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Example: quasienergy states 

     quasienergy ≡ Floquet eigenvalue; quantization:  𝜀 → 𝜀𝑛 

𝜓𝜀 𝑡 = 𝑒−𝑖𝑖𝑖 ℏ⁄  𝑢𝜀 𝑡 ,       𝑢𝜀 𝑡 +
2𝜋
𝜔𝐹

= 𝑢𝜀(𝑡) 

Eigenstates of a periodically driven system  are not stationary: 

𝐻 𝑡 = 𝐻0 𝑞, 𝑝 − 𝑞𝑞cos𝜔𝐹𝑡,               𝑖𝑖𝜓̇ = 𝐻 𝑡 𝜓 

Driven mesoscopic vibrational systems of current interest:  Josephson junctions, cavity modes in optical and 
superconducting cavities, nanomechanical systems, cold atoms,…  
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Eigenstates of a periodically driven system  are not stationary: 

𝐻 𝑡 = 𝐻0 𝑞, 𝑝 − 𝑞𝑞cos𝜔𝐹𝑡,               𝑖𝑖𝜓̇ = 𝐻 𝑡 𝜓 

Relaxation, 𝑻 = 𝟎: inter-state transitions with emission of photons, phonons, etc. 
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Fock states Quasienergy  states 

Quasienergy states are linear combinations of Fock 

states. Inter-level transitions down in energy,  

𝑁𝐹𝐹𝐹𝐹 → |𝑁𝐹𝐹𝐹𝐹 − 1〉 , correspond  to inter-quasi-

energy level transitions 𝑛 → 𝑛 ± 𝑚 , “up” and 

“down” in quasienergy. Even where the energy-level 

width Γ ≪ Δ𝐸, we can have Γ ≥ Δ𝜀   |𝒏〉 

|𝒏 + 𝟐〉 

|𝒏 + 𝟏〉 

|𝒏 + 𝟑〉 

Problems: distribution over the quasienergy states? Effects of the breaking of the discrete-time 

symmetry? Related features of quantum fluctuations?  



Parametric oscillator  

Classical phenomenological description, 𝑚 = 1:  

Weak damping, resonant  modulation 𝜔𝐹 ≈ 2𝜔0 ⇒   
excitation for weak field, small nonlinearity. The 

period-two states differ in phase by  𝜋   - 
spontaneous breaking of discrete time-translation 

symmetry 

0)cos(2 32
0 =+++Γ+ qqtFqq F γωω



Bifurcation diagram 

Critical field strength: 𝐹𝑐 = 2𝛤𝜔𝐹 ,  𝐹𝑐 ≪ 𝜔0
2 

Relevant dimensionless parameters: 

Scaled frequency detuning  𝜇𝑝 = 𝜔𝐹 − 2𝜔0 2Γ⁄   

Scaled field amplitude 𝑓𝑝 = 𝐹/𝐹𝑐 

 3 stable states 

2 stable states 

no vibrations 

critical point 

0)cos(2 32
0 =+++Γ+ qqtFqq F γωω

more complicated than just symmetry-breaking 

co-dimension 2 bifurcation point 



Quantum mechanics: 𝑝, 𝑞 = −𝑖𝑖    → 𝑃,𝑄 = −𝑖 ℏ�,     ℏ� = 3|𝛾|ℏ/𝜔𝐹𝐹𝑐 
 

The rotating wave approximation (RWA) 

𝑞 𝑡 = 𝐶 𝑄𝑄𝑄𝑄 𝜙 + 𝑃𝑃𝑃𝑃 𝜙 ,  𝑝 𝑡 = −1
2
𝜔𝐹𝐶 𝑄𝑄𝑄𝑄 𝜙 − 𝑃𝑃𝑃𝑃 𝜙 ,   𝜙 = 1

2
𝜔𝐹𝑡 + 1

4
𝜋;       

dimensionless Planck constant 

0)cos(2 32
0 =+++Γ+ qqtFqq F γωωChange to variables that slowly vary over the 

vibration period: 

Approximations: slow decay, Γ ≪ 𝜔0, + weak quantum noise, ℏ� ≪ 1  

depends on the nonlinearity! 



Quantum Langevin equations 
In slow time   

𝑄̇ = − 𝑖
ℏ�

[𝑄,𝑔]  − 𝑄 + 𝜉𝑄 𝜏 ,     𝑃̇ = − 𝑖
ℏ�

[𝑃,𝑔]  − 𝑃 + 𝜉𝑃 𝜏      

Quantum noise is 𝛿-correlated in slow time: 

𝜉𝑄 𝜏 𝜉𝑄 𝜏′ = 𝜉𝑃 𝜏 𝜉𝑃 𝜏′ = 2𝐷𝛿 𝜏 − 𝜏′       

𝐷 = ℏ�  𝑛� +
1
2

,𝑛� = 𝑒ℏ𝜔0 𝑘𝐵𝑇⁄ − 1
−1

, [𝜉𝑄 𝜏 , 𝜉𝑃 𝜏′ ] = 2𝑖ℏ� 𝛿(𝜏 − 𝜏′) 

Noise intensity  𝐷 ∝ ℏ for  𝑘𝐵𝑇 < ℏ𝜔0; for 𝑘𝐵𝑇 ≫ ℏ𝜔0,𝐷 ∝ 𝑇 

𝒈 𝑸,𝑷 =
𝟏
𝟒
𝑸𝟐 + 𝑷𝟐 𝟐 −

𝟏
𝟐
𝝁𝒑 𝑸𝟐 + 𝑷𝟐 +

𝟏
𝟐
𝒇𝒑(𝑸𝑸 + 𝑷𝑷) 



Adiabatic approximation near criticality 

Linear equations without noise near the critical point, 𝑓𝑝 = 1,  𝜇 𝑝 = 0: 

𝑄̇ ≈ 𝑓𝑝 − 1 𝑄 − 𝜇𝑝𝑃,     𝑃̇ ≈ − 𝑓𝑝 + 1 𝑃 + 𝜇𝑝𝑄 

Q 

P 

𝑄̇ = − 𝑖
ℏ�

[𝑄,𝑔]  − 𝑄 + 𝜉𝑄 𝜏 ,     𝑃̇ = − 𝑖
ℏ�

[𝑃,𝑔]  − 𝑃 + 𝜉𝑃 𝜏      

Q is a “soft mode” 

𝑃 𝜏  adiabatically follows 𝑄 𝜏 ⇒ on times 𝜏 ≫ 1 Γt ≫ 1  eliminate 𝑃 𝜏 ⇒ 
an adiabatic classical equation for the soft mode with quantum noise  

𝑄̇ = −𝜕𝑄𝑈 𝑞 + 𝜉𝑄 𝜏 ,   

𝑈 𝑄 =
1
4
𝜇𝑝2 − 𝑓𝑝2 − 1 𝑄2 −

𝜇𝑝
4
𝑄4 +

1
12

𝑄6 

an analog of the 𝜙6 Landau theory 

reminder: 𝑓𝑝 = 𝐹 𝐹𝑐⁄ ,    𝜇𝑝 ∝ 𝜔𝐹 − 2𝜔0   



Stationary distribution 

Q 

P 

× 

× × 

Critical region: the  typical scales are 𝛥𝛥 ∼ 𝐷1/6∝ ℏ1/6,    𝛥𝑓𝑝 ∼ 𝐷2 3⁄ ,   𝛥𝜇𝑝 ∼ 𝐷1 3⁄  

The Wigner distribution 𝜌𝑊 𝑄,𝑃 ∝  exp − 𝑃 − 𝑃𝑎𝑎 𝑄 2 2 𝑓𝑝 + 1 𝐷�   exp[−𝑈 𝑄 𝐷⁄ ] 



Scaling of the interstate switching rates I  

× 

Switching between period-two states 

in the range of developed bistability 

𝑊𝑠𝑠 = Ω𝑠𝑠 exp −𝑅�𝐴 ℏ�⁄ ,

    𝑅�𝐴 = Δ𝑈/(𝑛� +
1
2

) 

𝑅�𝐴 ∝ 𝑓𝑝2 − 1 3/2 

simple power-law scaling only for 𝜇𝑝 = 0 

(exact resonance, 𝜔𝐹 = 2𝜔0)  



Scaling of the interstate switching rates II 

× 

𝑅�𝐴𝐴 ∝ 𝑓𝑝2 − 1 3/2
 independent of 𝜇𝑝,  

i.e. of the driving frequency detuning 

𝑹𝑨𝑨 𝑹𝑨𝑨 

𝑊𝑠𝑠 = Ω𝑠𝑠 exp −𝑅�𝐴 ℏ�⁄ ,

    𝑅�𝐴 = Δ𝑈/(𝑛� +
1
2

) 

Switching between period-two states 

in the range of developed bistability  



„First-order“ phase transition 

× 
× × 

𝜇𝑝𝑐𝑐 = 2 𝑓𝑝2 − 1 1/2 



Critical slowing down 

Critical region: the  typical scales are ΔQ ∼ 𝐷1/6∝ ℏ1/6, 
   Δfp ∼ 𝐷2 3⁄ ,   Δ𝜇𝑝 ∼ 𝐷1 3⁄ , Δ𝜏 ∼ 𝐷−2 3⁄ ∝ ℏ−2/3 , 

Reciprocal correlation time as function of the 

frequency detuning.  From top down the scaled field 

is: (𝑓𝑝2−1)/𝐷2 3⁄ = −4,−2, 0, 2, 4, 6. 



Schematics of the experimental system 

Φ 

M 

Pump 𝝎𝑭/2 

Pp  

Pout  

𝝎𝑭 

𝜔0/2𝜋 = 10.402GHz, Q=340  

Temperature: T ~ 10 mK 



Vibrational states as a function of driving frequency 
Pp = -62.4 dBm 

ωF /2π/2 = 10.384 GHz  ωF/2π/2 = 10.386 GHz  

ωF 2π/2=10.389GHz  ωF /2π/2=10.390GHz  
ωF /2π/2=10.404GHz  ωF /2π/2=10.430GHz  

𝜔𝐹/4𝜋 (GHz) 



“First order phase transition” 

10.384 GHz  

10.385 GHz  

10.386 GHz  

10.387 GHz  

10.388 GHz  

10.389 GHz  

10.390 GHz  

10.391 GHz 

10.392 GHz 

ωF/2π/2 =  

10.393 GHz  

Squeezing? 

ωF/2π/2 ~  

10.390 GHz  

𝜔𝐹/4𝜋 



Nonlinear friction I 
Phenomenological nonlinear friction: 𝑓𝑛𝑛 = −2Γ𝑛𝑛𝑞2𝑑𝑑/𝑑𝑑 

A microscopic mechanism for passive quantum vibrational systems: 

MD & Krivoglaz, 1975 

important for quantum 
optomechanics (MD, 1978) 

nanomechanics: Atalaya & MD, 2015 



Nonlinear friction II 
Phenomenological nonlinear friction: 𝑓𝑛𝑛 = −2Γ𝑛𝑛𝑞2𝑑𝑑/𝑑𝑑 

𝑄̇ = − 𝑖
ℏ�

[𝑄,𝑔𝑝]  − 𝑄 + 𝜉𝑄 𝜏 − 1
2
Γ�𝑛𝑛 𝑄,𝑄2 + 𝑃2 + + 𝜉𝑄𝑛𝑛 𝑡 ,

𝑃̇ = − 𝑖
ℏ�

[𝑃,𝑔𝑝]  − 𝑃 + 𝜉𝑃 𝜏  −1
2
Γ�𝑛𝑛 𝑃,𝑄2 + 𝑃2 + + 𝜉𝑃𝑛𝑛 𝑡      

Quantum Langevin equations  

𝜙6-type theory for the slow variable 𝑞 near the critical point, 𝑈 𝑞 = 1
2
𝐴2𝑞2 + 1

4
𝐴4𝑞4 + 1

6
𝐴6𝑞6     

critical point: 𝜇𝑝𝑝 = Γ�𝑛𝑛 , 𝑓𝑝𝑝 = 𝜇𝑝𝑝2 + 1 1/2 

Γ�𝑛𝑛 = 𝐶2Γ𝑛𝑛 4Γ⁄ , 𝐴2 = 𝛿𝜇𝑝2

2𝑓𝑝𝑝2
− 𝑓𝑝𝑝 𝛿𝑓𝑝,  𝐴4 = −𝑓𝑝𝑝2 𝛿𝜇𝑝,  𝐴6 = 𝑓𝑝𝑝6 2⁄ ;    𝛿𝑓𝑝 = 𝑓𝑝 − 𝑓𝑝𝑝 − 𝜇𝑝𝑝𝛿𝜇𝑝/𝑓𝑝𝑝  



Near the critical point, parametric oscillators display critical slowing down and 
anomalously strong quantum fluctuations. The time scale, the fluctuation strength, and 
the width of the critical region are determined by fractional powers of ℏ .  

Quantum dynamics near the critical point is described by a slow variable driven by 
quantum noise, with a potential of the 𝝓𝟔-type, for linear and nonlinear friction.  

Along with the time-symmetry breaking transition, the system displays a smeared first-
order transition where three stable states are equally populated 

Conclusions 
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