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I. INTRODUCTION

Let us elaborate on the notion of thermodynamic en-
tropy S (Clausius 1865) and its consequences within its
statistical mechanical description1. The celebrated Clau-
sius relation identifies the inverse thermodynamic tem-
perature T as the integrating factor for the second Law
in the form that dS = δQ/T , with δQ being the qua-
sistatic and reversible infinitesimal heat exchange. We
first address the most fundamental statistical equilibrium
ensemble, namely the microcanonical ensemble (MCE).
Please bear in mind that the canonical and the grand
canonical ensemble follow from this MCE. – It was J.W.
Gibbs who first put forward two notions of thermody-
namic entropy for an isolated MCE-system that I com-
monly will refer to as (i) volume entropy, i.e.

Svolume := SG = kB lnΩ(E,Z) , (1)

where kB is the Botzmann constant and the dimen-
sionless quantity Ω(E,Z) is the integrated, non-negative
valued density of states (DoS) ω(E,Z) over energies not
exceeding E. Z denotes the set of external control pa-
rameters such as the available volume, particle numbers,
magnetic field, etc.. Note that within classical statistical
mechanics Ω(E,Z) equals the properly normalized, di-
mensionless total available phase space volume up to the
energy E. In this context, Gibbs also considered a second
expression, namely the (ii) surface entropy, reading

Ssurface := SB = kB ln[εω(E, λ)] . (2)

This entropy expression is also known (incorrectly) as
the Boltzmann entropy. Here ε denotes a small energy
constant required to make the argument of the logarithm
dimensionless. The fact that the definition of SB requires
an additional energy constant ε is conceptually displeas-
ing, but bears no relevance for physical quantities that
are related to derivatives of SB .

Historically1, Boltzmann’s tombstone famously carries
the formula S = kB logW , although, following the dis-
cussion by Sommerfeld in his book [reprinted, Vorlesun-
gen über Theoretische Physik (volume V): Thermody-
namik und Statistik (Verlag Harri Deutsch, Frankfurt
am Main, 2011), pp. 181 - 183] it was Planck, and not
Boltzmann, who established this equation. As described
in many textbooks, the entropy expression SB defined in
Eq. (2) is heuristically obtained by identifying log = ln
and interpreting W = εω(E,Z) as the number of mi-
crostates accessible to a physical system at energy E.
Perhaps it is for this reason that the entropy Ssurface is
commonly termed ‘Boltzmann entropy’ nowadays.

The problem thus arises: Which entropy should we
use? The consistency with the thermodynamics of iso-
lated systems yields a unique answer: The validity for
the celebrated 0-th, 1-st and 2-nd thermodynamic Law
then uniquely singles out the microcanonical Gibbs en-
tropy SG

1. A different reasoning2 yielding this very same
finding uses the two thermodynamic pillars that for the
validity of the (i) Clausius relation as an exact differ-
ential the inverse temperature of the (ii) ideal gas law
must fix the integrating factor. A profound recent find-
ing is that any microcanonical entropy expression other
than the Gibbs volume entropy, – such as for example
the Boltzmann entropy –, can lead to thermodynamical
inconsistencies1,2.

The thermodynamic temperature is a derived quantity:
Given an entropy expression it is given by

T−1 = ∂S/∂E . (3)

J.W. Gibbs considered yet another entropy expression
SN = −kBT r[ρ ln ρ], where ρ is the corresponding ther-
mal equilibrium density function for a N-particle system.
One should stress here that Gibbs used this definition
mainly when describing systems weakly coupled to a heat
bath within the framework of the canonical ensemble.
Nowadays, SN is commonly referred to as the canonical
Gibbs entropy in classical statistical mechanics, as von
Neumann entropy in quantum statistics, or as Shannon
entropy in information theory.

The most salient results in Ref. [1] and in Ref. [2] are:

• Demanding additivity of S under factorization of
Ω(E,Z) (which in turn implies energetically de-
coupled systems that prevent an energy exchange)
uniquely selects the logarithm ln to yield the mi-
crocanonical Gibbs temperature TG, reading

kBTG(E,Z) = kB [∂SG/∂E]−1 = Ω(E,Z)/ω(E,Z). (4)

Because the DoS ω(E,Z) is non-negative, the ‘vol-
ume’ Ω(E,Z) is a monotonically increasing func-
tion of E. Thus, the Gibbs temperature necessarily
has a definite sign, being always non-negative!

• Only for the Gibbs entropy SG does the thermo-
dynamic temperature obey classical equipartition;
i.e., kBT = [∂SG/∂E]−1 = 〈ξk∂H/∂ξk〉 with ξk a
phase space degree andH the microscopic Hamilto-
nian. This feature rules out already the Boltzmann
expression SB as a consistent thermodynamic en-
tropy. The same remark applies to the thermody-
namic generalized forces pi. These must obey the
consistency relation

pi := TG

(
∂SG/∂Zi

)
E

!
= −

〈
∂H/∂Zi

〉
E
, (5)
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for any system of arbitrary size. This consistency
relation is violated for the Boltzmann entropy. For
a elucidative demonstration of this breakdown of
consistency for SB see the results for the magneti-
zation of a system of N >> 1 distinguishable and
non-interacting spin 1/2 systems in Ref.2

• Although SG and SB and other entropy candidates
often yield practically indistinguishable predictions
for the thermodynamic properties of normal sys-
tems (see in: R. Kubo, Statistical Mechanics: An
Advanced Course with Problems and Solutions (El-
sevier B. V., Amsterdam, 1965), Sec. 1.6 therein),
such as quasi-ideal gases with macroscopic parti-
cle numbers, they can produce substantially differ-
ent predictions for mesoscopic, finite systems and
ad hoc truncated Hamiltonians with upper energy
bounds. This being so, the microcanonical descrip-
tion is thus generally not equivalent with a canon-
ical description.

• Neither the Gibbs temperature nor the Boltzmann
temperature do predict the energy flow between
weakly coupled systems which were prepared before
coupling at initially different temperatures. The
naive formulation of the second law that heat al-
ways flows from ‘hot’ to ‘cold’ is thus in general
not valid; i.e., it does not always (for example, with
the DoS exhibiting local maxima) present a strict
formulation of the second Law of thermodynamics.

II. FINITE SYSTEMS: INEQUIVALENCE OF
ENSEMBLES AND OPEN PROBLEMS

Shortcomings that relate to the thermodynamics of
isolated small systems are illustrated when sticking to the
(Boltzmann)-surface entropy3,4. Most of all, the uncriti-
cal use of Boltzmann entropy for microcanonical systems
may formally yield negative values for the absolute tem-
peratures. This is not only physically incorrect for the
concept of an absolute temperature, but also would vio-
late thermodynamic stability if the system is brought into
(weak) contact with an omnipresent sort of environment
of radiation source or otherwise with no upper bound in
energy.

We further address canonical ensemble entropy for

quantum systems that interact strongly with an environ-
ment. Then, the canonical (!) specific heat can assume
negative values away from absolute zero temperature5.
Likewise, the thermodynamic entropy for a strongly cou-
pled system, assuming a form close to the quantum condi-
tional entropy, but not quite, can be negative away from
absolute T = 06.

One unsolved problem is the case for quantum sys-
tems with discrete spectra. Here too the volume Ω(E,Z)
is well defined as the sum over the number of energy
eigenvalues, accounting also for the degeneracy of cor-
responding eigenstates En, so that the quantum Gibbs
entropy has a well defined meaning. A small grain of
salt occurs nevertheless: All the considerations thus far
relied on the technical assumption that the integrated
density of states Ω(E,Z) is continuous and piecewise dif-
ferentiable, the latter assumed particularly so with re-
spect to energy E. As a working principle one may
use analytic continuations of the discrete level count-
ing functions Ω(En, Z) and ω(En, Z) that are, however,
defined strictly speaking only on the discrete set En of
isolated points of the spectrum1. This procedure yields
in parts astonishingly reasonable results. As tempera-
ture approaches zero, however, difficulties occur, such as
the failure of microcanonical specific heat not approach-
ing zero as T −→ 0, this despite the fact that SG does
obey the 3-rd Law at its lowest energy E = Egroundstate.
In distinct contrast, coupling the system weakly to a
heat bath yields the canonical description of these quan-
tum systems for which the canonical partition function
Y (β, Z), i.e. the Laplace transform of the DoS at the
canonical parameter β := (kBTcan)

−1 (being the corre-
sponding integrating factor2) becomes well defined at all
temperatures. The corresponding canonical specific heat
values now vanish for T −→ 0. This again reflects the
non-equivalence between the two ensemble descriptions
for finite size quantum systems.
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