
with the channel axis, with x = 0 at the center of the
channel. A centrally-placed ring of fixed negative charge
0 ≤ |Qf | ≤ 7e is embedded in the wall at RQ = R. A
potential difference of 0 − 75mV is applied between the
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FIG. 1. Brownian dynamics simulations of multi-ion Ca2+

conduction and occupancy in the Ca2+/Na+ channel model
vs. the effective fixed charge Qf ; (a),(b) are reworked from2.
(a) Plots of the Ca2+ current JCa for pure Ca2+ baths of
concentration 20, 40 and 80mM. (b) The occupancy PCa. (c)
Plots of electrostatic energy Un (blue, dashed) and resulting
oscillations of ground state energy (red, solid) vs. Qf for
channels with n = 0, 1, 2.. Ca2+ ions inside. The conduction
bands M0, M1, M2 stop bands Z1, Z2, Z3 (indicated by labels)
are discussed in the text.

left and right channel boundaries to represent the mem-
brane potential. The mobile Ca2+ ions are described as
charged spheres of radius Ri ≈ 0.1nm , with a diffusion
coefficient6 of DCa = 0.79 × 10−9 m2/s. We assume an
asymmetrical ionic concentration: CL > 0 on the left,
and CR = 0 on the right and take both the water and
the protein to be homogeneous continua describable by
relative permittivities εw = 80 and εp = 2, respectively,
together with an implicit model of ion hydration the va-
lidity of which is discussed elsewhere. The Brownian dy-
namics simulations (Fig. 1) involved the self-consistent
numerical solution of Poisson’s equation for this model,
coupled with a Langevin equation for the moving ions.

III. IONIC COULOMB BLOCKADE

The alternating conduction and stop bands as Qf is
increased (Fig. 1(a)) can be considered as oscillations.
We propose that both they and the occupancy steps
(Fig. 1(b)) are attributable to ionic Coulomb blockade3,
an electrostatic phenomenon closely similar to electronic
Coulomb blockade in quantum dots5.

The discreteness of the charge allows us to introduce
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exclusive “eigenstates” {n} of the channel for fixed inte-
ger numbers of ions inside its selectivity filter, with total
electrostatic energy Un. The transition {n} → {n + 1}
corresponds to entry of a new ion, whereas {n} → {n−1}
corresponds to escape of a trapped ion. The n eigenstates
form a discrete exclusive set of {n}-states:

n = {0, 1, 2, ...}
∑
n

θn = 1; Pc =
∑
n

nθn, (1)

where θn is the occupancy of the state {n} and Pc is the
average selectivity filter occupancy. In equilibrium an
electrostatic exclusion principle (1) leads to Fermi-Dirac
statistics for θn (and Pc):

θn =

(
1 + exp

(
Un − μ

kBT

))−1

, (2)

where μ is the chemical potential. The total energy Un

for a channel in state {n} is Un = Un,s + Un,a + Un,int,
where Un,s is the self-energy, Un,a is the energy of attrac-
tion, and Un,int is the ions’ mutual interaction energy.
We approximate Un as the dielectric self-energy Un,s of
the excess charge Qn, assuming that both the ions and
Qf are within the central part of the selectivity filter,
leading to a quadratic dependence of Un on Qf ,

Un =
Q2

n

2Cs
(Electrostatic energy ) (3)

Here, Cs is the geometry-dependent channel self-
capacitance and Qn = zen+Qf is the excess charge.

With (3) we arrive at the electronic Coulomb blockade
equation and our further consideration follows standard
Coulomb blockade theory4. Remarkably, however, the
ionic version of phenomenon exhibits valence selectivity.

Strong Coulomb blockade oscillations appear in low-
capacitance systems on account of quantization of the
quadratic energy in (3) on a grid of discrete states (1),
provided that the ground state {nG} is separated from
its neighbouring {nG±1} states by large Coulomb energy

gaps ΔU = z2e2/(2Cs) � kBT . This is the applicability
condition for the strong electrostatic exclusion principle.

Fig. 1(c) shows the ground state energy UG(Qf ) =
minn(Un(Qf , n)), as functions of Qf . It follows from (3)
that Un vs. Qf for given z is described by an equidis-
tant set of identical parabolæ of period equal to the ionic
charge ze, providing oscillations in UG. We note that
UG(Qf ) exhibits two different kinds of ground state sin-
gular points, marked as Mn and Zn. The positions of
these singular Qf points can be written as:

Zn = −zen (Coulomb blockade) (4)

Mn = −ze(n+ 1/2) (Resonant conduction) (5)

We propose that the stop bands in Fig. 1(a) correspond
to neutralisation points Zn where the total charge at the
selectivity filter Qn = 0, while the conduction bands cor-
respond to crossover points Mn allowing barrier-less con-
duction between different n-states. The occupancy plots
in Fig. 1(b) can therefore be interpreted as a Coulomb
staircase.

IV. CONCLUSIONS

Our identifications of the Brownian dynamics-
simulated conduction bands (Fig. 1(a)) that appear
with increasing |Qf | as Coulomb blockade conductance
oscillations4, and of the corresponding occupancy steps
(Fig. 1(b)) as a Coulomb staircase5, represent a fresh
vision of conduction in biological ion channels. It offers
immediate explanations of the fast conduction and muta-
tion shifts and, because the pattern is valence-dependent,
it can also account for valence selectivity and AMFE.

We point out that the Coulomb blockade model should
also be applicable to other ion channels as well as to
artificial nanopores.
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