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I. INTRODUCTION

In recent years a great attention has been devoted to
the study of strong correlations in low dimensional sys-
tems. Among them the fractional quantum Hall effect
(FQHE) plays a major role, in which correlations can in-
duce the emergence of excitations with fractional charges
and fractional statistics.1,2 Several works focussed on the
experimental detection of these peculiar features. In par-
ticular, fractional charges can be revealed by means of
shot noise measurements in a quantum point contact
(QPC) geometry.3 Indeed, the zero frequency current-
current correlation, in the weak-backscattering regime,
is predicted to be proportional to the induced backscat-
tering current via the fractional charge associated to the
tunnelling excitation between the opposite edges of the
Hall bar. Clear experimental signatures of this fact have
been reported for the Laughlin sequence. In the case of
composite edges, such as in the Jain sequence the situ-
ation is more involved since at low energies, various ex-
citations with different fractional charges can contribute
to the transport.4,5 Moreover, zero frequency noise may
be not enough in order to extract in a univocal way the
values of the fractional charges when many of them con-
tribute, with comparable weight to QPC transport. A
possible way to overcome this limitation is to look at
the finite frequency (f.f.) properties.6–8. In particular,
for quantum Hall QPC transport, the f.f. noise is pre-
dicted to show resonances in correspondence of Joseph-
son frequencies, which are proportional to the fractional
charges.

II. PROPOSED DETECTION SCHEME

In the context of current-current correlations Lesovik
and Loosen9 introduced a model based on a resonant
LC circuit as prototypical scheme for f.f. noise measure-
ment. It has been shown that the measured quantity
for the LC detector setup can be expressed in terms of
the non-symmetrized f.f. noise which reflects the emis-
sion and adsorption contributions of the active system
under investigation, i.e. the QPC. The non-symmetrized
noise has been considered in literature for different sys-
tems as the ultimate source of information of quantum
noise properties.10–12

Here13 we consider the f.f. detector output power of
a resonant circuit coupled to a QPC in the fractional

quantum Hall regime. A schematic view of the proposed
setup is shown in Fig.(1). The measurable quantity, in

FIG. 1. Schematic view of the proposed setup.

this scheme, is the variation of the energy (at frequency

ω =
√

1/LC) stored in the LC circuit before and after
the switching on of the LC-QPC coupling, i.e. the circuit
element in the dashed line of Fig.(1). We will indicate it
as measured noise Smeas. At lowest perturbative order
in the coupling K � 1 it can be expressed in terms of the
non-symmetrized noise spectrum of the QPC.9,10 Finally,
this quantity may be eventually expressed in terms of the
difference of the output LC power, at finite bias V , sub-
tracted with the same quantity measured at equilibrium,
V = 0.13

III. RESULTS

Hereafter we will discuss this detector model coupled
with a QPC kept in the fractional Hall regime in the
limit of weak back-scattering. This realistically measur-
able noise power will be analyzed, at fixed frequency
ω, as a function of QPC bias V , measured in terms
of the Josephson frequency ω0 = e∗V/� associated to
the fundamental fractional charge e∗ of the considered
Hall state. We will assume that the temperature Tc of
the detector could be controlled and kept, eventually,
at different temperature from the QPC circuit T . We
will mainly consider the quantum limit for the detector,
�ω � kBTc, where the output power is proportional to
the non-symmetrized noise. The QPC, will be investi-
gated by scanning the bias out of equilibrium (shot noise
limit e∗V � kBT ). These limits represent the best con-
ditions to extract information about fractional multiple
quasiparticles (qps), in particular, their charge me∗ and
their scaling properties.14

First of all, we will analyze the well known case of non-

UPON 2015, BARCELONA, JULY 13-17 2015 1



FIG. 2. Measured noise Smeas as a function of external bias
for ν = 1 (left panel) and ν = 1/3 (right panel) (in units of
S0 = e2|t1|2/(2πα)2ωc). Bias measured as ω0/ω, with ω0 =
e∗V . Temperatures are: T = 0.1 mK (black), T = 5 mK
(blue), T = 15 mK (green) and T = 30 mK (red). Other
parameters are: Tc = 15 mK, ω = 7.9 GHz (60 mK), ωc = 660
GHz (5 K).

c) d)
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FIG. 3. Measured noise Smeas as a function of ω0/ω for
ν = 2/5 (left panel) and ν = 2/3 (right panel). All quantities
are in units of S0. The temperatures are the same of Fig.2.
Other parameters are: ω = 7.9 GHz (60 mK), Tc = 0.1 mK,
ωn = 6.6 GHz (50 mK), ωc = 660 GHz (5 K). The dashed lines
correspond to the rate contributions of the 2-agglomerate and
the single-qp for T = 0.1 mK. They are calculated separately
and fitted only by changing their prefactors. The dashed-
dotted line is the sum of the two contribution and returns
exactly the behaviour of Smeas.

interacting Fermi liquid (ν = 1) and Laughlin (ν = 1/3)
to show some important and useful properties of the mea-
surement setup. Differently from what usually considered
in other theoretical papers, where the noise is shown at
finite bias as a function of the frequency, here we will dis-
cuss the opposite case in which the bias is moved at fixed
frequency. This allows us to be closer to realistic exper-

imental situations representing by far the simplest mea-
surement protocol for the system. We discuss in details
the advantages of considering this measurement scheme
in comparison to the simpler symmetrized noise.

In Fig.(2). we report the measured noise Smeas for
the cases ν = 1(left panel), 1/3(right panel) for different
temperatures. It is easy to recognise in the behaviour of
the output power directly the shape of tunnelling rates
for the dominant excitation e (electron) and single-qp
e∗ = νe (single-qp). Indeed in the Laughlin case the
line-shape return immediately information of the investi-
gated excitation, such as the scaling dimension from the
shape of the peaks centred at ω0. This information can
be accessed in this setup and it may be crucial in order
to validate the edge states theories.

The detector response will give the unique possibility
to selectively address the emission contribution of QPC
noise or its adsorptive part only by acting on the detec-
tor temperature. We also discuss the range of the detec-
tor temperatures in order to access the non-symmetrized
noise contributions. In particular it is convenient that Tc

is smaller than the considered frequency ω.
Finally, see Fig.(3), we apply the previous concepts to

the measurement of multiple qps for two values of the
Jain sequence (ν = 2/5 and ν = 2/3). In all cases we
demonstrate how this setup is able to clearly address
the different qps contributions separately and to quan-
titatively validate the hierarchical edge state models. In
such cases we could distinguish the contribution of single-
qp (e∗) or 2-agglomerate (2e∗) from the position of the
corresponding Josephson resonances. From this we can
separately address the contribution of the two excitations
fitting their tunnelling rates and identifying their funda-
mental properties, such as the scaling dimensions. From
these knowledges it is possible to validate various edge
state models which in general differ in the prediction of
these quantities. This possibility to separately address
the different excitation contribution on the base of their
different charges is unique resource of this setup and is
deeply connected to the fact that analysis is done at finite
bias (out-of-equilibrium) and at finite frequencies.

The same analysis can be repeated for other fractions,
such as ν = 5/2, with the factual possibility to identify
which edge state model apply to the observed Hall state
(Abelian, Pfaffian or anti-Pfaffian).7,8

1 R. Laughlin Phys. Rev. Lett. 50 1395(1983).
2 J. K. Jain Phys. Rev. Lett. 63 199 (1989).
3 R. de Picciotto et al. Nature 389 162 (1997).
4 Y. C. Chung, M. Heiblum, and V. Umansky Phys. Rev.
Lett. 91 216804 (2003); A. Bid et al. Phys. Rev. Lett. 103
236802 (2009); M. Dolev , et al. Phys. Rev. B 81 161303
(2010).

5 D. Ferraro et al. Phys. Rev. Lett. 101 166805 (2008).
6 C. Chamon C et al. Phys. Rev. B 51 2363 (1995); C Cha-
mon et al.Phys. Rev. B 53 4033 (1996).

7 M. Carrega et al. Phys. Rev. Lett. 107 146404 (2011).
8 M. Carrega et al. New J. Phys. 14 023017 (2012).

9 G. B. Lesovik and R. Loosen JETP Lett. 65 295(1997).
10 U. Gavish et al.Phys. Rev. B 67 10637 R (2000); U. Gavish

et al. Phys. Rev. Lett. 93 250601 (2004); D. Chevallier et
al. Phys. Rev. B 81 205411 (2010)

11 A. Bednorz et al. Phys. Rev. Lett. 110 250404 (2013).
12 R. Aguado and L. P. Kouwenhoven Phys. Rev. Lett. 84,

1986 (2000).
13 D. Ferraro, M. Carrega, A. Braggio, and M. Sassetti New

J. Phys. 16 043018 (2014).
14 A. Braggio et al. New J. Phys. 14 093032(2012).

UPON 2015, BARCELONA, JULY 13-17 2015 2


