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I. INTRODUCTION

Many processes observed in nature, technology and
some other areas can be viewed as consisting of many
separate events. Such events are localized in time in the
sense that their contribution to the whole process is sig-
nificant only in time intervals that are much shorter than
the observation time of the whole process. The processes
are usually measured as a change of some quantity y in
time t that can be called a signal y(t). Each discrete event
that contributes to the process in question can therefore
be represented by a pulse in the signal y(t) with definite
time of occurrence and duration1.

Even though the underlying discreteness of the process
may not be obvious due to the fact that often only a
collective effect of a large number of contributing sources
can be observed, the understanding of many phenomena
still requires the insight into the discrete nature of entities
creating the signal. Most notable, much researched, but
still not completely solved problem is the 1/f noise in
electronic devices2.

We investigate stochastic signals that consist of rect-
angular pulses. The stochasticity here appears as a con-
sequence of random variation of pulse duration and tim-
ing of the pulse occurrence. The power-spectral densities
(PSD’s) of such sequences of pulses under appropriate
conditions have a power-law shape1. Since the power-
law-shaped PSD’s are ubiquitous in natural phenomena,
technology and even quantitative social sciences, the in-
vestigation of the conditions under which pulse sequences
exhibit such PSD’s can be useful for the better under-
standing of a wide range of phenomena.

In this contribution we present the conditions under
which the PSD S(f) of the sequence of pulses obtains
power-law shape for small frequencies S(f) ∼ 1/fβ and
how the spectral power β depends on the statistical pa-
rameters of pulse timing. We also present a model of
charge carrier trapping in disordered materials that sat-
isfies the conditions for producing 1/f noise.

II. OVERLAPPING AND NON-OVERLAPPING
PULSES

Let us consider a process that consists of discrete
events and can be represented by a signal y(t) – a se-
quence of pulses. y(t) can be expressed as a sum of indi-
vidual pulses xk(t) shifted in time:

y(t) =
∑
k

xk(t− tk) (1)

Here xk(t) is the shape of the k-th pulse and tk - the
time of its occurrence. The shape of each pulse xk(t) is
described by a set of parameters (for example, the am-
plitude, duration etc.) which can obtain random values.

We investigate a simple case of stationary sequences
of rectangular pulses of constant amplitude whose dura-
tions {τk} are independent identically distributed (i.i.d.)
random variables.

The timing of pulses can be defined either by the time
interval θk = tk+1 − tk between the occurrence of suc-
cessive k-th and (k + 1)-st pulses or by the time interval
δk = tk+1 − tk − τk between the end of the k-th pulse (at
time tk+τk) and the start of the (k+1)-st pulse (at time
tk+1 > tk + τk). We will call δk the gap between succes-
sive pulses. We assume that one of these two quantities –
either θk or δk – together with the pulse duration τk are
i.i.d., and thus there are two distinct possibilities for the
construction of the pulse sequences in this case: (possi-
bly) overlapping pulses where the duration and timing of
pulses are defined by two independent quantities τk and
θk, and non-overlapping pulses where the (k+1)-st pulse
begins only after the k-th pulse ends, and therefore the
two independent quantities describing the pulse duration
and timing are τk and δk.

A schematic representation of a signal described above
in the case of rectangular pulses with constant amplitude
a is given in Fig. 1.

III. SPECTRAL PROPERTIES

The one-sided power-spectral density (PSD) of the sig-
nal y(t) is defined as follows:

S(f) = lim
T→∞

〈
2

T

∣∣∣∣
∫ tf

ti

dt y(t) e−i2πft

∣∣∣∣
2〉

(2)

Here T is the observation time, T = tf − ti.
Under the assumptions of stationarity and ergodicity

of y(t) (1) with pulses xk(t) sufficiently localized in time,
one gets the following PSD’s for rectangular pulses with
exponentially distributed durations τk:

S(f) =
4 ν̄ a2τ̄2

1 + (2πfτ̄)2

[
Re

{
χθ(f)

1− χθ(f)

}
+ 1

]
(3)

for possibly overlapping pulses and

S(f) =
4 ν̄ a2τ̄2

1 + (2πfτ̄)2
Re

{
1− i2πfτ̄(1− χδ(f))

(1− χδ(f))− i2πfτ̄

}
(4)
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for non-overlapping pulses (this case is often called ran-
dom telegraph noise). Here Re denotes the real part,
χθ(f) and χδ(f) are the characteristic functions of θk
the and δk, respectively. ν̄ is the average rate of pulse
occurrence which is ν̄ = θ̄−1 and ν̄ = (θ̄+ δ̄)−1 for the re-
spective cases (3) and (4), and τ̄ , θ̄ and δ̄ are the averages
of the quantities τk, θk and δk, respectively.

FIG. 1. A schematic representation of a signal, consisting
of rectangular pulses with constant amplitude a. The three
quantities that define pulse timing (only two of them inde-
pendent): pulse duration τk, gap between successive pulses
δk and interpulse time (time between the occurrence of suc-
cessive pulses) θk.

IV. POWER-LAW SPECTRA

Analytical and numerical calculations suggest that, for
sequences of rectangular pulses (1) with exponentially
distributed pulse durations, the power-law PSD with
power β for small frequencies

S(f) ∼ 1

fβ
(5)

can be obtained in both cases (3) and (4) when either
the times between the occurrence of successive pulses θk
or the gap durations δk between pulses are power-law
distributed with the power γ > 1 or, alternatively, γ =
1 + α with α > 0:

p(ϑ) ∼ ϑ−(1+α) , ϑmin ≤ ϑ < ϑmax , (6)

Here p(ϑ) denotes the probability density of the quantity
ϑ which can be one of the quantities θk or δk and the
bounds of the power-law region ϑmax � ϑmin.

The additional condition for the occurrence of the
power-law PSD (5) is that the average τ̄ of the expo-
nentially distributed pulse duration τk must be greater
than the average inter-pulse time ϑ̄, that is τ̄ � ϑ̄.3 For

α > 1 we can get the finite average value ϑ̄ = α
α−1ϑmin

for ϑmax → ∞. However, in order for ϑ̄ to be finite in
the case α ≤ 1, ϑmax must be finite.
If the above conditions are fulfilled, then we get the

power-law PSD (5) for the frequencies between fmin ≈
ϑ−1
max and fmax ≈ ϑ−1

min where the power β depends on α
as follows:

β(α) ≈
⎧⎨
⎩

α α < 1
2− α 1 ≤ α < 2
0 α ≥ 2

(7)

We see that the 1/f noise (β=1 in (5)) is obtained
when α = 1, i.e., the distribution of the inter-pulse time ϑ
(either θk or δk) has a power-law distribution p(ϑ) ∼ ϑ−2

for a wide range of ϑ. Such case is shown in Fig. 2.

V. CHARGE CARRIER TRAPPING

The results presented above have been applied to the
model describing current fluctuations in defective mate-
rials due to the charge carrier trapping4.
The model states that a charge carrier moving through

some disordered material is successively trapped in and
released from trapping centers with widely distributed re-
lease rates. For the appropriately chosen distribution of
the release rates, the resulting current corresponds to the
signal of non-overlapping pulses with power-law distribu-
tion of gaps between pulses with the power −2, resulting
in the 1/f PSD in a wide range of frequencies.

FIG. 2. The PSD S(f) resulting from the model of charged
particle trapping. The thick red line shows the exactly calcu-
lated spectrum, dashed and dotted lines are approximations
for different frequency regions (see legend).

1 B. Kaulakys, V. Gontis and M. Alaburda, Phys. Rev. E
Review 71, 051105 (2005).

2 L. K. J. Vandamme and F. N. Hooge, IEEE Trans. Electron.
Devices 55, No. 11, 3070 (2008)
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