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I. INTRODUCTION

Realization of devices displaying quantum behavior is
within the reach of present day experimental capabilities.
Experimental and theoretical results on superconducting
quantum devices has made them among the main can-
didates for the realization of quantum computing1. In
these devices the magnetic flux quantum associated to
the current of the superconducting circuit is usually sub-
ject to a bistable potential. Bistability is also present
in systems such s single high-spin molecule magnets2.
These molecules tunnel through the potential barrier of
the effective bistable potential given by the interaction of
the spin with the molecular field. Both single molecule
magnets and superconducting devices are subject to envi-
ronmental fluctuations. In quantum regime the dynamics
of a particle interacting with the environment can be de-
scribed by the celebrated Caldeira-Leggett model3, which
allows to analyze the dynamics of a particle coupled by a
linear interaction to a reservoir of N independent quan-
tum harmonic oscillators. The interaction with the bath
can affect the system dynamics in a significant way since,
even if the coupling with the individual oscillator is weak,
the dissipation regime may be strong. In the thermody-
namical limit N → ∞ the reservoir is called a heat bath
and its spectral density function J(ω), describing the fre-
quency dependence of the coupling to the system, is taken
to be of the form J ∝ ωs, with a high-frequency cut-off.
The special case s = 1 describes the so-called Ohmic dis-
sipation. The quantum Langevin equation for the parti-
cle’s coordinate in the Ohmic case is characterized by a
memoryless damping kernel (frequency independent fric-
tion) and in the classical limit � → 0 corresponds to the
case of white noise source.

Despite the circumstance that in most cases the Ohmic
dissipation gives a good description of the effects exerted
by the thermal bath, super-Ohmic environments (s > 1)
are of interest on both the theoretical and the experimen-
tal point of view. Moreover, the system dynamics can be
significantly affected by the value of the cut-off frequency
present in J ∝ ωs.
In this work we intend to answer two questions: i)

how the dynamics of a M-level quantum particle changes
when a heat bath with a super-Ohmic spectral density is
present instead of an Ohmic reservoir; ii) how varying the
cut-off frequency in the spectral density function affects
the system dynamics. The study is carried out by using

an integro-differential equation within the path integral
formalism, following the approach used in Refs.4,5.

II. THE MODEL

The model of dissipation used here is the Caldeira-
Leggett model. It allows for a microscopic derivation of
dissipation in the reduced dynamics. The system, a par-
ticle of mass M , coordinate q̂, and momentum p̂ subject
to a potential V0, is linearly coupled to the environment,
a reservoir of N independent quantum harmonic oscilla-
tors of masses mj , frequencies ωj , coordinates x̂j , and
momenta p̂j . The reservoir is also called, in the ther-
modynamical limit N → ∞, bosonic heat bath, since its
excitations obey the Bose-Einstein statistics. The full
Hamiltonian is the sum of a free system term, a free
reservoir term and a system-reservoir interaction term
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The bistable asymmetric potential V0 used in this work is
depicted in Fig. 1. In the general case of continuous bath
the spectral density function is modeled as a power of
ω, characterized by the exponent s, with an exponential
cutoff at ωc

J(ω) = Mγω1−s
ph ωse−ω/ωc . (2)

The bath is said sub-Ohmic for 0 < s < 1, Ohmic for
s = 1 and super-Ohmic for s > 1. The so-called damp-
ing constant γ is a measure, in the continuous limit, of
the system-bath coupling. The phonon frequency ωph is
introduced in such a way that γ has the dimension of a
frequency also in the non-Ohmic case (s �= 1).

The dynamics of the reduced density matrix (RDM)
ρqq′ = 〈q|ρ|q′〉 is given by the exact formal expression

ρqq′(t) =

∫
dq0

∫
dq′0G(q, q′, t; q0, q′0, t0)ρq0q′0(t0), (3)

where the propagator G is a double path integral in the
left/right coordinate q/q′. The amplitudes in this sum-
over-paths are weighted by the Feynman-Vernon influ-
ence functional FFV , which accounts for the effects of
the environment.
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FIG. 1. Potential V0, energy levels considered, and position
eigenstates. The frequency ω0 is the oscillation frequency
around the minima and is of the order of the average inter-
doublet spacing: �ω0 ∼ (E4 + E3 − E2 − E1)/2.
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FIG. 2. Population difference P (t) = PR − PL, where PL =
ρ11 + ρ22 and PR = ρ33 + ρ44 at damping strength γ = 0.1 ω0

and temperature T = 0.2 �ω0/kB . Comparison between the
Ohmic and the super-Ohmic (s = 1.2) regime.

Here we consider the so-called double-doublet system,
where only the first 4 levels of the potential V0 are con-
sidered. The continuum of position states turns into a
discrete set of states localized around a grid of 4 posi-
tion eigenvalues q1, . . . , q4, where q̂|qj〉 = qj |qj〉. The
set {qi, |qi〉} constitutes the discrete variable representa-
tion (DVR). The system dynamics is studied through the
time evolution of the populations ρii = 〈qi|ρ|qi〉. Finally,
within a NIBA-like approximation scheme the general-
ized master equation (GME) for the populations in the

DVR reads4

ρ̇ii(t) =
4∑

j=1

∫ t

t0

dt′Kij(t− t′)ρjj(t′). (4)

Solving Eq. (4) in the intermediate tempera-
ture/damping regime, with the initial condition
ρ0 = |q1〉〈q1|, we obtain the results shown in Fig 2
(Ohmic and sub-Ohmic case with a high frequency cut-
off at ωc = 50ω0) and Fig. 3 (Ohmic regime for different
cutoff frequencies). We notice that the equilibrium con-
figuration in the super-Ohmic case is reached later with
respect to the Ohmic case, even if the time evolution of
the individual populations (not shown) displays similar
features (transient intra-well oscillations and incoherent
tunneling). Changing the cutoff frequency in the Ohmic
regime has an influence both on the relaxation dynamics
and on the stationary configuration.

A major unsolved problem in the context of the in-
fluence of quantum noise on multi-state systems is the
description of the decoherence in this intermediate dissi-
pation regime, using a fully non-Markovian approxima-
tion scheme.
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FIG. 3. Population difference P (t) = PR − PL, where
PL = ρ11 + ρ22 and PR = ρ33 + ρ44 at damping strength
γ = 0.1 ω0 and temperature T = 0.2 �ω0/kB . Ohmic regime
with different cutoff frequencies.
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