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I. INTRODUCTION

The Allison Mixture1 is a process formed by random
sampling of two parent processes, and which can have the
unintuitive property of being autocorrelated, despite all
its values being drawn from uncorrelated processes. How-
ever, this correlation vanishes if the parent processes are
of equal mean, suggesting the use of autoinformation2,3

as an alternative to correlation, providing a canonical
measure of the strength of the memory of the Allison
mixture. We apply this measure to the Allison mixture,
producing analytic expressions for the k-step autoinfor-
mation of its sampling process.

II. THE ALLISON MIXTURE

The Allison mixture1 is a process in which samples are
drawn from one of two distributions, the choice deter-
mined by the state of a Markov chain, shown in Fig. (1).
The marginal distribution of this process is a mixture
of the two source distributions, the mixing constant de-
termined by the stationary distribution of the Markov
chain.

Definition II.1 (Allison mixture1). An Allison mixture
Xt of two processes Ut and Vt is given by

Xt = StUt + (1− St)Vt (1)

where the sampling process St is a Markov chain, shown
in Fig. (1), having states {0, 1} and transition probabili-
ties α0 and α1 when in states 0 and 1 respectively.

0 1

0

1

1 11 0

FIG. 1. The Markov chain defining the sampling process St

of the Allison mixture. It is parametrised by the probabilities
α0 and α1 of leaving states 0 and 1 respectively.

The stationary distribution of St is given by

π0 =
α1

α0 + α1
(2)

π1 =
α0

α0 + α1
. (3)

We use a spectral decomposition of the transition ma-
trix P in order to compute the k-step probability matrix
P k and so the k-step transition probabilities α0,k and
α1,k.

Theorem II.1. The sampling process St has k-step tran-
sition probabilities

α0,k = π0

[
1− (1− α0 − α1)

k
]

(4)

α1,k = π1

[
1− (1− α0 − α1)

k
]
. (5)

III. AUTOINFORMATION OF THE ALLISON
MIXTURE SAMPLING PROCESS

The autoinformation function is an alternative to the
autocovariance function as a measure of dependence, de-
fined as follows:

Definition III.1 (Autoinformation function3). The au-
toinformation function of a stochastic process St is the
mutual information

Ixx[t, k] = I(St, St−k) (6)

= H(St, St−k)−H(St)−H(St−k). (7)

If St is stationary, then we may omit t as a parameter,
leaving us with

Ixx[k] = I(St, St−k) (8)

= H(St, St−k)− 2H(St). (9)

The autoinformation improves on the autocovariance
function as a measure of dependence by providing a con-
dition both sufficient and necessary—whereas a lack of
correlation does not necessarily indicate independence,
two variables will have zero mutual information only if
they are statistically independent; this is vital when the
processes Ut and Vt of the system being modelled have
identical means but differing variances, such as particle
velocities in statistical mechanics.
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FIG. 2. Single-step autoinformation of the Allison mixture
sampling process as a function of α0 and α1. Note the lines of
zero autoinformation along α0 = 0, α1 = 0, and α0 + α1 = 1.

Lemma III.1. Let St be a binary-valued random pro-
cess with transition probabilities and a stationary dis-
tribution equal to that of the Markov chain in Defini-
tion II.1. Then, in the fully-mixed regime the single-step
autoinformation is given by

Ixx[1] =
α1(1− α0) log2

1−α0

α1

α0 + α1

+
α0(1− α1) log2

1−α1

α0

α0 + α1
(10)

+ log2(α0 + α1),

where both α0 and α1 are nonzero, zero if exactly one of
α0 and α1 is equal to zero, and undefined if both are equal
to zero.

Thus the autoinformation is equal to zero when α0 = 0,
α1 = 0, or α0+α1 = 1, and so these previously-described1

conditions for decorrelation of the sampling process imply
zero mutual information and therefore genuine indepen-
dence.

Importantly, we have not assumed the Markov prop-
erty, instead directly demanding that the formulae for
the stationary probabilities hold. This weakening is in-
tended to allow us later to generalise to the Allison mix-
ture proper.

The mutual information as a function of (α0, α1) is
shown in Fig. (2). As one would expect, we see a peak
near (α0, α1) = (0, 0), where consecutive states are highly
dependent. Similarly, we see a large autoinformation
near (1, 1), where the strong anticorrelation makes con-
secutive states highly predictable. Between these two
extremes lies a valley, its nadir falling along the line

α0 + α1 = 1; along this line, consecutive states of the
sampling process are completely independent.

Theorem III.1. The k-step autoinformation of a fully
mixed two-state Markov chain with exit probabilities α0

and α1, as in Fig. (1), is given by Lemma III.1 under
the substitution

α0 −→ π0

[
1− (1− α0 − α1)

k
]

(11)

α1 −→ π1

[
1− (1− α0 − α1)

k
]
. (12)

This final theorem allows us to extend our single-step
results to arbitrary time-lags, completing our character-
isation of the Allison mixture sampling process.
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FIG. 3. Exponentially-decaying autoinformation of an Allison
mixture sampling process with α0 = 0.1, α1 = 0.1.

We show the autoinformation in Fig. (3) as a function
of lag; it can be seen to decay at a roughly exponential
rate.

IV. OPEN QUESTIONS

The theorems that we have presented allow computa-
tion of the autoinformation function of the Allison mix-
ture sampling process, and can be readily extended to
binary-valued Allison mixtures. However, many phys-
ical systems are described by continuous-valued pro-
cesses, and their autoinformation cannot be calculated
by Lemma III.1. It remains to be seen whether the au-
toinformation can be computed by transformation of the
sampling process autoinformation in a similar fashion to
that of the autocovariance function1.

Furthermore, the information-theoretic approach that
we have presented provides the starting point for an in-
vestigation of the transfer entropy4 between the sampling
process and the Allison mixture; previous works on trans-
fer entropy have focussed on complex systems, leaving
room for the analysis of simpler and analytically tractable
models in order to better probe its properties.
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