Percolation noise at the metal-insulator transition of nanostructured VO₂ films^{a)}

Zareh Topalian¹, Shu-Yi Li¹, Gunnar A. Niklasson¹, Claes G. Granqvist¹ and Laszlo B. Kish^{1,2}

¹Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden

e-mail address: Claes-Goran.Granqvist@angstrom.uu.se

²Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA

e-mail address: Laszlokish@tamu.edu

I. INTRODUCTION

Thermochromism in VO₂ is associated with a first-order metalinsulator transition (MIT) at $T_c \approx 68 \, {}^{\circ}\text{C}$, and VO₂ is capable of transforming between a low-temperature (monoclinic, M1) semiconducting state and a high-temperature (rutile, R) metalliclike state. Thin films are of intense current interest for numerous applications such as glazings for energy-efficient buildings and a large number of (opto)electronic, bolometric, and sensing devices.^{2–5}

In single crystals of VO₂, the MIT is characterized by sharp real-space phase boundaries between the R and M1 structures and by the fact that these boundaries can propagate along the crystallographic *c*-axes,⁶ *i.e.*, the transition is non-percolating in nature. Thin films of VO₂ are normally distinctly different, however, and the MIT is gradual with metallic-like regions growing in extent as the sample temperature T_s approaches T_c from below and with semiconducting regions disappearing as T_s becomes increasingly larger than T_c .^{7,8-13} The percolative character of the MIT in VO₂ films has been emphasized several times.^{9,14-17} The percolation is not only of theoretical interest but also relevant for the energy-savings potential for VO₂-type films used in energy-efficient fenestration.¹⁸

Percolation enhances macroscopic resistance fluctuations, as is well known, 19 and such fluctuations have been investigated in some prior studies $^{20-23}$ especially with regard to bolometer performance.

II. EXPERIMENTS

VO₂ films with grain-like features at the 50 nm length scale were prepared by reactive DC magnetron sputtering onto heated sapphire substrates and were used to make 100-nm-thick samples that were 10 μ m wide and 100 μ m long.

The thermochromic properties of the VO₂ micro-bridge was verified by measurements of electrical resistance R_s during heating and cooling in the 20 < T_s < 80 °C interval. The temperature recording had to rest at least for 10 minutes at each setting in order to stabilize the T_s and resistance readings. Figure 1 shows that R_s changes by a factor ~2000 in the range between ~50 and ~70 °C and that the transition displays thermal hysteresis amounting to ~7 °C. The origin of the hysteresis may be stress build-up and release and associated effects of super- and subcooling. Energetically, this can be represented by a system of microscopic double-potential wells connected with pinning forces via interactions with the substrate.

After installing a home-made temperature control that provided about a million times less temperature fluctuations (in the nano-Kelvin range) than commercial units (in the milli-Kelvin range), we were able to measure power density spectra S(f) of resistance

UPON 2015, BARCELONA, JULY 13-17 2015

noise around T_c and to demonstrate unambiguous 1/f behavior, thus proving that the measured noise was not due to temperature fluctuations.

FIG. 1. Resistance hysteresis upon heating and cooling of a VO₂ film.^{a)}

FIG. 2. Resistance noise spectrum of a VO₂ film. The data show 1/f-like performance even at the middle of the resistive transition.^{a)}

At 10 Hz, we performed a scaling analysis of the normalized noise *versus* the resistance, where temperature was a hidden parameter. The normalized spectrum scaled as

$$\frac{S_R}{R_s^2} \propto R_s^x , \qquad (1)$$

where S_R is the resistance noise spectrum and R_s is the sample

resistance. The noise exponent x was -2.6 for $T_s < T_c$ and +2.6 for $T_s > T_c$.

FIG. 3. Scaling plot of the normalized resistance noise spectrum for a VO₂ film.^{a)}

III. UNSOLVED PROBLEMS

Theoretical models and experiments of conductor–insulator and conductor–superconductor transitions fail to produce the empirical noise exponents at both¹⁹ or one side²⁴ of the transition, except for the *Pennetta–Trefan–Reggiani* (PTR) model²⁵ where the positive exponent was empirically obtained by computer simulations²⁵ and

- ^{a)} The *non-UPoN* parts of this extended abstract are based on a recent paper by the same authors, J. Appl. Phys. **117**, 025303 (2015). (Authorized by copyright agreement).
- ¹ F. J. Morin, Phys. Rev. Lett. **3**, 34 (1959).
- ² Z. Chen, Y. Gao, L. Kang, C. Cao, S. Chen, and H. Luo, J. Mater. Chem. A 2, 2718 (2014).
- ³ C. G. Granqvist, J. Vac. Sci. Technol. B **32**, 060801 (2014).
- ⁴ S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, J. Appl. Phys. 115, 053513 (2014).
- ⁵ M. E. A. Warwick and R. Binions, J. Mater. Chem. A **2**, 3275 (2014).
- ⁶ B. Mun, K. Chen, J. Yoon, C. Dejoie, N. Tamura, M. Kunz, Z. Liu, M. E. Grass, S.-K. Mo, C. Park, Y. Y. Lee, and H. Ju, Phys. Rev. B **84**, 113109 (2011).
- ⁷ See, for example, M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science **318**, 1750 (2007).
- ⁸ P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, Jr., Phys. Rev. B 74, 205103 (2006).
- ⁹ Y. J. Chang, J. S. Yang, Y. S. Kim, D. H. Kim, T. W. Noh, D.-W Kim, E. Oh, B. Kahng, and J.-S. Chung, Phys. Rev. B 76, 075118 (2007).
- ¹⁰ B.-J. Kim, Y. W. Lee, S. Choi, J.-W. Lim, S. J. Yun, H.-T. Kim, T.-J. Shin, and H.-S. Yun, Phys. Rev. B **77**, 235401 (2008).
- ¹¹ K. L. Holman, T. M. McQueen, A. J. Williams, T. Klimczuk, P. W. Stephens, H. W. Zandbergen, Q. Xu, F. Ronning, and R. J. Cava, Phys. Rev. B **79**, 245114 (2009).
- ¹² J.-G. Ramírez, A. Sharoni, Y. Dubi, M. E. Gómez, and I. K.

UPON 2015, BARCELONA, JULY 13-17 2015

the negative exponent follows ^a from duality arguments in two dimensions. But there are open questions:

(*i*) How is the 1/f noise spectrum generated, especially near the percolation threshold, in such small systems?

(*ii*) Is there an analytic solution of the PTR model to produce these exponents?

(*iii*) Are the noise exponents universal in periodic lattices, or do they depend on the type of resistor lattice?

(*iv*) Which assumptions of the healing-recovering dynamics are essential to get these noise exponents?

(v) Is duality indeed enough to explain the negative exponent in two dimensions or extra assumptions are needed?

(vi) What are the exponents in three dimensions, *i.e.*, can we expect a dimensional crossover in thicker films?

ACKNOWLEDGEMENTS

We are grateful to Per Nordblad and Peter Svedlindh for their assistance with the ultra-low noise temperature control system. Hans-Olof Blom is thanked for guidance with sample preparation. Financial support was obtained from the European Research Council under the European Community's Seventh Framework Program (FP7/2007–2013)/ERC Grant Agreement No. 267234 (GRINDOOR). LK's work in Sweden was partially founded by Texas A&M University.

- Schuller, Phys. Rev. B 79, 235110 (2009).
- ¹³ J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, Appl. Phys. Lett. 96, 213106 (2010).
- ¹⁴ J. Rozen, R. Lopez, R. F. Haglund, Jr., and L. C. Feldman, Appl. Phys. Lett. 88, 081902 (2006).
- ¹⁵ D. Ruzmetov, K. T. Zawilski, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, J. Phys.: Condens. Matter 20, 465204 (2008).
- ¹⁶ A. R. Gentle, G. B. Smith, and A. I. Maaroof, J. Nanophotonics **3**, 031505 (2009).
- ¹⁷ V. Sh. Aliev, S. G. Bortnikov, and I. A. Badmaeva, Appl. Phys. Lett. **104**, 132906 (2014).
- ¹⁸ M. E. A. Warwick, I. Ridley, and R. Binions, Energy Buildings 77, 80 (2014).
- ¹⁹ G. A. Garfunkel and M. B. Weissman, Phys. Rev. Lett. 55, 296 (1985).
- ²⁰ A. A. Velichko, G. B. Stefanovich, A. L. Pergament, and P. P. Boriskov, Pis'ma Tekh. Fiz. **29**(10), 82 (2003) [Tech. Phys. Lett. **29**, 435 (2003)].
- ²¹ N. Chi-Anh and S. Moon, Infrared Phys. Technol. **50**, 38 (2007).
- ²² G. Neto, L. A. L. de Almeida, A. M. N. Lima, C. S. Moreira, H. Neff, I. A. Khrebtov, and V. G. Malyarov, Opt. Eng. 47, 073603 (2008).
- ²³ H. A. Basantani, S. Kozlowski, M.-Y. Lee, J. Li, E. C. Dickey, T. N. Jackson, S. S. N. Bharadwaja, and M. Horn, Appl. Phys. Lett. 100, 262108 (2012).
- ²⁴ L. B. Kiss and P. Svedlindh, Phys. Rev. Lett. **71**, 2817 (1993).
- ²⁵ C. Pennetta, G. Trefán, and L. Reggiani, Phys. Rev. Lett. 85, 5238 (2000).