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On the heat flux between two 
reservoirs at different temperture 

   A)                In the stationary case for the heat flux between 
                        two reservoirs at different temperatures

TH TC

heat flux 

Theory : no experiments



The Nyquist problem

|η̃|2 = 4kBRT

Power spectral density 
of the electric noise

In 1928 well before Fluctuation 
Dissipation Theorem (FDT), this 

was the second example,  after the 
Einstein relation for Brownian 

motion, relating  the  dissipation of 
a system to the amplitude of the 

thermal noise.



What are the consequences of removing 
the Nyquist equilibrium conditions ? 

What are the  statistical properties 
of  the energy exchanged between  

the  two conductors kept at different temperature  ?

We analyse these questions in an electric circuit 
within the framework of FT. 



What are the consequences of removing 
the Nyquist equilibrium conditions ? 

What are the  statistical properties 
of  the energy exchanged between  

the  two conductors kept at different temperature  ?

How the variance of V1 and V2 
are modified because of the 

heat flux ?  

What is the role of correlation 
between  V1 and V2 ? 

. 

We analyse these questions 
in an electric circuit 

within the framework of FT. 



Electric Circuit 

T2 =296K   is kept fixed 

T1   is changed with a nitrogen vapor 
circulation 

C is the coupling capacitance = 100pF and 1000pF

C1 and C2 are the cable and amplifier  capacitances � 500pF

R1= R2= 10MΩ

τo � 0.01s



Electric Circuit and 
the mechanical equivalent
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Joint probability of V1 and V2

log10 P (V1, V2)
at T1 = 88K and T2 = 296K

log10 P (V1, V2)
at T1 = T2 = 296k



Electric Circuit and 
the dissipated energy 

Power dissipated in the resistance m=1,2Q̇m = Vm im

  current flowing in the resistance m 

     current flowing in the capacitance Cm

  current flowing in the capacitance C iC

iCm

im

im = iC − iCm
iC = C

d(V2 − V1)

dt
iCm = Cm

dVm

dt



Electric Circuit and 
the dissipated energy 

Power dissipated in the resistance m=1,2

Integrating on a time τ
Qm,τ = Wm,τ −∆Um,τ

∆Um,τ =
(Cm + C)

2
(Vm(t+ τ)2 − Vm(t)2)

Qm,τ =

� t+τ

t
im Vm dt

Potential energy change of
the circuit m in the time τ .

heat flowed in the time τ
from reservoir m� to reservoir m

Q̇m = Vmim = Vm[(Cm + C)V̇m − CV̇m� ]

work performed by the circuit m
on m� in the time τ

Wm,τ =

� t+τ

t
CVm

dVm�

dt
dt



Statistic of the work and heat
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S(Xm,τ ) = log
P (Xm,τ )

P (−Xm,τ)
= ∆β

Xm,τ
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with ∆β = (T2/T1 − 1)

FT for Wτ et Qτ

for τ → ∞
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The heat flux as a function of T2-T1



How the equilbrium variance of 
V1 and V2 is modified 

 which is an extension 
to two temperatures 

of the Harada-Sasa 
relation

σ2
m is

the variance of Vm

σ2
m(Tm, Tm�) = σ2

m,eq(Tm)+ < Q̇m > Rm



On the entropy produced 
by  thermal fluctuations

∆Sr,τ = Q1,τ/T1 +Q2,τ/T2
related to  the heat exchanged 

with the reservoirs

Following Seifert, (PRL 95, 040602, 2005)
who developed this concept for a single heat bath,
we introduce a trajectory entropy for the evolving system

Ss(t) = −kB logP (V1(t), V2(t))

∆Ss,τ = −kB log

�
P (V1(t+ τ), V2(t+ τ))

P (V1(t), V2(t))

�
.

and  the entropy production on the time τ

The  total entropy is :



Statistical properties of 
the total entropy

independently of ∆T and of τ ,
the following equality always holds



Statistical properties of 
the total entropy

log[
P (∆Stot)

P (−∆Stot)
] =

∆Stot

kB

∀τ,∆T

implies that P (∆Stot)
satisfies a FT



On the heat flux and entropy produced 
by  thermal fluctuations



Summary of the experimental and theoretical results 
 ‘’On the heat flux and entropy produced 

by  thermal fluctuations’’

The pdf of Wm/ < Wm > satisfies an asymptotic FT whose
prefactor is the entropy production rate < Wm > (1/Tm − 1/Tm�).

The out of equilibrium variance :

σ2
m(Tm, Tm�) = σ2

m,eq(Tm)+ < Q̇m > Rm

(Extension of Harada-Sasa relation)

The total entropy ∆Stot satisfies a conservation law which
implies the second law and imposes the existence of a FT
which is not asymptotic in time.

∆Stot is rigorously zero in equilibrium,
both in average and fluctuations

The mean heat flux < Q̇ >∝ (T2 − T1)•

•

•

•

•

• The electrical-mechanical analogy makes these results
very general and useful



On the heat flux and entropy produced 
by  thermal fluctuations

Theory
qm is the charge flowed
in the resistance Rm



Electric Circuit and 
the mechanical equivalent

qm the displacement
of the particle m

im its velocity

Km = 1/Cm the stiffness
of the spring m

K = 1/C the stiffness
of the coupling spring

Rm the viscosity.



Energy flow between two hydrodynamically coupled particles kept at different effective temperatures
A. Bérut, A. Petrosyan and S. Ciliberto, EPL, 107 (2014) 60004

On the heat flux bewteen  two particles at two 
different temperature 

A. Bérut, A. Petrosyan and S. Ciliberto, 

Laboratoire de Physique, C.N.R.S. UMR5672,
                                            Ecole Normale Supérieure, France 



Two Brownian particles trapped by two laser beams.



Two Brownian particles trapped by two laser beams.

Difficulty of  having an harmonic coupling between the particles.  
The main source of coupling is hydodynamic (viscous)



Difficulty of  having two close Brownian particles at two 
different temperatures

The temperature gradient is done by forcing the motion of 
one particle with an external random force

Two Brownian particles trapped by two laser beams.

Difficulty of  having an harmonic coupling between the particles.  
The main source of coupling is hydodynamic (viscous)



Experimental results 

Spectra of excited particle 



Variances and cross 
variances as a function 
of the random driving 

voltage (force) at



Variances and cross 
variances as a function 
of the distance betwen 
the beads for a fixed 

driving of 1.5V



From a suitable hydrodynamic model 
one can compute the variances 

where :

� is the coupling coefficient of the particle.
It has to depend on the distance but not
on the random driving amplitude

∆T is the temperature difference induced by the random driving.

k1 and k2 are the stiffness of the optical traps.



From a suitable hydrodynamic model 
one can compute the variances 

where :

� is the coupling coefficient of the particle.
It has to depend on the distance but not
on the random driving amplitude

∆T is the temperature difference induced by the random driving.

k1 and k2 are the stiffness of the optical traps.

�, T and ∆T are the unknown



Values of the parameters from the 
experiment

�, T and ∆T are the unknown



Values of the parameters from the 
experiment

Can we interpret the term
proportional to ∆T
as the heat flux
between the two particles ?



The standard hydrodynamic model

two coupled Langevin equations

 coupling Rotne-Prager diffusion tensor

and forces in equilibrium



The standard hydrodynamic model

two coupled Langevin equations

 coupling Rotne-Prager diffusion tensor

and forces in equilibrium

Out of Equilbrium : forcing on bead 1 f ∗ = k1x0(t)
f∗ is a delta correlated noise

Bead 1 has an effective temperature T ∗ = T +∆T



The standard hydrodynamic model



The correlation functions

< x1(0)x2(t) >< x1(t)x2(0) >



The standard hydrodynamic model

comparison with the electric case 



The standard hydrodynamic model

heat exchanged  by the  bead i in the time τ



The heat flux

potential energy
< qii >= 0

< Qi,j >= �kj < qi,j >



The heat flux

< Qi,j >= �kj < qi,j >

but < Q2,1 >= − k1
k2

< Q1,2 > and

< Q2,1 > + < Q1,2 > �= 0

As for the electric case
one obtains that

σ2
i − σ2

i,equilibrium ∝< Qi >



The Fluctuation Theorem and 
the effective Temperature

S(Q2,1) = log
P (Q2,1)

P (−Q2,1)
= ∆β2,1

Q2,1

kBT2
with ∆β2,1 = k2

k1
(1− T2/T1)

with ∆β1,2 = (1 − T2/T1)S(Q1,2) = log
P (Q1,2)

P (−Q1,2)
= ∆β1,2

Q1,2

kBT2



Dependence of ∆β on ∆T

k1 = k2 k1 = 3
2k2

FT is satisfied both for Q2,1 and Q1,2 but with different ∆β



Conclusions on particle interactions

• The differrence between out-equilibrium  and 
equilibrium variance  is proportional to the heat flux

• A hydrodynamic models precisely described the 
experimental data 

• The FT seems to correctly estimate the effective 
temperature within experimental errors.

• The definition of heat is doubtful !


