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Virgo, a GW detector 

2 UPoN, July 14th  2015 

THE VIRGO COLLABORATION 

5 European countries 

19 laboratories - ~200 authors 

 

APC Paris   

ARTEMIS Nice  

EGO Cascina  

INFN Firenze-Urbino  

INFN Genova  

INFN Napoli  

INFN Perugia  

INFN Pisa  

INFN Roma La Sapienza  

INFN Roma Tor Vergata  

INFN Trento-Padova  

LAL Orsay – ESPCI Paris  

LAPP Annecy  

LKB Paris  

LMA Lyon  

NIKHEF Amsterdam  

POLGRAW(Poland)  

RADBOUD Uni. Nijmegen  

RMKI Budapest 
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The GW Interf. network 
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KAGRA, Japon 
Kamioka, 3 km 

LIGO Hanford, 4 km 

LIGO Livingston, 4 km 

Virgo, Cascina, 3 km 

AIGO 
LIGO- Australia ? 

 

INDIGO 
LIGO - India ? 

 

GEO-HF, Hannover, 600 m 
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The Virgo optical system 
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L = 3 km 

  P = 

20-200 W 

15 cm 

10 m 
  P × 35 

P × 35 × 280 

West Input Mirror 
Beam splitter 

• Mechanical noises: seismic, newtonian, thermal 

 

• Optical quantum noise:  

- radiation pressure 

- shot noise 

10-40 m2/Hz @100 Hz 

achievable ! 
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A typical noise spectrum 
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Newtonian 

Suspension Th. Ns. 

Coating Th. Ns. 

Optical Readout noise 

Classical 

Quantum 

Grav. 32 

(2015) 

024001  

Seismic noise is below 1e-24 m/sqrt(Hz) 
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Noises covered 

by my presentation: 

• Newtonian 

• Creep 

• Thermal on 

mechanics 

‒ Coatings 
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Seismic and Newtonian noises 

Newtonian 

noise: 

direct 

coupling 

Filtered  

seismic  

noise 

Conclusions Intro GW Creep Thermal Newtonian Coatings 

Measurements 



Fluctuation of local gravity 
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Compressive waves 

● Origins 
♦ Seismic fields 

♦ Seismic point sources 

♦ Atmosphere 

● Characteristics 
♦ Rayleigh waves are strongly attenuated with depth 

♦ Atmospheric noise important below 10Hz. More investigations needed 

● Cancellation of Newtonian Noise 
♦ 2D array of seismometers 

♦ Wiener filters 

 

Rayleigh waves 

IN PREPARATION 
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Creep noise 

● Several 

components are 

under high stress 
♦ Creep is possible 

♦ Is it continuous or has 

it a shot noise like 

behavior? 
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Cantilever blades 

Silica fibres 

Silicate 

bonding 
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Creep noise in wires and fibres 

● A simple model 
♦ Poissonian sequence of wire length steps 

of magnitude qS and average rate l 

♦ Vertical to horizontal coupling done through 

Earth curvature and mechanical imperfections 
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Interferometer 

Compatible 

with thermal 

noise 

Other works from Moscow U. 
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Thermal noise level in GW detectors 

● The observable: 

the position along the laser 

beam of a portion of the 

mirror front face 

 

● Reduction of the problem: 

modal expansion 
♦ Pendulum thermal noise 

separated from  

Mirror thermal noise: OK ! 

♦ Mode expansion not used on 

mirrors 
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The FDT 
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The advanced modal expansion 
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On mirrors the modal expansion is 

not convenient because of coatings 
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The Levin’s direct approach 
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Levin Y., PRD  57, 2, 659 (1998) 

 
i

iiUW diss

Ui is the static strain energy of part i 

ji is the loss angle associated to the material of part i 

 

Applied to the mirror thermal noise immediately: 

 

 

IMPORTANCE OF LEVIN’S FORMULA COMES IN COATED MIRRORS 

Conclusions Intro GW Creep Thermal Newtonian Coatings 

Structural loss angle j: 

• E  E·(1 + i j) 

1/f noise 

• 0.1 Hz < Freq. <100 kHz 

• No viscous elastic 

model used 

K. R. Corley, 

NAOJ 
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● Optical Interference Coatings are used to reflect light with 

sub ppm absorption of light 

● Transparent materials with different refractive indexes: 
♦ Silica SiO2: n ~ 1.4 

♦ Tantala Ta2O5: n ~ 2.1 

♦ 18 pairs for 99.999% 

reflection (~6µm total) 

 

The coating thermal noise 
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Gaussian shaped pressure 

same shape as beam intensity 

(Levin) 
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(Poisson ratio = 0) 
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The Advanced detectors start taking data 
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LMA produced 

the main mirrors 

for Advanced Virgo 

and Advanced LIGO 

 

Special coating material TiO2/Ta2O5 

developed by LMA in collaboration 

with labs in LIGO and U. of Glasgow 

aLIGO noise budget 

July 9th 2015  
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Ø 35 cm  × 20 cm 

Margin  

to gain 
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The future of GW detectors  
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Voyager 

a 

CosEx 

● LIGO 
♦ Voyager: 4km, larger mirrors cryogenic 

♦ Cosmic Explorer: 40km, larger mirrors 

 

● Einstein Telescope 
♦ 10 km long 

♦ 200 kg mirrors 

♦ 2 types of detectors 

• Room T, HF 

• Cryogenic T, LF 

● Lower mechanical losses 
♦ Factor 3 at least 

 

 
Maximum distance of detection 

NS-NS Binaries    ~ z = 2 

BH-BH Binaries   ~ z = 17 

FOR ALL 
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The amorphous materials wall 

● Almost all the amorphous 

materials have a loss angle 

between 10-4 and 10-3 

● “Anomalies” are found in 

fused silica at room T 

and in amorphous Si low T 
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Upper limit imposed by future detectors 

X. Liu et al., PRL 113, 025503 (2014) 

a-Si 

SiO2 

fused 

Ti:Ta2O5 

Film 

SiO2 

j 

Frequency  [Hz] 

Ø3’×0.1’ Suprasil® disc - LMA 
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j 
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Open problems in coatings noise 

● Bulk losses 
♦ Are losses in films anisotropic? 

♦ Shear and bulk ? 

● Interface losses 
♦ If any they are not dominant 

● Mixing oxides 
♦ Why the internal friction is reduced 

for some particular combination of oxides? 

● Annealing 
♦ Annealing reduces mechanical losses 

♦ How to avoid crystallization? 

● Origin of thermal noise in  

amorphous materials 
♦ Universal law? 
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TiO2/Ta2O5 

Silica 

S. Penn 

GWADW 2012 

Annealing temperature [°C] 
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A phenomenological model 
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• Asymmetric Double  
Well Potential (ADWP) 
– 2 energy levels at +D/2 

and -D/2, divided by a 
barrier of height V 

– The strain e changes D, 

t is the typical relaxation time 
between the two equilibrium populations 

– The modulus defect  DY and the time t are: 
 
 
 
 

– There are two distributions: f(D) and g(V)  
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Agreement with data 
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•  DY≠0 for D~0: 
f(D) is assumed cnst. 

• g(V) exponential: 
– It seems the right 

choice for fused silica 

• For Ta2O5 or SiO2 film 
g(V) comes from the curve  
loss angle vs. T 

What are these 

relaxation 

mechanisms? 
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Structure investigations 
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● Correlation studies 
♦ RDF, varying fraction of TiO2 

 

♦ Raman, varying annealing time D2 

D1 

TiO2/Ta2O5 

SiO2 

SiO2 

AND YET, WHAT ARE THE RELAXATIONS ? 
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Structure modeling 

● Molecular dynamics 
♦ Structure 

♦ Density and elastic constants 

♦ Vibrational properties 

♦ Relaxations ? 
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Calculation of losses by MD 
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● Calculation partially based on the ADWP 
♦ Identification of the relaxation mechanisms 

♦ Estimation of f(D) and g(V) 

♦ Estimation of the deformation potential g   

♦ Finally, calculation of loss angle j 

 

ENCOURAGING 

AGREEMENT WITH 

EXPERIMANTAL DATA 

(SLIDE 19 AND OTHERS) 
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The known unknown 
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● In GW future detectors there will be 

thermal gradients 
♦ www.rarenoise.lnl.infn.it 

♦ How to control it? Th.Ns reduction 

♦ What is the role of the materials? 
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Last comments 

● Among other topics  

I have not talked about: 

♦ Suspension Th. Noise 

♦ Crystalline coatings 

♦ Thermorefractive noise 

in semiconductors 

● Unsolved problems 

presented here 

♦ Newtonian noise 

cancellation 

♦ Existence of creep noise 

♦ Origin of relaxations in 

amorphous materials 

♦ Thermal noise out of 

thermal equilibrium 
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Thank you for 

your attention 
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