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I. INTRODUCTION

In this work we study a one channel quantum dot
connected to two reservoirs. We calculate the non-
symmetrized finite frequency noise in the framework of
the Keldysh Green’s function formalism. The transmis-
sion processes are introduced using a transmission am-
plitude defined with the help of the hoping parameter
and the Green’s functions of the dot. The expression of
the non-symmetrized finite frequency noise is obtained.
When we symmetrize our result, it coincides with the ex-
pression of the Büttiker formula of the finite frequency
noise.

II. MODEL

We consider a one channel quantum dot as depicted in
Fig. (1). The Hamiltonian reads as H = HL + HR +
HT +Hcen, where:

Hα=L,R =
∑
k∈α

εkc
†
kck (1)

HT =
∑

α=L,R

∑
k∈α

Vkc
†
kd+ h.c. (2)

Hdot = ε0d
†d (3)

The c†k,p,σ and ck,p,σ are respectively the creation and

annihilation operators in the reservoirs. The d†σ and dσ
are respectively the creation and annihilation operators
in the dot. Vk is the hopping parameter. In our work,
we focus on the spinless case.

FIG. 1. Schematic representation of the quantum dot and the
leads. The tunneling process occurs with a strength Γ. μL,R

are the chemical potential of the left and right reservoirs. In
the following, we take μL,R = ±eV/2.

Next, we define the non-symmetrized finite frequency
noise in the left reservoir:

S(ω) =

∫ ∞

−∞

〈δÎL(0)δÎL(t)〉e
iωtdt (4)

where δÎL(t) = Îα(t)−〈IL〉, where 〈IL〉 is the average left

current and ÎL the current operator in the left reservoir,
which is given by1:

IL(t) =
ei

�

∑
k

(
Vkc

†
k,Ld− V ∗

k d
†ck,L

)
(5)

The next step is the evaluation of the current-current
correlator 〈δÎL(0)δÎL(t)〉. For this we need first to
rewrite the Hamiltonian in the interaction representa-
tion. Then, using an S-matrix expansion one can rewrite
the current-current correlator in the interaction repre-
sentation. The resulting expression is a function of four-
points Green’s functions of the dot Gdd

1 (τ, τ ′, τ1, τ2) =
i2〈TCd(τ)d(τ

′)d†(τ1)d
†(τ2)〉, where τ is time variable in

this representation.
Now we use a Wick theorem in order to factorize the

four-points Green’s functions in a product of two points
Green’s functions2:

Gdd
1 (τ, τ ′, τ1, τ2) = G(τ, τ2)G(τ ′, τ1)−G(τ, τ1)G(τ ′, τ2)

(6)
The results contains two parts, a disconnected part which
is equal to the square of the average current, and a
connected part which contains fifteen contributions. To
rewrite the correlator as a function of the time variable t,
we use the Keldysh formalism3. Applying a Fourier
transform to the result and after some algebras, one finds
the non-symmetrized finite frequency noise expression.

III. RESULTS

In the case of symmetric barriers, the non-symmetrized
finite frequency noise reads as:

S(ω) =
e2

h

∫
dε

[[
T(ε− ω)T(ε) + |t(ε)− t(ε− ω)|2

]
fLL

+T(ε− ω)T(ε)fRR + T(ε)
[
1− T(ε− ω)

]
fRL

+T(ε− ω)
[
1− T(ε)

]
fLR

]
(7)

where fαβ = nα(ε)[1−nβ(ε−ω)] with n the Fermi-Dirac
distribution function and α, β = L,R. The transmis-
sion amplitude and the transmission coefficient are re-
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spectively given by:

t(ε) =
iΓ

ε− ε0 + iΓ
(8)

T(ε) =
Γ2

(ε− ε0)2 + Γ2
(9)

where ε0 is the dot energy level, Γ = (2π)−1ρ(ε)|Vk|
2 is

the barriers strength and ρ the density of states of the
reservoirs which are considered as identical. The sym-
metrized noise is obtained from the expression Ssym(ω) =
[S(ω) + S(−ω)]/2. Doing this, we get the Büttiker for-
mula of the symmetrized finite frequency noise4,5:

Ssym(ω) =
e2

h

∫
dε

[[
T(ε− ω)T(ε) + |t(ε)− t(ε− ω)|2

]
FLL

+T(ε− ω)T(ε)FRR + T(ε− ω)
[
1− T(ε)

]
FLR

+T(ε)
[
1− T(ε− ω)

]
FRL

]
(10)

To see the evolution of the non-symmetrized finite fre-
quency noise, we plot the non-symmetrized excess noise
ΔS(ω, V ) = S(ω, V )−S(ω, 0) as a function of frequency
for different values of the temperature and for differ-
ent impurity strengths. In Fig. (2), we plot the non-

�2 �1 0 1 2
0.0000

0.00002

0.00004

0.00006

0.00008

0.0001

Ω

�
S�
Ω
�

FIG. 2. Non-symmetrized excess noise in units of e3V/� as a
function of frequency in units of eV/� for ε0/eV = 100, and
for fixed Γ/eV = 1. Solid red line corresponds to kBT/eV =
0.01, dashed green line to kBT/eV = 0.1 and dotted blue line
to kBT/eV = 0.5.

symmetrized excess noise as a function of frequency for
fixed impurity strength at different values of tempera-
ture. What we see first is the fact that the spectrum
is symmetric in frequency whatever the temperature is,
then the intensity of the excess noise decreases with the
temperature. At low temperature, the noise presents a
singularity in the vicinity of ±eV/�. Then the cancella-
tion occurs beyond ±eV/� because of the cancellation of
the thermal noise contribution. In Fig. (3), we plot the

non-symmetrized excess noise as a function of frequency
for fixed temperature and different values of the impurity
strength in the weak impurity regime. The noise here be-
comes anti-symmetric with a singularity in the vicinity of
±eV/2�. In Fig. (4) we plot the non-symmetrized excess
noise as function of the frequency for fixed temperature
in an intermediate impurity regime. What we see here is
that the noise becomes asymmetric.
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FIG. 3. Non-symmetrized excess noise in units of e3V/� as
a function of frequency in units of eV/� for ε0/eV = 0.01,
and for fixed kBT/eV = 0.01. Solid red line corresponds to
Γ/eV = 0.01, dashed green line to Γ/eV = 0.02 and dotted
blue line to Γ/eV = 0.05.
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FIG. 4. Non-symmetrized excess noise in units of e3V/� as
a function of frequency in units of eV/� for ε0/eV = 0.3,
and for fixed kBT/eV = 0.01. Solid red line corresponds to
Γ/eV = 0.01, dashed green line to Γ/eV = 0.1 and dotted
blue line to Γ/eV = 1.

IV. CONCLUSION

In this work we calculated the non-symmetrized finite
frequency noise for a single level quantum dot. We used
the Keldysh formalism to evaluate the current-current
correlator and then we performed a Fourier transform
to get the expression of the finite frequency noise. Our
result is consistent with the Büttiker formula of the sym-
metrized finite frequency noise obtained using the scat-
tering theory since the symmetrization of our expression
give the formula obtained by Büttiker. Varying the tem-
perature, the dot energy and the barrier strength, the
profile of the noise spectrum changes from symmetric be-
havior, to asymmetric or to anti-symmetric behaviors.
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