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I. INTRODUCTION

Many complex systems exhibit large fluctuations of
macroscopic quantities having non-Gaussian power law
distributions as well as power law temporal correlations
and scaling.1 The power law distributions, scaling, self-
similarity and fractality can be related to the power law
behavior of the power spectral density (PSD), which is
one of the most important characteristics of a signal. Sig-
nals having the PSD at low frequencies f of the form
S(f) ∼ 1/fβ with β close to 1 are commonly referred
to as “1/f noise”. Power-law distributions of spectra of
signals with 0.5 < β < 1.5, as well as scaling behavior are
ubiquitous in physics and in many other fields. For re-
cent reviews see 2–4. Despite the numerous models and
theories proposed since its discovery 90 years ago, the
subject of 1/f noise remains open for new discoveries.
Most models and theories of 1/f noise are not universal
due to the usage of assumptions specific to the problem
under consideration.

Often 1/f noise is modeled as the superposition of
Lorentzian spectra with a wide range distribution of re-
laxation times.5 A class of the models of 1/f noise espe-
cially relevant for understanding of complex systems in-
volves the self-organized criticality.6 Yet another model
of 1/f noise has been proposed by Kaulakys:7,8 it has
been shown that the origin of 1/f noise in a signal con-
sisting of pulses may be a Brownian motion of the inter-
pulse time. The nonlinear stochastic differential equa-
tions (SDEs) generating signals with 1/f noise has been
obtained starting from this point process model of 1/f
noise9,10. Such nonlinear SDEs have been used to de-
scribe signals in socio-economical systems11,12.

In this contribution we generalize the mechanism lead-
ing to 1/f noise in the signals consisting of a sequence
of pulses. Instead of a sequence of pulses we start from
an SDE describing a Brownian motion in an external po-
tential. We construct a new equation by interpreting the
time in the SDE as an internal parameter and adding
an additional equation relating the physical time to the
internal time. We show that relation between the inter-
nal time and the physical time that depends on the size
of the signal can lead to 1/f noise in a wide interval of
frequencies.

II. 1/f NOISE AND DIFFUSION IN
NON-HOMOGENEOUS MEDIA

Impurities and regular structures in the medium re-
sults in a transport of variable speed, the particle may be
trapped for some time or accelerated. Non-homogeneous
systems are characterized not only by subdiffusion re-
lated to traps, but also enhanced diffusion can arise as
a result of the disorder.13 The dynamics of such a sys-
tem is described by the continuous time random walk
(CTRW) theory. In an equivalent description the dy-
namics is Markovian and governed by a Langevin equa-
tion in an auxiliary, operational time instead of the phys-
ical time. This Markovian process is subordinated to the
process yielding the physical time.

Since the trap properties should reflect the structure
of the medium, a description of the transport should take
into account that the waiting time explicitly depends on
the position. Here we consider the situation when the
small increments of the physical time are deterministic
and proportional to the increments of the internal time.
The coefficient of proportionality is a function g(x) of a
particle position. This function models the position of
structures responsible for either trapping or accelerating
the particle. Thus, we start from the following set of
equations:

dxτ =F (xτ )dτ + dWτ , (1)

dtτ =g(xτ )dτ . (2)

Here τ is an internal, operational time and t is the phys-
ical time; F (x) is an external force affecting the particle
and Wτ is a standard Wiener process.
Writing the Fokker-Planck equation for the two-

dimensional density P (x, t) corresponding to (1), (2) and
changing the variable t to a variable τ one can reduce the
system of equations (1), (2) to a single equation in phys-
ical time with a multiplicative noise

dxt =
F (xt)

g(xt)
dt+

1√
g(xt)

dWt . (3)

There is a similarity to the signal consisting of pulses,
where the internal time is just the pulse number. In order
to obtain 1/f noise similarly as in a signal consisting of
pulses we choose the function g(x) as a power-law func-
tion of x: g(x) ∼ x−2η.

For example, if we start from a simple Brownian mo-
tion dxτ = dWτ restricted to a interval between xmin and
xmax and take g(x) = x−2η then the resulting equation
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FIG. 1. Signal generated by equation (5) with the parameters
η = 5/2 and λ = 3 (red line) together with the corresponding
internal time (blue line)

in the physical time is dxt = xη
t dWt. In more general sit-

uation the initial equation can have a position-dependent
force. If we take the equation describing a Bessel process

dxτ =

(
η − λ

2

)
1

xτ
dτ + dWτ (4)

then the resulting equation in the physical time becomes

dxt =

(
η − λ

2

)
x2η−1
t dt+ xη

t dWt (5)

This equation is the same as the nonlinear SDE generat-
ing signals with 1/fβ spectrum9,10. As has been shown,14

the reason for the appearance of 1/f spectrum is the scal-
ing properties of the signal: the change of the magnitude
of the variable x → ax is equivalent to the change of the
time scale t → a2(η−1)t.
Equation (4) together with dtτ = x−2η

τ dτ suggest an
efficient way of solving the non-linear SDE (5). Discretiz-

ing the internal time τ with the step Δτ and using the
Euler-Marujama approximation for the SDE (4) we get

xk+1 =xk +
(
η − ν

2

) 1

xk
Δτ +

√
Δτεk , (6)

tk+1 =tk +
Δτ

x2η
k

(7)

Here εk are normally distributed uncorrelated random
variables.

An example of a signal generated by equation (5) to-
gether with the internal time is shown in Fig. 1. We see
that internal time increases rapidly when the signal ac-
quires large values. The corresponding spectrum is shown
in Fig. 2. The numerical solution confirms a presence of
a wide region where the spectrum behaves as 1/f .
In summary, we have demonstrated that the Brownian

motion in non-homogeneous medium can result in 1/f
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FIG. 2. Spectrum of the signal generated by equation (5)
with the parameters η = 5/2 and λ = 3 (red curve). Blue line
shows the slope 1/f

noise when the internal time and the physical time are
related via power-law function of the position. We expect
that the present model can be useful for explaining 1/f
noise in complex systems.

1 B. B. Mandelbrot, Multifractals and 1/ f Noise: Wild Self-
Affinity in Physics (Springer-Verlag, New York, 1999).

2 C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys.
81, 591 (2009).

3 A. A. Balandin, Nature Nanotechnology 8 549 (2013).
4 E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler,
Rev. Mod. Phys. 86, 361 (2014).

5 A. L. McWhorter Semiconductor Surface Physics
(R. H. Kingston (Ed.), University of Pennsylvania Press,
Philadelphia, 1957).

6 P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381
(1987).
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