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I. INTRODUCTION

Recently, considerable attentions have been paid to
the fluctuation of the entropy production for mesoscopic
transports. In particular, the tails of the probability dis-
tribution represent rare but important phenomena for the
stochastic thermodynamics. Experimentally, however, it
is difficult to sample sufficient number of rare events. The
rare events have been explored for a dragged Brownian
particle in water, RNA stretching, the electron transport
thorough quantum dots, to name only a few. This issue
suggests an unsolved problem: How should we sample the
rare events? Several numerical methods were developed
for the efficient sampling.

In this presentation, we discuss on an alternative way
to calculate the probability distribution on the basis of
a single sample for quantum many-body systems. Our
results treat whole the range of the probability distribu-
tions equally well. With the use of the single sample, we
can accurately reproduce the full statistics of the ensem-
ble, which is an assembly of many pure states. Hence, the
difficulty of sampling the rare events is partially solved.

II. TYPICAL PURE NONEQUILIBRIUM
STATES AND PROBABILITY DISTRIBUTION

We use the intrinsic thermal nature of a typical pure
state |φ〉 on the energy shell HE . Let us randomly sam-
ple a pure state |φ〉 from HE according to the Haar mea-

sure. Then, for an arbitrary observable Â, the expecta-
tion value 〈φ|Â|φ〉 well agrees with the microcanonical

average 〈Â〉mc with a probability almost unity1,2. For
large system size, the equivalence of ensembles claims
that the canonical and microcanonical averages for the
total system are quantitatively similar. And, we simply
denote the microcanonical average as 〈Â〉eq.
It is a challenging problem to explore the nonequilib-

rium processes on the basis of the pure state. We extend
the availability of the thermal nature of typical states to
the nonequilibrium processes which start from an equilib-
rium state3. We can also construct a class of typical pure
nonequilibrium stationary states based on the scattering
approach4, and calculate the stationary current.

The important point is that Â can be arbitrary higher
order polynomials of local operators. For example, Â
can be the exponential of a local operator. One might
think that we can distinguish the pure and microcanon-
ical states from the expectation values of higher correla-
tions. However, this is not the case. Hence, we can cal-
culate the characteristic function of, for example, the en-
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FIG. 1. The probability distribution Peq(ΔS = a) for the
microcanonical ensemble and Pφ(ΔS = a) for pure states.

The error bars show Peq(ΔS = a)/
√
d (red) and fluctuation

of 10 randomly sampled pure states (black).

tropy production 〈U(t)†eiξβĤ(t)U(t)e−iξβĤ(0)〉eq on the

basis of the pure state |φ〉. Here, Ĥ(t) is the Hamiltonian
at time t, and U(t) is the unitary evolution operator. By
the Fourier transformation, we can calculate the prob-
ability distribution P (βW = a) only from a fixed pure
state |φ〉3. The deviation roughly satisfies

Peq(βW = a) = Pφ(βW = a)(1 +O(
1√
d
)), (1)

where Peq(·) and Pφ(·) are the probability distributions
calculated by the initial microcanonical ensemble and the
pure state |φ〉. Here, d = dimHE is the dimension of
the initial energy shell at an energy scale E. Since d
exponentially grows with the system size N , the error
is negligible also for relatively small systems. The error
estimation (1) is considered as model-independent, and
determined only by the absolute value of the probability
and the dimension.

In Fig. 1, we numerically calculate the probability
distribution of the entropy production for N = 10 sites
quantum spin chain which is externally perturbed by a
time dependent magnetic field. Here, we ignore the bo-
son or fermion statistics, however, the same argument
essentially holds for these cases by constraining both the
total energy and the number of particles. This issue is
important to explore the energy and particle currents for
quantum junctions in nonequilibrium steady states4. The
Hamiltonian is

Ĥ(t) = −J
N−1∑

j=1

σz
jσ

z
j+1 +

N∑

j=1

σx + h(t)

Ns∑

j=1

σz
j + γ

N∑

j=1

σz
j .

(2)
Here, we use the ferromagnetic exchange energy J = 1,
and the z component of the magnetic field is γ = 0.5.
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The time-dependent magnetic field h(t) = sin 2πωt is
acting on the subsystem 0 ≤ j ≤ Ns with Ns = 2 and
ω = 0.4. The parameter γ controls the integrability. We
randomly sample 10 pure states from an energy shell HE ,
and calculate the probability distributions. The error
bars show the theoretically predicted deviation from the
microcanonical case, and the numerical fluctuation. The
deviation is in agreement with the theoretical estimation.
The distribution function P (βW = a) contains a con-

tinuous parameter a, and the error estimation above

holds for most of a as verified in Fig. 1. In particular, we
can accurately reproduce the tails or large deviations.
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