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I. INTRODUCTION

Recently, there has been considerable interest in ran-
dom walk models in disordered media characterized by
random diffusivity (cf.1,2 and references therein). Such
models lead in a natural way to the appearance of anoma-
lous subdiffusive behavior, lack of ergodicity, aging and
similar effects. For these reasons they are suitable to
model various complex phenomena, such as diffusion of
enzymes or receptors on a cell surface, observed using sin-
gle particle imaging in in vivo2, or an impurity strongly
interacting with a condense matter system.
The main aim of the present project is to formulate and

investigate a family of “microscopic” models of a random
walk in a random stochastic medium. The dynamics of
the medium will be described by a kinetic process that
depends on the location of the walker (or, in more gen-
eral cases, on the walker’s history). At every moment,
the dynamics of the walker will depend on the config-
uration of the environment. Both dependences will be
assumed to be local, i.e. they involve only the vicinity of
the walker’s locations. By appropriately modeling these
couplings we expect to formulate new families of many-
body stochastic models with a moving impurity, capable
of reproducing results for random walks in quenched dis-
order (if the environment dynamics is ultra slow), and
much more. As an example we discuss here a paradigm
model of a random walker in the environment described
by Glauber’s famous kinetic Ising model3.

II. EXAMPLE

Let us consider systems described by classical Hamilto-
nians H(σ). We are interested in Hamiltonians following
Markovian dynamics towards equilibrium. For concrete-
ness, we consider σ to be the N -dimensional Ising vectors
σ = (σ1, . . . , σN ), with Ising variables σi = ±1. Let us
denote the conditional probability of reaching state σ at
time t when the system is initially in the state σ0 as
P (σ, t|σ0, 0) (of course P (σ, 0|σ0, 0) = δσ,σ0). We use the
shorthand notation P (σ, t). Then, the dynamical evolu-
tion is given by

Ṗ (σ, t)=
∑
σ′

[w(σ′→σ)P (σ′, t)− w(σ→σ′)P (σ, t)] , (1)

where the transition rates w(σ′ → σ) are the probability
per unit time for the transition from configuration σ′ to
σ. It is natural to assume the detailed balance condition

(DBC), that is, to impose that

w(σ′ → σ)Peq(σ
′) = w(σ → σ′)Peq(σ) (2)

with Peq(σ) = P (σ, t → ∞).
Let us consider the ferromagnetic Ising model, H(σ) =

−J
∑N−1

i σiσi+1, J > 0. The probability distribution at
equilibrium is

Peq(σ) =
1

ZN
e−βH(σ), (3)

with partition function ZN = 2N (coshN βJ + sinhN βJ).
We restrict the dynamics to single spin flips, σ′ = Diσ.
That is, a configuration σ is only connected to other con-
figurations by this process and the transition rates are of
the form w(Diσ → σ). With these assumptions Eq. (1)
becomes

Ṗ (σ, t)=
N∑
i=1

[w(Diσ→σ)P (Diσ, t)−w(σ→Diσ)P (σ, t)] .

Under these conditions a conventional form for the tran-
sition rates is3

w(Diσ→σ)=Γ

[
1− 1

2
tanh [2βJ ]σi(σi−1+σi+1)

]
, (4)

where the parameter Γ is the time scale at which the
transitions occur.

Let us make the Ansatz P (σ, t) =
√
Peq(σ)φ(σ, t), with

φ(σ, t) to be determined. For our model Hamiltonian this
reads P (σ, t) = exp [βJ

∑
i σiσi+1/2]φ(σ, t). Then, from

Eq. (1) we have

φ̇(σ, t) =
∑
σ′

{
P

−1/2
eq (σ)w(σ′→σ)P

1/2
eq (σ′)

−P
−1/2
eq (σ′)

∑
σ′′

w(σ′→σ′′)P 1/2
eq (σ′)δσσ′

}
φ(σ′, t),

which can be written as a Schrödinger equation φ̇(σ, t) =
Hφ(σ, t). For Glauber’s case [transition rates given by
Eq. (4)] one has

H(γ) = −Γ
∑

i

{
[A(γ)−B(γ)σz

i−1σ
z
i+1]σ

x
i

− [1− γ
2σ

z
i (σ

z
i−1 + σz

i+1)]
}
,

with γ = tanh 2βJ , σz and σx the Pauli matrices,

A(γ) = γ2/[(2(1 −
√

1− γ2)] and B(γ) = 1 − A(γ).
Hamiltonian (5) can be diagonalized by a Jordan-Wigner
transformation.
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III. CURRENT PROJECT

Our aim is to analyze systems derived from this model
in the presence of an impurity. In these models, when
the impurity occupies site m, the system’s coefficients
are changed in some way. The following models show
this behavior:

• The energy is increased locally by h̄ at the position
of the impurity. That is

H = −J
N−1∑
i=1

σiσi+1 +HI−bath (5)

with HI−bath =
∑N

i hm
i with hm

i = h̄δimσi (site
impurity) or hm

i = h̄(δi,mσi+ δi−1,mσi−1) (link im-
purity). In the first case, when the impurity is at
site m, if the spin at that site is +1, energy is in-
creased by h̄, and is decreased by h̄ if it is −1.

• The interaction energy depends on the position of
the impurity. Then,

H = −
N−1∑
i=1

Jm
i σiσi+1 (6)

with Jm
i = J + χ(δi,m + δi+1,m).

• Spread the effect of the impurity over a range of
sites. For example, Hamiltonian (6) with Jm

i =
J +

∑
j,〈j,m〉 χδim.

Additionally, one can consider that the impurity may
be subject to an external potential V (m). This potential
can be parabolic or a random potential, that is, some-
thing which forces the impurity to be localized in equilib-
rium. The configuration of the system of spins plus impu-
rity is (σ,m), with Ising variables σi = ±1, i = 1, . . . , N
andm ∈ 1, . . . , N being the position of the impurity. One
can write a Master equation for this system as

Ṗ (σ,m, t)=
∑

i [w(Diσ, σ)P (Diσ, t)−w(σ,Diσ)P (σ, t)]

+ [W (m+ 1,m)P (m+ 1, t)+W (m− 1,m)P (m− 1, t)

− W (m,m+ 1)P (m, t)−W (m,m− 1)P (m, t)] ,

where the transition rates w(Diσ, σ) do not change
the position of the impurity and the transition rates
W (m′,m) stand for the probability per unit time that
the impurity changes position from m′ to m. It should
conserve probability, be local, and obey DBC. The prob-
abilities at equilibrium are in general

Peq =
1

Z
exp[−βH(σ,m)]. (7)

However, in equilibrium the impurity may be fully delo-
calized for those Hamiltonians which do not break trans-
lational symmetry for the impurity.

For Hamiltonian (6) one can go a bit further. The
transition rates can be generalized from Glauber’s to 1−
tanh[2βJm

i ]σi(σi−1+σi+1) and the Master equation can
be written as

Ṗ (σ,m, t) = Γ
∑
i

[
[Di−1](1− 1

2
tanh 2βJm

i hiP (σ,m, t)

]

+ α exp[χσm+1(σm + σm+2)P (σ,m+ 1, t)]

+ α exp[χσm−1(σm + σm−2)P (σ,m− 1, t)]

− 2α exp[−χσm(σm−1 + σm+1)P (σ,m, t)] (8)

with hi = σi(σi−1+σi+1) and where α and Γ allow for dif-
ferent time scales in both types of transitions. Our goals
are: i) find models such as those described above that are
exactly solvable in 1D; ii) Perform numerical studies of
these kind of models with Monte Carlo and Tensor Net-
work States methods; iii) Apply them to various realistic
scenarios, as the aforementioned biological systems or to
exotic applications like a classical model for gravity.
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