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I. HISTORICAL INSPIRATION

In 1962 Dyson suggested an inspiring way to under-
stand the joint probability distribution (jpd) of the eigen-
values of random matrices. In order to find the jpd, he
was inventing an auxiliary dynamics undergoing in some
fictitious ”time”, which, at the static limit, will lead to
the stationary state (Gibbs state), representing the de-
sired jpd. As he pointed1, ”after considerable and fruit-
less efforts to develop a Newtonian theory of ensembles,
we discovered that the correct procedure is quite different
and much simpler. The xi [eigenvalues] should be inter-
preted as positions of particles in Brownian motion. The
resulting stationary distributions (originally for hermi-
tian or for unitary random matrices) were obtained as an
effect of Ornstein-Uhlenbeck diffusion with a drift force
coming from electrostatic-like repulsion of eigenvalues.
The success of this description has contributed to multi-
ple applications of random matrix models in practically
all branches of science. The notion of ”time” has evolved
as well, so nowadays the ”time” can be a physical dy-
namical parameter, representing either the real time or,
e.g., the length of the mesoscopic wire, area of the string
or external temperature. The idea of noisy walk of eigen-
values led also recently to such concepts as the study of
determinantal processes, Loewner diffusion, fluctuations
of non-intersecting interfaces in thermal equilibrium and
the emergence of pre-shock spectral waves and universal
scaling at the critical points of several random matrix
models.

Three years after Dyson, Ginibre2 has considered
for the first time strictly non-hermitian random matrix
modes, whose spectrum does not need to be confined
either to real line (hermitian operators) or to unit cir-
cle (unitary operators), but can be located on the two-
dimensional supports on the complex plane. Original mo-
tivation for the study of complex, random spectra was
purely academic. Today, however, non-hermitian ran-
dom operators play role in quantum information process-
ing, in financial engineering (when lagged correlations
are discussed) or in identifying clusters in social or bi-
ological networks using non-backtracking operators, to
name just a few recent applications. Additionally, sta-
tistical properties of eigenvectors of non-hermitian oper-
ators contribute to understanding scattering problems in
open chaotic cavities and random lasing.

II. MAIN RESULTS

In this contribution, following our recent work3, we
combine the original ideas of noisy random walk with
the strict non-hermiticity of the operators, studying an
evolution of Ginibre matrices whose elements undergo
Brownian motion. The non-hermitian character of the
Ginibre ensemble binds the dynamics of eigenvalues to
the evolution of eigenvectors in a non-trivial way, lead-
ing to a system of coupled nonlinear equations resembling
those for turbulent systems. We formulate a mathemat-
ical framework allowing simultaneous description of the
flow of eigenvalues and eigenvectors, and we unravel a
hidden dynamics as a function of new complex variable,
which in a standard description is treated as a regulator
only. We solve the evolution equations for large matrices
and demonstrate that the non-analytic behavior of the
Green’s functions is associated with a shock wave stem-
ming from a Burgers-like equation describing correlations
of eigenvectors.

III. CONCLUSIONS AND OPEN PROBLEMS

We have proven that a consistent description of non-
hermitian Gaussian ensemble requires the knowledge of
the detailed dynamics of co-evolving eigenvalues and
eigenvectors. Moreover, the dynamics of eigenvectors
plays the superior role and leads directly to the inference
of the spectral properties. This is dramatically differ-
ent scenario comparing to the standard random matrix
models, where the statistical properties of eigenvalues are
of primary importance, and the properties of eigenvec-
tors are basically trivial due to the their decoupling from
the spectra. We conjecture that the discovered by us
hidden dynamics of eigenvectors, that we have observed
for the Ginibre ensemble, is a general feature of all non-
hermitian random matrix models.

Our formalism could be exploited to expand the area of
application of non-Hermitian random matrix ensembles
within problems of growth, charged droplets in quantum
Hall effect and gauge theory/geometry relations in string
theory beyond the subclass of complex matrices repre-
sented by normal matrices.

One of the challenges is an explanation, why, despite
being so different, Smoluchowski-Fokker-Planck equa-
tions for hermitian and non-hermitian random matrix
models exhibit structural similarity to simple models of
turbulence, where so-called Burgers equation plays the
vital role, establishing the flow of the spectral density of
eigenvalues in the case of the hermitian or unitary en-
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sembles and the flow of certain eigenvector correlator in
the case of non-hermitian ensembles.

We believe that our findings will contribute to under-
stand several puzzles of non-hermitian dynamics, alike
extreme sensitivity of spectra of non-hermitian systems
to perturbations4,5.
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