Stochastic facilitation in the
brain?
.

o Lawrence M. Ward

Priscilla E. Greenwood
University of British Columbia

Vancouver, Canada

Funded by NSERC of Canada () %25 UPON 2015



Unsolved Problems of Neural

Noise

O To what extent may the oscillatory behavior of
individual neurons, or linked populations of neurons,
best be characterized as noise-driven quasi-cycles or as
noisy limit cycles (or both)?

O What role(s) does neural noise play in the
synchronization of, and information transmission
between, neural populations located far from one
another in the brain!

0O To what extent do noise-driven quasi-patterns arise in
the brain and affect its overall functioning?



Neural oscillations
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Noisy limit cycles or quasi-cycles?
O A common model of interaction of Excitatory and

Inhibitory neurons in cortex of brain

O Sgg i Sgp Sig: Synaptic efficacies between neurons

SIE



~— Noisy limit cycles or quasi-
E |

(

cycles!

O A general rate/local field potential (LFP) model of E-I neural
interaction (orig. Wilson & Cowan, Biophysical Journal, 1972):

T,dVy ()= =V () + g[ay (S Vi ()= SV, (£)— 6, + Py(1))] |dt + 0, dW, (1)
T,dV,(t) =] -V,()+g[a,(S,V,(t) =SV, ()—6))] |dt + o,dW, (1)

V. tiring rate/LFP of excitatory neurons; Pg(t): input current
V: tiring rate/LFP of inhibitory neurons; T g, T : time constants
See Sip Sgp St synaptic efficacies between neurons

g: threshold function, usually g(x)= 1/(1+e%), i.e. logistic I

W(t), W (t): standard Brownian motions (NOISE!)

e E O p O O} ag, ap constants
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Noisy limit cycles

T,dVy ()= =V, (t)+g[a (S Ve (8) = SV, ()= 0, + P.(1)] |dt + 0, dW,.(t)
T,dV,()=|-V,(t)+g[a,(S,V,() = SV, (t)—6))] |dt + 5,dW, (1)

O glx)=1/(1+e¥)

@aen = o1, = (: deterministic
limit cycles around unstable
fixed point

O 0= 0;>0: noisy limit
cycles

Inhibition

Excitation

Wallace et al., 2011




Quasi-cycles

T,dVy ()= -V, (6)+ g[ay (S Ve (8) = SuV, (1) = 0, + P.(1)] |dt + 0, dW,.(t)
T,dV,()=| -V,(t)+g[a,(S,V,()= SV, (t)—6))] |dt +0,dW,(¢)
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O
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o) Setiag = ap 1L
P =00k QE = @I =0

O = 0,;=0: damps to stable fixed
point

O, 0,> 0: quasicycles - i.e. noise-

driven oscillations at frequency
determined by Sgg, S}, Sgp, Sip and
Cg T

Inputs to neurons are typically Poisson-

like, i.e. noise-driven

Inhibition

0 Excitation

Wallace et al., 2011



Noisy limit cycles or quasi-cycles?

O Both models can generate
narrow band oscillations

O  Both models generate bursting,
. . o o Pl(")) from simulations
but with different mechanisms ¢ |.. L
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Noisy synchronization?
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Noisy multiplexing?

a Network model b Stimulus

O Population neural codes
are noisy - sparse t
neural firing

Stimulus
S(t)
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O Noisy oscillations can
be modulated by a
ol (o msssrs
another area to recover . 'y
the signal

O Does the noise play a
COmputatiODal 1‘016? Vla 0 200 400 600 800 1,000

4 Time (ms)
quasi-cycles!

Akam & Kullman, 2014, Nat Rev Neurosci



Spatial quasi-patterns’

Noise-driven systems can exhibit both
quasi-cycles and quasi-patterns

Quasi-patterns are analogous to quasi-
cycles but are spatial and characterized
by a wave number instead of a
frequency

Demonstrated in predator-prey and
epidemiological models.

Quasi-patterns of quasi-cycles in
brains! Do they affect information
processing and information
transmission’

150

McKane et al, 2014, Bull Math Biol



Cortical waves

O Binocularrivalry-
induced cortical
traveling waves: waves
of dominance move
across the visual cortex

as perception of

dominant stimulus
a

changes Y

Wilson, Blake, Lee, Nature, 2001
b

O  EEG standing alpha
(8-12 Hz) waves: areas
with similar colour are
roughly in phase; dark
and light are 180 deg

out of phase.

Nunez & Srinivassan, Brain Research, 2014



Mexican Hat coupling on a 100 x 100
lattice of stochastic E-I processes

Mexican hat

O Quasi-cycles at ~70 Hz at each lattice
location

O Local Mexican hat coupling only;
run for 10,000 iterations

O Quasi-Turing patterns at = 5-6 cycles
in amplitudes (100/19=5.26)

O Little mathematical understanding

Quasi-cycle phase

Greenwood & Ward, 2015, unpublished



Summary

O Noisy limit cycles or quasi-cycles?

O Noise-driven synchronization and
information transfer!

O Spatial quasi-patterns mixed with
noisy or noise-driven oscillations!?



