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Unsolved Problems of Neural 
Noise 

!   To what extent may the oscillatory behavior of 
individual neurons, or linked populations of neurons, 
best be characterized as noise-driven quasi-cycles or as 
noisy limit cycles (or both)?  

!   What role(s) does neural noise play in the 
synchronization of, and information transmission 
between, neural populations located far from one 
another in the brain?  

!   To what extent do noise-driven quasi-patterns arise in 
the brain and affect its overall functioning?  

 



Neural oscillations 

Measure electrical 
activity of brain in any of 
several ways to get 
fluctuating brioadband 
signal with roughly 1/f 
poser spectrum with 
bumps at some particular 
frequencies 

Greenwood, McDonnell, Ward, 2015, 
 Neural Computation 



Noisy limit cycles or quasi-cycles? 
!   A common model of interaction of Excitatory and 

Inhibitory neurons in cortex of brain 

!   SEE, SII, SEI, SIE: Synaptic efficacies between neurons 
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Noisy limit cycles or quasi-
cycles? 

!   A general rate/local field potential (LFP)  model of E-I neural 
interaction (orig. Wilson & Cowan, Biophysical Journal, 1972):  

 

VE: firing rate/LFP of excitatory neurons;  PE(t): input current 

VI: firing rate/LFP of inhibitory neurons; τE,τI: time constants 

SEE, SII, SEI, SIE: synaptic efficacies between neurons 

g:  threshold function, usually g(x)= 1/(1+e-x), i.e. logistic 

WE(t), WI(t): standard Brownian motions (NOISE!) 

ΘE,ΘI,σE, σI, aE, aI: constants 

 

 

τ EdVE (t) = −VE (t)+ g aE (SEEVE (t)− SEIVI (t)−θE + PE (t))[ ]⎡⎣ ⎤⎦dt +σ EdWE (t)

τ IdVI (t) = −VI (t)+ g aI (SIIVI (t)− SIEVE (t)−θ I )[ ]⎡⎣ ⎤⎦dt +σ IdWI (t)

E" I"
SEE"

SEI"

SIE"

SII"



Noisy limit cycles 

!   g(x)= 1/(1+e-x) 

!   σE = σI = 0: deterministic 
limit cycles around unstable 
fixed point 

!   σE = σI > 0: noisy limit 
cycles 

τ EdVE (t) = −VE (t)+ g aE (SEEVE (t)− SEIVI (t)−θE + PE (t))[ ]⎡⎣ ⎤⎦dt +σ EdWE (t)

τ IdVI (t) = −VI (t)+ g aI (SIIVI (t)− SIEVE (t)−θ I )[ ]⎡⎣ ⎤⎦dt +σ IdWI (t)

Wallace et al., 2011 
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Quasi-cycles 

!   g(x)= x; aE = aI =1;  

!   PE(t) = 0; ΘE =ΘI = 0 

!   σE = σI = 0: damps to stable fixed 
point 

!   σE , σI > 0: quasi-cycles – i.e. noise-
driven oscillations at frequency 
determined by SEE, SII, SEI, SIE and 
τE,τI 

!   Inputs to neurons are typically Poisson-
like, i.e. noise-driven 

Wallace et al., 2011 

τ EdVE (t) = −VE (t)+ g aE (SEEVE (t)− SEIVI (t)−θE + PE (t))[ ]⎡⎣ ⎤⎦dt +σ EdWE (t)

τ IdVI (t) = −VI (t)+ g aI (SIIVI (t)− SIEVE (t)−θ I )[ ]⎡⎣ ⎤⎦dt +σ IdWI (t)
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!   Both models can generate 
narrow band oscillations 

!   Both models generate bursting, 
but with different mechanisms 

!   Both models generate a 
physiological range of local 
field potential oscillation 
frequencies 

!   We need new methods to 
distinguish the mechanism in 
data from brain recordings 

Noisy limit cycles or quasi-cycles? 

Greenwood, McDonnell, Ward, 2015, 
 Neural Computation 



Noisy synchronization? 

!   Noise can enhance 
synchronization between 
oscillators 

!   Both noisy limit cycles and 
quasi-cycles display 
synchronization between 
distant populations 

!   Synchronization is 
supposed to benefit neural 
information transfer 

!   Does noise benefit 
information transfer via 
synchronization? 

Daffertshoffer & vanWijk, 2011, Frontiers 

Greenwood, McDonnell, Ward, 2015, unpublished 



Noisy multiplexing? 

!   Population neural codes 
are noisy – sparse 
neural firing 

!   Noisy oscillations can 
be modulated by a 
signal and decoded at 
another area to recover 
the signal 

!   Does the noise play a 
computational role? Via 
quasi-cycles? 

Akam & Kullman, 2014, Nat Rev Neurosci 



Spatial quasi-patterns? 
!   Noise-driven systems can exhibit both 

quasi-cycles and quasi-patterns 

!   Quasi-patterns are analogous to quasi-
cycles but are spatial and characterized 
by a wave number instead of a 
frequency 

!   Demonstrated in predator-prey and 
epidemiological models. 

!   Quasi-patterns of quasi-cycles in 
brains? Do they affect information 
processing and information 
transmission? 
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FIG. 2: (Color online) Phase diagram over stable parameter
region in p/d. The shaded region contains fluctuation driven
quasi-patterns, the region above contains mean field pattern
formation, and below the shaded region is a spatially homo-
geneous phase.

FIG. 3: (Color online)Power spectrum with p=1, ⌫/µ=15
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This shows that for a fixed ratio of di↵usivities, the
wavelength increases as the square root of the di↵usivity.
In addition, while the phase diagram of the system (fig
2) and therefore the presence of Turing quasi-patterns
depends on di↵usivity only through the ratio ⌫/µ, the
wavelength of the patterns depends on the values of the
di↵usivities.

This calculation also implies that the wavelength of

the quasi-patterns is closely related to the wavelength of
patterns in the region of the phase diagram where pat-
terns are generated at mean field. In the standard theory
of Turing patterns, patterns are formed when the homo-
geneous steady state is unstable to perturbations with a
specific set of wave vectors k. The wavelength is then
the wavelength corresponding to the mode that is most
unstable. In the calculation above, we have picked out
the mode that in mean field theory corresponds to the
slowest decaying mode as the wavelength of the quasi-
patterns. This is because the denominator of the power
spectrum is equal to the product of the eigenvalues of the
stability matrix squared. This product is smallest for the
slowest decaying mode, which is also the mode that will
go unstable in mean field theory first as parameters are
varied. Therefore the wavelength of the quasi-patterns
corresponds to the wavelength of the mean field patterns.

C. Period of quasi-cycles

A similar calculation to the calculation above for the
wavelength of the quasi-patterns can be carried out for
the period of the quasi-cycles. Consider the denominator
of the power spectrum with k = 0
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Analogous to the wavelength calculation, we seek the
minimum in !. Simple calculation yields a period of
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Similar arguments to those for the wavelength indicate
that the period for the quasi-cycles is approximately the
period for the stable spirals present in mean field theory
[26].

V. DISTINGUISHING QUASI-PATTERNS AND
QUASI-CYCLES FROM OTHER
SPATIOTEMPORAL PATTERNS

To distinguish spatiotemporal patterns generated by
intrinsic noise from those generated by feedbacks alone
(i.e. mean field patterns) or by extrinsic noise, it is nec-
essary to develop theoretical predictions that di↵er for
each of these cases. Previous work has focused primarily
on time series data, focusing on problems such as dis-
tinguishing quasi-cycles from limit cycles [29] as well as
the task of simply determining the amount of extrinsic
versus intrinsic noise in ecosystems [52]. This work has
confirmed that both extrinsic noise and intrinsic noise
are important in real ecosystems for populations such as
temperate songbirds in Norway, and the beetle species
Tribolium [52–54] and that quasi-cycles are present in
real ecological time series data[29]. The work also con-
firms that the importance of intrinsic noise decreases as

Butler & Goldenfeld, 2011, PRE 

McKane et al, 2014, Bull Math Biol 



Cortical waves 
!   Binocular-rivalry-

induced cortical 
traveling  waves: waves 
of dominance move 
across the visual cortex 
as perception of 
dominant stimulus 
changes  

!   EEG standing alpha 
(8-12 Hz) waves: areas 
with similar colour are 
roughly in phase; dark 
and light are 180 deg 
out of phase. 

Wilson, Blake, Lee, Nature, 2001  

Nunez & Srinivassan, Brain Research, 2014  



Mexican Hat coupling on a 100 x 100 
lattice of stochastic E-I processes 

!   Quasi-cycles at ≈70 Hz at each lattice 
location 

!   Local Mexican hat coupling only; 
run for 10,000 iterations 

!   Quasi-Turing patterns at ≈ 5-6 cycles 
in amplitudes (100/19=5.26) 

!   Little mathematical understanding 

Greenwood & Ward,  2015, unpublished 

Quasi-cycle amplitude 

Mexican hat 

Quasi-cycle phase 



Summary 

!   Noisy limit cycles or quasi-cycles? 

!   Noise-driven synchronization and 
information transfer? 

!   Spatial quasi-patterns mixed with 
noisy or noise-driven oscillations? 


