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I. INTRODUCTION

Flicker noise in graphene based devices has attracted
significant interest1 because of the very peculiar features
it exhibits, in comparison with what is observed in more
traditional materials. In particular, the behavior of the
noise power spectral density (PSD) as a function of car-
rier concentration has turned out to be rather puzzling,
especially in bilayer graphene, and several authors2–6

have made an effort to find an explanation for it. For ex-
ample, it has been observed that the PSD of flicker noise
in bilayer graphene, and sometimes also in monolayer
graphene, has a minimum around the Dirac point, where
charge concentration also reaches a minimum, while in
conductors obeying Hooge’s empirical formula7 the op-
posite is expected. Attempts have been made to jus-
tify the particular dependence of the flicker PSD on car-
rier concentration on the basis of the known presence of
electron and hole puddles in the graphene sheet2, of a
supposed variation3 of the Hooge parameter with gate
voltage, which would prevail on the effect of the carrier
number decrease, of effects linked to mobility fluctua-
tions4, of a charge-noise model5, or of the bandstructure
of single layer and bilayer graphene6. Experiments have
also shown8 that the noise factor in monolayer graphene
nanoribbons is independent of the resistance to length
ratio, while a clear dependence on such a quantity is
observed for bilayer graphene nanoribbons. However, a
comprehensive model, capable of explaining all observed
features, is still lacking. In the present contribution, we
shall try to provide a framework within which a more
general understanding of flicker noise in graphene sheets
and nanoribbons can be derived.

II. CURRENT FLUCTUATIONS

Our aim is to find an expression for the PSD of flicker
current noise in graphene-based devices. We assume that
flicker noise is the result of charges moving into and out of
traps that have an electrostatic coupling with the chan-
nel where the current flows. We also assume that such
fluctuations occur on a time scale much longer than that
of carrier scattering events (such as phonon scattering).
Thus the contribution of each elementary area of the de-
vice is due to the fluctuation of the local value of the drift
current; this can be related to the current at the termi-
nals via the Ramo-Shockley-Pellegrini9–11 theorem. In
particular, if, for the sake of simplicity, we do not enter
into the specific details of the device geometry and as-

sume the electric field E to be somewhat constant across
the device, we can write the current at the terminals, as
long as we are interested just in the low-frequency fluc-
tuations, in the form

I =
1

L

∫
A

μnEdxdy , (1)

where μ is the mobility, A = WL the area of the device,
L being its length and W its width. Let us now move
on to the evaluation of the fluctuations of the current.
We are interested only in the fluctuations due to charges
moving into and out of traps, therefore we can consider
just the action of such traps. In principle, trapping and
detrapping events have an action not only on the num-
ber of carriers available for conduction, but also on the
mobility, and on the local electric field. These two lat-
ter contributions are in general negligible with respect
to the former12, so that the relative fluctuation for each
trap can be written

Δi

I
=

1

A

∫
A

Δnc

nc

dxdy , (2)

where nc = nn +np, i.e. the total concentration of carri-
ers, while we also define n = nn − np, which, multiplied
by the electron charge, gives the total charge density.
Assuming for each trap a random telegraph signal χ

for the occupancy (with a value of 1 when the trap is
occupied and 0 when it is empty), the relative variation
of the current due to a charge moving into the trap can
be written12

Δi

I
= −

1

A

(
ac
anc

)
Δχ, (3)

where ac = ∂nc/∂U (with U being the electrostatic po-
tential energy), a = ∂n/∂U . The superposition of the
Lorentzian spectra associated with the traps leads to a
PSD13
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(
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)2
1

fγ
, (4)

where nt is the trap density, B is a proper coefficient, and
γ is usually 1 (flicker noise). We must consider that the
potential is not at all uniform across a graphene sheet,
but, rather, it fluctuates, due to the presence of impu-
rities and of defects. Thus the PSD of Eq. (4) has to
be weighed with the distribution function P (U) of the
potential energy:

〈S〉

I2
=

〈nt〉

Afγ

∫
B

(
ac
anc

)2

P (U)dU , (5)
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where we assume a Gaussian form for P (U), with a stan-
dard deviation σ∗.

III. RESULTS
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FIG. 1. Behavior of the PSD in monolayer graphene as a
function of the applied gate voltage Vg, for three values of the
standard deviation σD.
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FIG. 2. Behavior of the PSD in bilayer graphene as a function
of Vg, for different values of σD.

The result for single-layer graphene is shown in Fig. 1
for 3 values of σD, where σD = σ∗â, with â ∝ n0 the value
of a for U = 0. The quantity n0 is the reference density,
given by n0 = (1/π)[kBT/(�v)]

2 ≈ 7 × 1010 cm−2, with
v being the in-plane velocity. For the lowest value of

the standard deviation we notice a minimum of the noise
around the Dirac point as a result of a suppression of cur-
rent fluctuations resulting from the presence of an equal
concentration of carriers with charges of opposite sign.
We see that, for increasing σD, the behavior of the noise
power spectral density as a function of the applied gate
voltage moves from an M shape to a Λ shape, as a re-
sult of the increasing smoothing effect of P (U). In Fig. 2
we report instead the behavior of the PSD as a function
of the gate voltage for bilayer graphene, for a choice of
3 values of the standard deviation. We notice that now
the shape is always of the V type, as a result of the much
smoother variation of the energy dispersion relationship
around the Dirac point with respect to what happens for
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FIG. 3. Noise factor ψ = 〈S〉L2/R for monolayer (topmost
curve) and for bilayer (lower curves) graphene nanoribbons,
as a function of R/L.

monolayer graphene. The proposed approach can be ap-
plied also to nanoribbons, which are characterized by a
peculiar bandstructure. If we consider armchair nanorib-
bons and compute the quantity ψ = 〈S〉L2/R, where R
is the nanoribbon resistance, we get the results reported
in Fig. 3, as a function of R/L. We notice that for mono-
layer graphene nanoribbons there is no significant vari-
ation (at least in the considered range of resistances) of
the noise factor, while for bilayer graphene, in a semilog-
arithmic scale, there is a clear linear dependence on the
R/L ratio, with a different slope for different nanorib-
bon widths. This is in agreement with the experimental
results by Lin and Avouris8.
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