Pauli-Heisenberg Oscillations in Electron Quantum Transport

UPoN 2015

Karl Thibault¹

In collaboration with : Julien Gabelli², Christian Lupien¹, Bertrand Reulet¹

1- Université de Sherbrooke
 Sherbrooke, Québec, Canada
 2 - Université de Paris-Sud
 Orsay, France

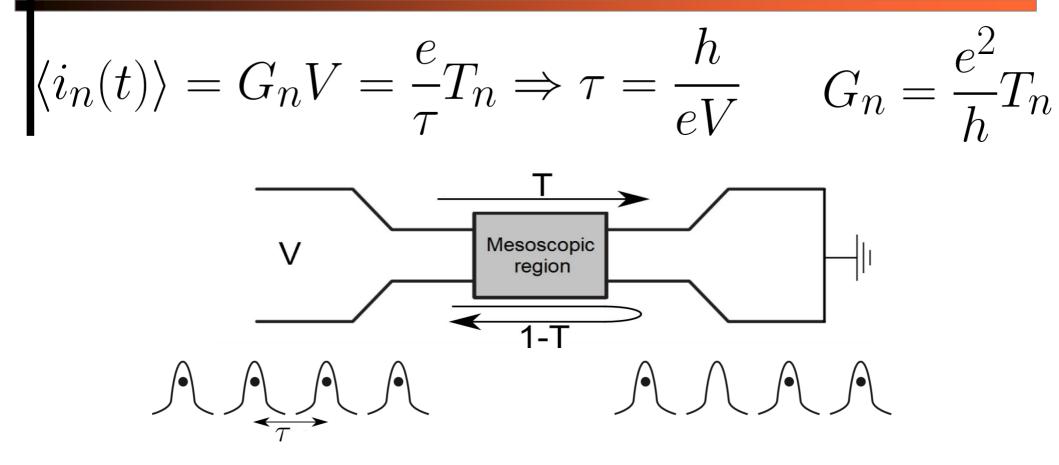
July 17th 2015

Canada Excellence Research Chairs Chaires d'excellence en recherche du Canada

Outline

- Motivation
- Method
- Sample and Experimental set-up
- Results
- Interpretation
- Conclusion

Motivation



Theory of quantum transport predicts that electrons are emitted regularly each h/eV^{1} .

1. Lesovik, G. B. & Levitov, L. S. Noise in an ac biased junction : Nonstationary Aharonov-Bohm effect. *Phys. Rev. Lett.* **72**, 538–541 (1994).

Method

Goal :

Measure the current-current correlator in the time domain

$$C(\tau) = \langle i(t)i(t+\tau) \rangle$$

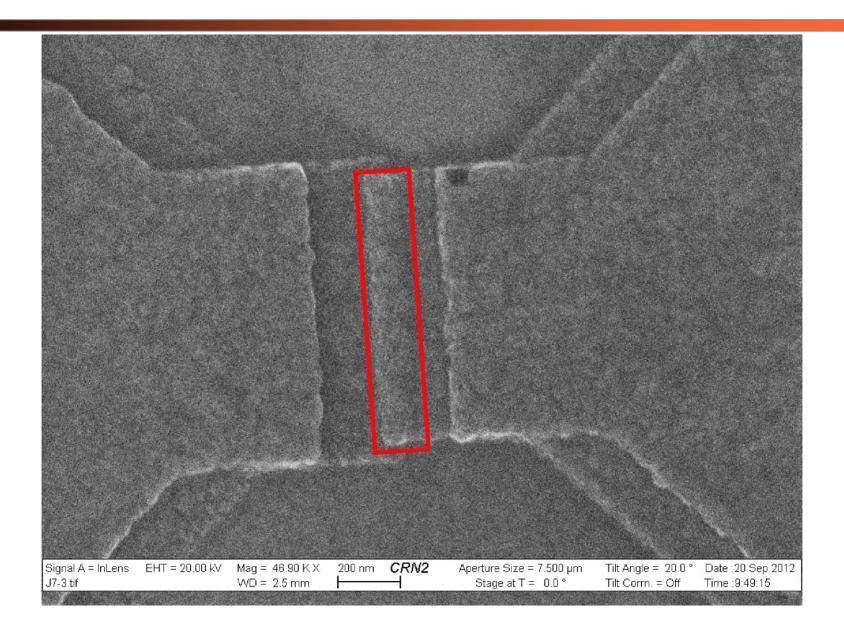
and show that $C(\tau) \propto \cos\left(\frac{eV\tau}{\hbar}\right)$.

Method :

Measure the noise spectral density vs frequency $S(f) = \langle i(f)i(-f) \rangle = \text{Fourier}[C(\tau)]$

with a very large bandwidth.

Tunnel junction



Tunnel junction

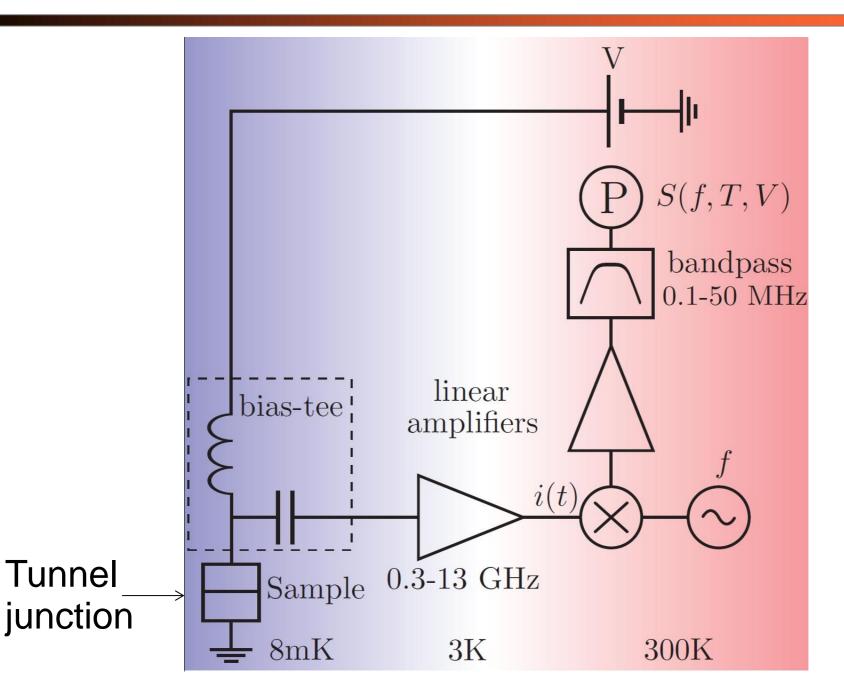
Normal-metal – Isolator – Normal-metal

- Classical regime : current is a succession of uncorrelated random impulses
 - →current follows a Poisson distribution

$$ightarrow$$
shot noise : $S = e|I|$

• Quantum regime : Correlations appear

Experimental set-up

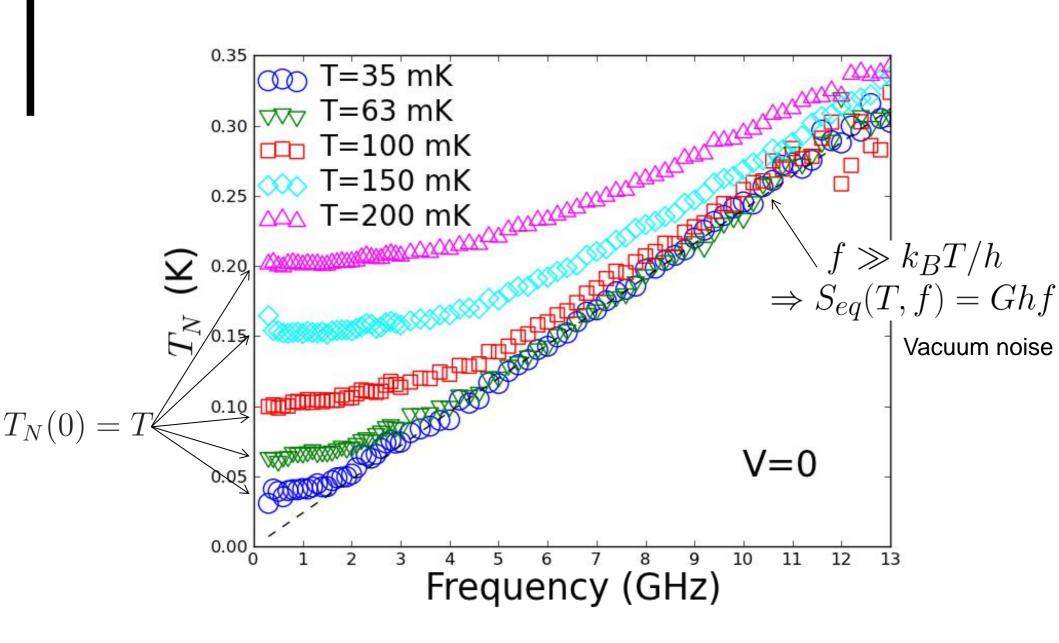


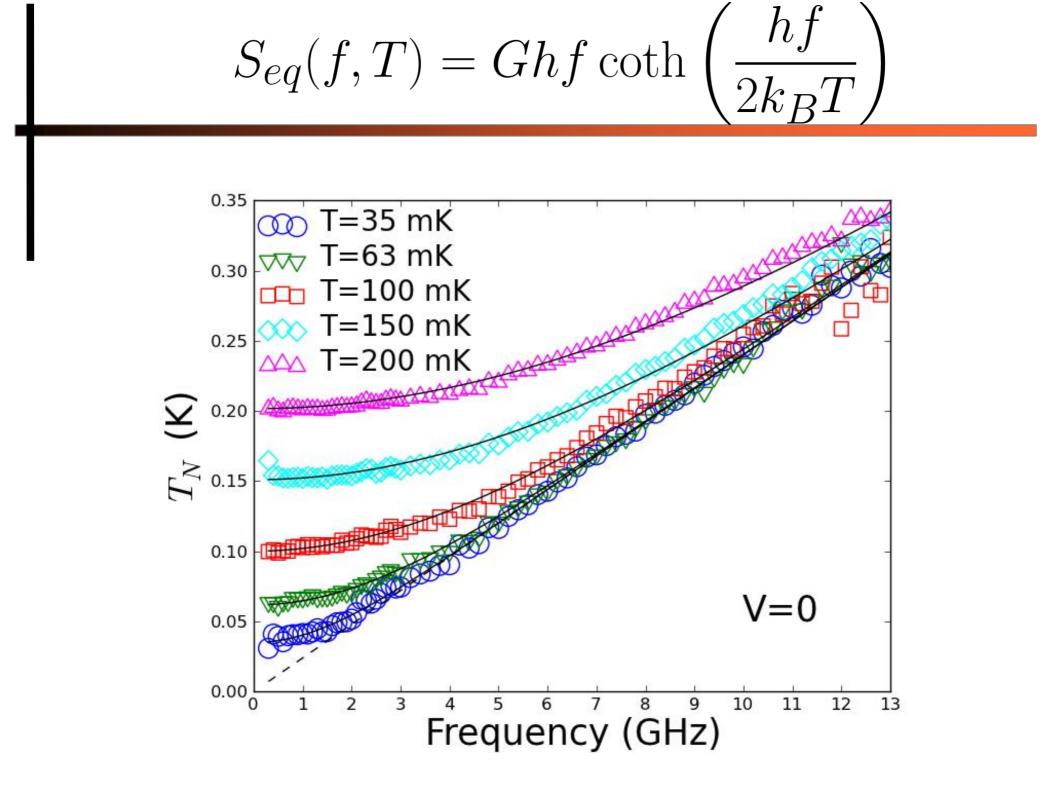
Noise temperature

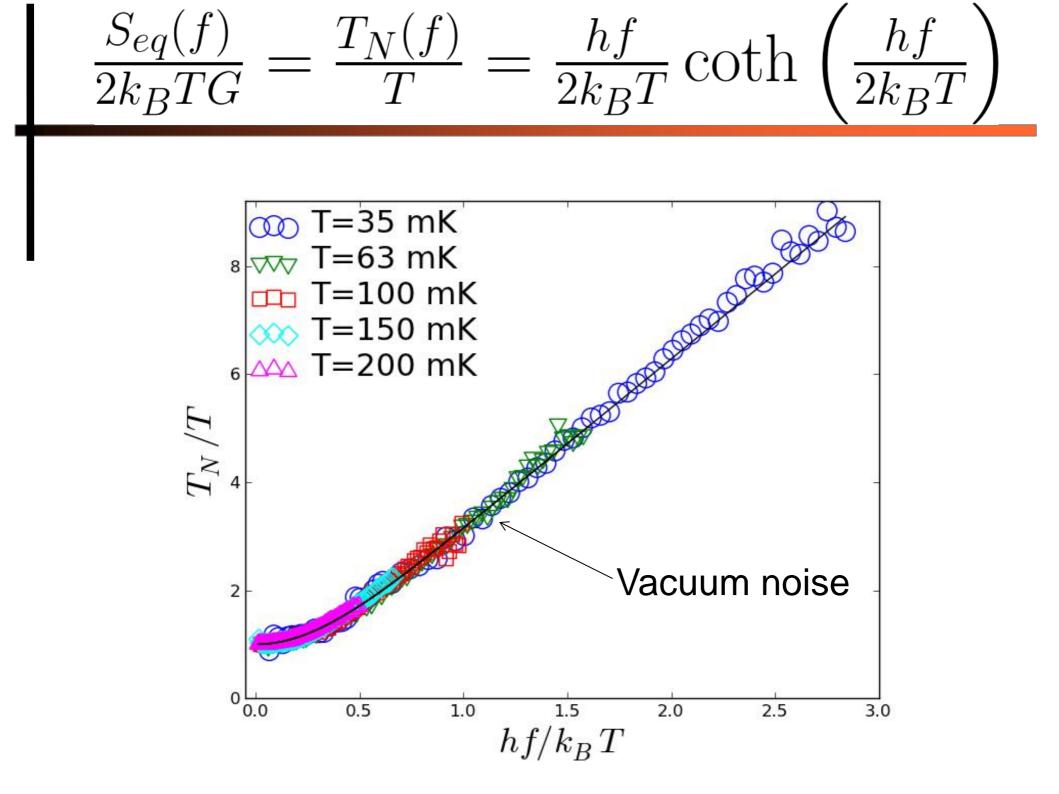
In general, we express the spectral density of current-current fluctuations as a noise temperature :

$$T_N(f) = \frac{S(f)}{2k_B G}$$

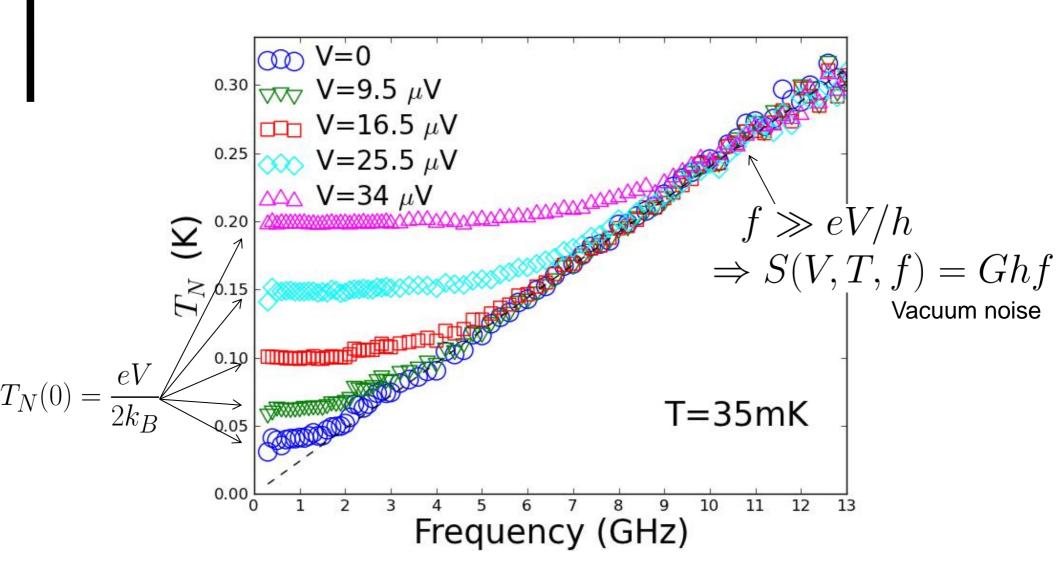
Thermal noise : V=0



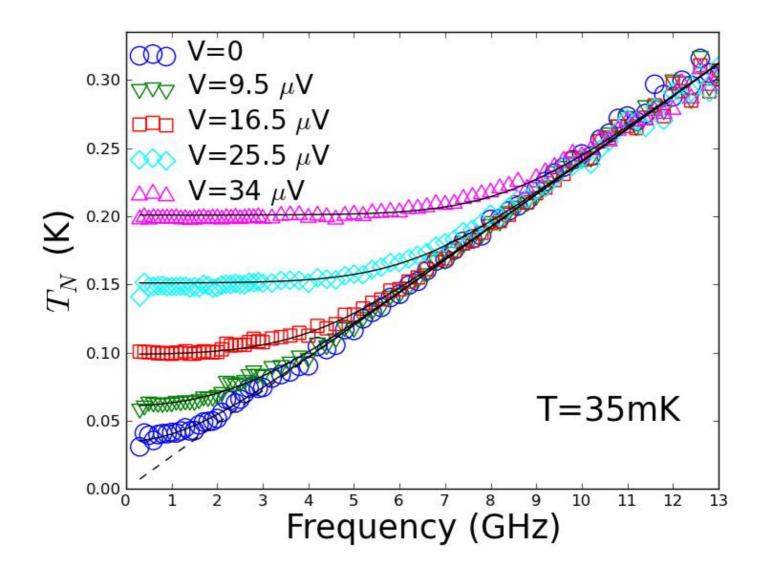




Shot Noise



$$S_V(T,f) = \frac{1}{2} \left[S_{eq} \left(T, f - \frac{eV}{h} \right) + S_{eq} \left(T, f + \frac{eV}{h} \right) \right]$$



Time-domain : Equilibrium (V=0)

Time-domain : Shot noise (V≠0)

$$S(f) = \frac{1}{2} \left[S_{eq} \left(f - \frac{eV}{h} \right) + S_{eq} \left(f + \frac{eV}{h} \right) \right]$$

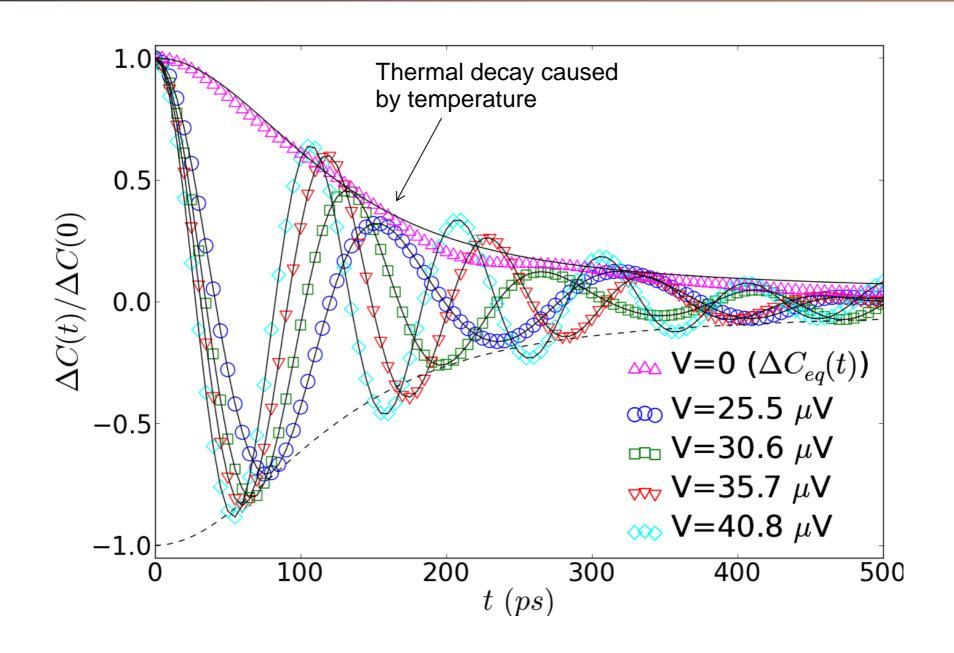
$$\int \text{Fourier Transform}$$

$$C(t) = C_{eq}(t) \cos \left(\frac{eVt}{\hbar} \right)$$

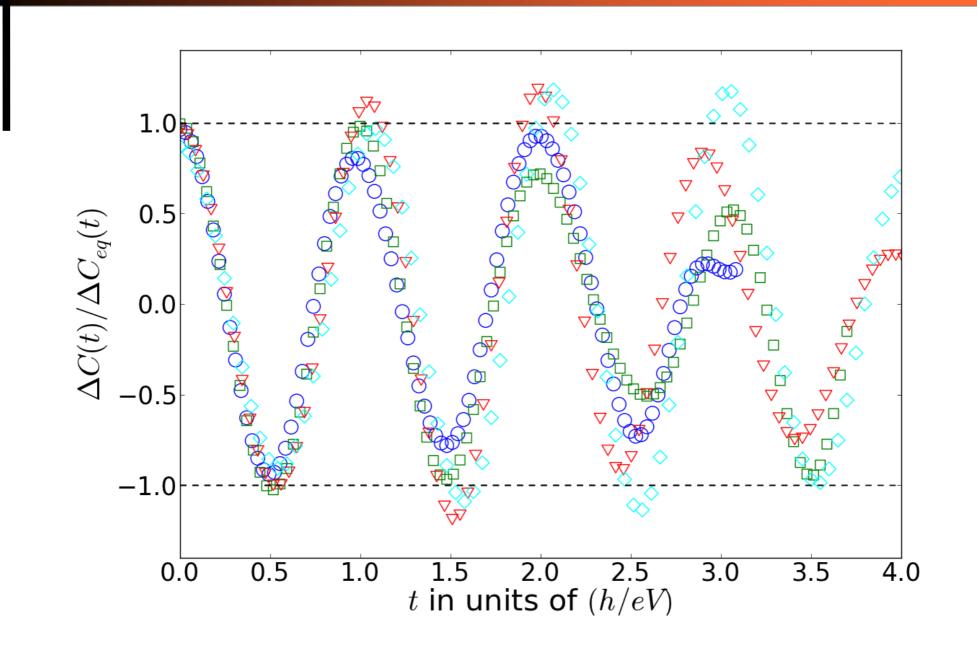
Since the quantum part diverges, we need to substract it :

$$\Delta C(t) = C(t) - C_Q(t) \cos\left(\frac{eVt}{\hbar}\right) = C_T(t) \cos\left(\frac{eVt}{\hbar}\right)$$

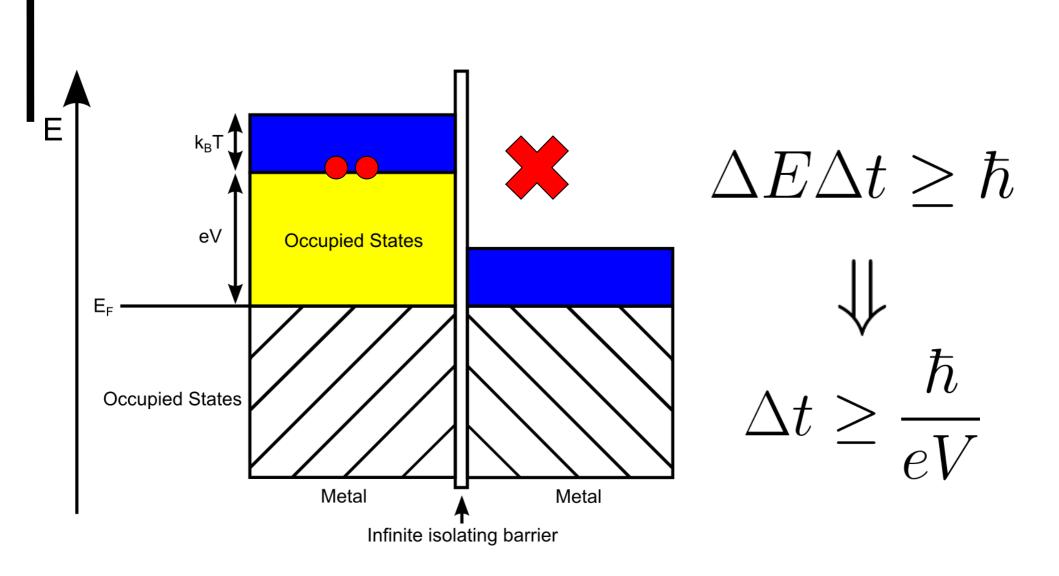
Fourier Transform Shot noise (V≠0)



Oscillations in h/eV.



Interpretation using Pauli and Heisenberg principles



Conclusion

• We have measured the current-current correlator in time domain $\langle i(t)i(t+\tau)\rangle$ and shown that it oscillates with a period h/eV.

Future Work

- Measuring $\langle i(t)i(t+\tau)\rangle$ in a device where the are other intrinsic time scales (like a diffusive wire, where τ_D is important).
- Measure this correlator in the non-stationnary regime.

Thank you!

Questions?

Calibration

What we actually measure is :

$$P(f) = A(f)[S(f) + S_A(f)]$$

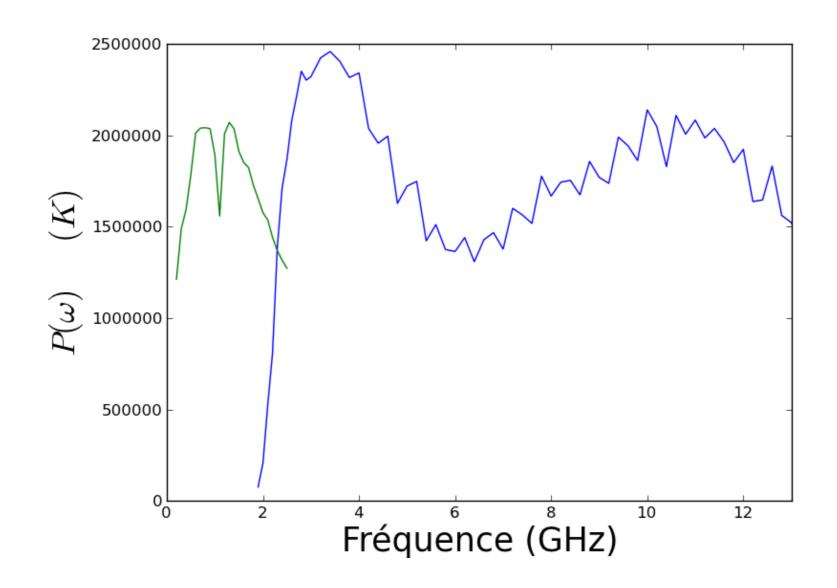
 $A(f) = \mbox{Gain of the system}$, $S_A(f) = \mbox{Amplifier Noise}$

Problem :
$$A(f)$$
? , $S_A(f)$?

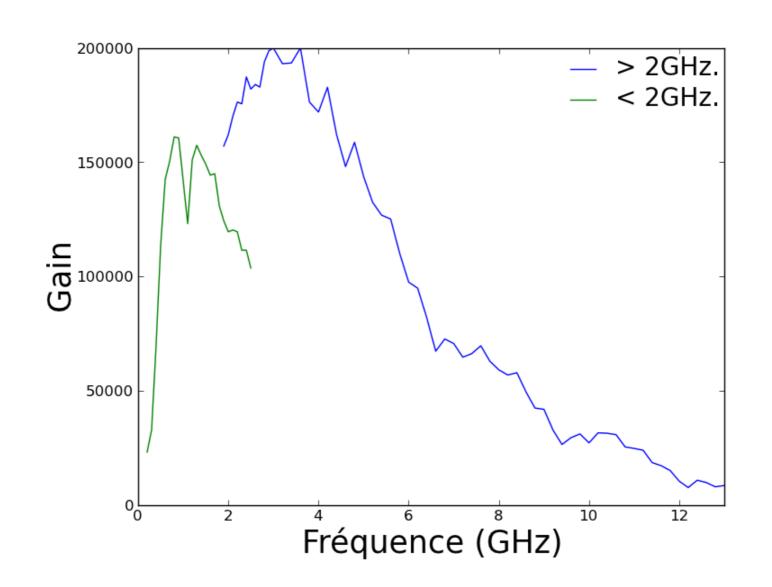
Method : classical limit/Schottky formula

$$S(V \gg hf/e, k_BT/e) = eI$$

Spectral density before calibration



Calibration – Gain of the measurement system



Calibration – Noise temperature of the measurement system

