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I. INTRODUCTION

Is it possible to detect two electrons at the same posi-
tion with the same energy? Initially one would answer
negatively due to the Pauli principle1. However, strictly
speaking the Pauli principle, which is just a consequence
of the exchange interaction (for the indistinguishability of
quantum particles), only forbids common positions when
electrons share exactly the same state. Therefore, if two
particles are described by slightly different states, one
cannot neglect the possibility of detecting both at the
same location.

The modeling of quantum noise in mesoscopic sys-
tems is normally studied within the (energy) scattering
(eigen)states2, where only one state is available for each
energy, precluding the detection of two particles at the
same position. However, in this conference we show that
quasi-particle wave packets do not preclude such possi-
bility. The detection of two particles with identical en-
ergies at the same position are possible with such time-
dependent states, because transmitted and reflected wave
packets are not exactly identical. These new two-particle
scattering probabilities leads to new terms in the usual
Landauer-Büttiker2 quantum noise expression.

II. TWO-PARTICLE SCATTERING

A new quantum noise formalism is developed for many-
electron systems described by quasi-particle wave pack-
ets. For simplicity, the relevant effects are discussed in
the two-particle scenario depicted in Fig. 1. The gener-
alization to a realistic many-particle system will be men-
tioned in the conclusions. We analyze two identical wave
packets that are located at each side of the barrier (at
the same distance) and with opposite momentum (i.e.
same central energy). During the interaction with the
barrier, the initial wave packets split into a transmitted
and a reflected part. At the final time, apart from the
obvious probabilities of detecting a particle at each side
of the barrier (see Fig. 1a and b), the time-dependent
numerical solution constructed from quasi-particle wave
packets shows that it is possible to find both electrons at
the same place, i.e. both at the left side or at the left
side (see Fig. 1c and d). The ultimate reason of these un-
expected probabilities is the fact that the reflected and
transmitted wave packets are not equal at the final time,
even if they have identical energy at the initial time3,4.
It is remarkable that our many-particle wave packet for-
malism provides simple physical explanations for some
relevant and still unexplained experimental results5,6.

FIG. 1. Two identically injected wave packets from the left
xa and from the right xb of a scattering barrier. Solid regions
represent the barrier region and shaded regions represent the
particle detectors. (a) and (b) each particle is detected on a
different side of the barrier at final time t1 when the interac-
tion with the barrier has almost finished. (c) and (d) both
particles are detected on the same side of the barrier.

For example, the possibility of finding both quasi-
electrons at the left side (PLL) is

PLL =

∫ 0

−∞
dx1

∫ 0

−∞
dx2 |Φ|2 = RaTb − |Ir,ta,b|2. (1)

where Φ is the antisymmetric two-particle wave func-
tion. Ra and Tb are the reflection and transmission co-
efficients of the single wave packets. The term |Ir,ta,b|2
accounts for the overlapping among the reflected wave
packet a and the transmitted wave packet b.
As mentioned above, the probabilities PLL and PRR

are different from zero and their values fluctuate between
PLL = 0 and PLL = RT . This is seen in Fig. 2, where the
usual zero probability is recovered for large spatially ex-
tended wave packets (close to time-independent scatter-
ing sates) with energies far from the resonant energy. On
the contrary, the maximum values of PLL are achieved for
not infinitely-extended wave packets with energies closer
to the resonance.

Obviously, in scenarios with more scattering probabil-
ities (the ones showed in Fig. 1c and d for both electrons
at the same place), the quantum noise is enlarged. This
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FIG. 2. Probability of detecting two electrons at the same side
of the barrier (PLL and PRR) and of detecting one electron
at each side (PLR) depending on the wave packet initial size
for three different energies.

is reflected in the following expression for quantum noise
which has a new term in our two-particle scenario (in a
many-particle scenario more terms are added):

〈S〉 = 4q2

h

∫ ∞

0

dE {T [fa(1− fa) + fb(1− fb)]

+ T (1− T )(fa − fb)
2 + 2PLLfafb}. (2)

The new term 2PLLfafb shows that the well-
established Landauer-Büttiker2 expression (obtained us-
ing scattering states) can be violated in same scenarios.
On the contrary, when wave packets are close to scatter-
ing states, then PLL = 0, and usual results are recovered.

III. CONCLUSIONS AND DISCUSSIONS

We generalize the Landauer-Büttiker noise expression
by considering many-particle states constructed from an
antisymmetric combination of quasi-particle wave pack-
ets. In the particular two-particle scenario, the results
in equation (2) recover also the usual scattering states
results when using infinitely-extended states.

A realistic scenario for quantum transport implies the
consideration of a many-particle case. Then, new more
terms appear in the quantum noise expression account-
ing for two-, three-, etc wave packets correlations. At

low temperatures, when the phase-space is full, the men-
tioned new terms added in the quantum noise expression
tends to zero (see Fig. 3) and the quantum noise is zero,
satisfying the fluctuation-dissipation theorem7,8. Never-
theless, at high temperatures, these news terms can not
be neglected and quantum noise is increased over what
is usually predicted. We emphasize that the formalism
presented in this conference provides a physical expla-
nation for surprising experimental results5,6, which are
normally attributed to spurious effects. Finally, we re-
mark that the increment of quantum noise discussed here
is very robust and it is present (even magnified) when
time-dependent potentials or (non-separable) Coulomb
interactions are considered3.
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FIG. 3. Each curve reflects the new term added in the quan-
tum noise expression for different number of involved elec-
trons. The phase space gets filled as we increase the number
of electrons and we decrease the dimensionless distance d. We
see how probabilities decrease.
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